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Latent Variables

Latent variables are unobserved random variablesZ that enter into the energy function
E(Y, Z, X, W ).

TheX variable (input) is always observed, theY must be
predicted. TheZ variable islatent: it is not observed. We
need tomarginalize the joint probabilityP (Y, Z|X, W )
overZ to getP (Y |X, W ):

P (Y |X, W ) =

∫

P (Y, z|X, W )dz

The following discussion treats the case where an obser-
vationX is present. In the unsupervised case, there is no
observation. We can simply remove the symbolX from
all the slides below.
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Latent Variables: example

Let’s say we have a bunch of images of a Boeing 747 under various viewing angles
(let’s call the angleZ), and another bunch of images of an Airbus A-380, also under
various viewing angles.
Let’s assume that we are given a “similarity” functionE(Y, Z, X) whereY is the label
(Boeing or Aribus),Z is the latent variable (the viewing angle), andX the image. For
example,E(Airbus, 20, X) will give us a low energy ifX is similar to our prototype
image of an Airbus under 20 degree viewing angle. For example, E could be defined
as:

E(Y, Z, X) = ||X −RY Z ||
2

whereRY Z is our prototype image of planeY at angleZ.
When asked about the category of an image, we are never given the viewing angle, but
knowing it would make our task simpler.
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Latent Variables: marginalization

In terms of energy function,P (Y, Z|X, W ) can be written as:

P (Y, Z|X, W ) =
exp(−βE(Y, Z, X, W ))

∫

exp(−βE(y, z, X, W ))dzdy

Therefore,P (Y |X, W ) =
∫

P (Y, z|X, W )dz becomes:

P (Y |X, W ) =

∫

exp(−βE(Y, z, X, W ))
∫

exp(−βE(y, z′, X, W ))dz′dy
dz

since the denominator doesn’t depend onz:

P (Y |X, W ) =

∫

exp(−βE(Y, z, X, W ))dz
∫

exp(−βE(y, z′, X, W ))dz′dy

If Z is a multidimensional variable, this could be very difficultto compute.
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Latent Variables: example of marginalization

E(Y, Z, X) = ||X −RY Z ||
2

P (Y, Z|X, W ) =
exp(−β||X −RY Z ||

2)
∫

exp(−β||X −RY Z ||2dzdy

It’s a Gaussian with meanRY Z , and variance1/β.

P (Airbus|X) =
∑

Z

exp(−β||X −RAirbus Z ||
2)

∑

Z exp(−β||X −RBoeing Z ||2) + exp(−β||X −RAirbus Z ||2)

It’s a sum of Gaussians.
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Latent Variables: max likelihood inference

Very often, given an observationX, we merely want to know the value ofY that is the
most likely:Y ∗ = argmaxY P (Y |X, W )

Y ∗ = argmaxY

∫

exp(−βE(Y, z, X, W ))dz
∫

exp(−βE(y, z′, X, W ))dz′dy

Since the denominator does not depend onY , we can simply remove it:

Y ∗ = argmaxY

∫

exp(−βE(Y, z, X, W ))dz

By taking log and dividing byβ, we get:

Y ∗ = argminY −
1

β
log

[
∫

exp(−βE(Y, z, X, W ))dz

]

This is thelogsum of the energies for all values ofZ, also called theHelmholtz free
Energy of the ensemble of states whenZ varies.
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Latent Variables: example of max likelihood

E(Y, Z, X) = ||X −RY Z ||
2

Y ∗ = argminY −
1

β
log

[

∑

z

exp(−β||X −RY Z ||
2)

]
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Latent Variables: zero-temperature limit

Computing the most likelyY using the free energy:

Y ∗ = argminY −
1

β
log

[
∫

exp(−βE(Y, z, X, W ))dz

]

still requires to compute a (possibly horrible) integral overZ.
One possible shortcut is to makeβ go to infinity. Then, as we have seen before, the
logsum reduces to themin, hence:

lim
β→∞

Y ∗ = argminY min
Z

E(Y, Z, X, W )

In this case, inference is a lot simpler: to find the “best” value ofY , find the
combination of values of bothZ andY that minimize the energy:

E(Y ∗, Z∗, X, W ) = min
Y,Z

E(Y, Z, X, W )

and returnY ∗.
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Latent Variables: example of zero-temp limit

E(Y, Z, X) = ||X −RY Z ||
2

E(Y ∗, Z∗, X, W ) = min
Y,Z
||X −RY Z ||

2

and returnY ∗.
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Example: Mixture Models

We haveK normalized densitiesP k(Y |W k), each of which has a positive coefficient
αk (whose sum overk is 1), and a switch controlled by a discrete latent variableZ that
picks one of the component densities. There is no inputX, only an “output”Y (whose
distribution is to be modeled) and a latent variableZ.

The likelihood for one sampleY i:

P (Y i, Z|W ) =
∑

k

αkPk(Y i|W k)

with
∑

k αk = 1. Using Bayes’ rule, we can compute the
posterior prob of the mixture components for each data
pointY i:

rk(Y i) = P (Z = k|Y i, W ) =
αkPk(Y i|W k)

∑

j αjPj(Y i|W j)

These quantities are called “responsabilities”.
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Learning a Mixture Model with Gradient

We can learn a mixture with gradient descent, but there are much better methods as we
will see later. The negative log-likelihood of the data is:

L = − log
∏

i

P (Y i|W ) =
∑

i

−logP (Y i|W )

Let us consider the likelihood of one data pointY i:

Li = −logP (Y i|W ) = −log
∑

k

αkPk(Y i|W )

∂Li

∂W
=

1

P (Y i|W )

∑

k

αk
∂Pk(Y i|W )

∂W

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/??



Learning a Mixture Model with Gradient (cont)

∂Li

∂W
=

1

P (Y i|W )

∑

k

αk
∂Pk(Y i|W )

∂W

=
∑

k

αk
1

P (Y i|W )
Pk(Y i|W )

∂ log Pk(Y i|W )

∂W

=
∑

k

αk
Pk(Y i|W )

P (Y i|W )

∂ log Pk(Y i|W )

∂W
==

∑

k

rk(Y i)αk
∂ log Pk(Y i|W )

∂W

The gradient is the weighted sum of gradients of the individual components weighted
by the responsabilities.
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Example: Gaussian Mixture

P (Y |W ) =
∑

k

αk|2πV k|−1/2 exp(−1/2(Y −Mk)′(V k)
−1

(Y −Mk))

This is used a lot in speech recognition.
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The Expectation-Maximization Algorithm

Optimizing likelihoods with gradient is the only option in some cases, but there is a
considerably more efficient procedure known as EM.
Every time we update the parametersW , the distribution over latent variablesZ must
be updated as well (because it depends onW .
The basic idea of EMis to keep the distribution overZ constant while we find the
optimalW , then we recompute the new distribution overZ that result from the new
W , and we iterate. This process is sometimes calledcoordinate descent.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/??



EM: The Trick

The negative log likelihood for a sampleY i is:

Li = − log P (Y i|W ) = − log

∫

P (Y i, Z|W )dZ

For any distributionq(Z) we can write:

Li = − log

∫

q(Z)
P (Y i, Z|W )

q(Z)
dZ

We now use Jensen’s inequality, which says that for any concave functionG (such as
log)

−G(

∫

p(z)f(z)dz) ≤ −

∫

p(z)G(f(z))dz

We get:

Li ≤ F i = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ
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EM

Li ≤ F i = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

EM minimizesF i by alternately
finding theq(Z) that mininizesF (E-step)
then finding theW that minimizesF M-step)
E-step:q(Z)t+1 ← argminqF

i(q(Z)t, W t)

M-step:W (Z)t+1 ← argminW F i(q(Z)t+1, W t)
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M Step

We can decompose the free energy:

F i(q(Z), W ) = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

= −

∫

q(Z) log P (Y i, Z|W )dZ +

∫

q(Z) log q(Z)dZ

The first term is the expected energy with distributionq(Z), the second is the entropy
of q(Z), and does not depend onW .
So in the M-step, we only need to consider the first term when minimizing with
respect toq(Z).

W (Z)t+1 ← argminW −

∫

q(Z) log P (Y i, Z|W )dZ
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E Step

Proposition: the value ofq(Z) that minimizes the free energy isq(Z) = P (Z|Y i, W )
This is the posterior distrib over the latent variabled given teh sample and the current
parameter.
Proof:

F i(P (Z|Y i, W ), W ) = −

∫

P (Z|Y i, W ) log
P (Y i, Z|W )

P (Z|Y i, W )
dZ

= −

∫

P (Z|Y i, W ) log P (Y i|W )dZ =

− log P (Y i|W )

∫

z

P (Z|Y i, W ) = − log P (Y i|W ).1
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