
MACHINE LEARNING AND

PATTERN RECOGNITION

Fall 2006, Lecture 4.2

Gradient-Based Learning III: Architectures

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/30

A Trainer class

MACHINE

COST

LOSS

ENERGY

MOUT

INPUT

P
A

R
A

M

OUTPUT

L

Simple Trainer

The trainer object is designed to train a particu-
lar machine with a given energy function and loss.
The example below uses the simple energy loss.
(defclass simple-trainer object

input ; the input state

output ; the output/label state

machin ; the machine

mout ; the output of the machine

cost ; the cost module

energy ; the energy (output of the cost) and

param ; the trainable parameter vector

)

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/30

A Trainer class: running the machine

MACHINE

COST

LOSS

ENERGY

MOUT

INPUT

P
A

R
A

M

OUTPUT

L

Simple Trainer

Takes an input and a vector of possible labels (each
of which is a vector, hence <label-set> is a matrix)
and returns the index of the label that minimizes the
energy. Fills up the vector <energies> with the energy
produced by each possible label.
(defmethod simple-trainer run

(sample label-set energies)

(==> input resize (idx-dim sample 0))

(idx-copy sample :input:x)

(==> machine fprop input mout)

(idx-bloop ((label label-set) (e energies))

(==> output resize (idx-dim label 0))

(idx-copy label :output:x)

(==> cost fprop mout output energy)

(e (:energy:x)))

;; find index of lowest energy

(idx-d1indexmin energies))

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/30

A Trainer class: training the machine

MACHINE

COST

LOSS

ENERGY

MOUT

INPUT

P
A

R
A

M

OUTPUT

L

Simple Trainer

Performs a learning update on one sample. <sample>
is the input sample, <label> is the desired category (an
integer), <label-set> is a matrix where the i-th row is
the desired output for the i-th category, and <update-
args> is a list of arguments for the parameter update
method (e.g. learning rate and weight decay).
(defmethod simple-trainer learn-sample

(sample label label-set update-args)

(==> input resize (idx-dim sample 0))

(idx-copy sample :input:x)

(==> machine fprop input mout)

(==> output resize (idx-dim label-set 1))

(idx-copy (select label-set 0 (label 0)) :output:x)

(==> cost fprop mout output energy)

(==> cost bprop mout output energy)

(==> machine bprop input mout)

(==> param update update-args)

(:energy:x))

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/30

Other Topologies

The back-propagation procedure is not
limited to feed-forward cascades.

It can be applied to networks of module
with any topology, as long as the
connection graph is acyclic.

If the graph is acyclic (no loops) then, we
can easily find a suitable order in which to
call the fprop method of each module.

The bprop methods are called in the
reverse order.

if the graph has cycles (loops) we have a
so-calledrecurrent network. This will be
studied in a subsequent lecture.

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/30

More Modules

A rich repertoire of learning machines can be constructed with just a few module types
in addition to the linear, sigmoid, and euclidean modules wehave already seen.
We will review a few important modules:

The branch/plus module

The switch module

The Softmax module

The logsum module

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/30

The Branch/Plus Module

The PLUS module: a module withK inputs
X1, . . . , XK (of any type) that computes the sum
of its inputs:

Xout =
∑

k

Xk

back-prop: ∂E
∂Xk

= ∂E
∂Xout

∀k

The BRANCH module: a module with one input
andK outputsX1, . . . , XK (of any type) that
simply copies its input on its outputs:

Xk = Xin ∀k ∈ [1..K]

back-prop:∂E
∂in =

∑
k

∂E
∂Xk

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/30

The Switch Module

A module withK inputsX1, . . . , XK (of
any type) and one additional
discrete-valued inputY .

The value of the discrete input determines
which of theN inputs is copied to the
output.

Xout =
∑

k

δ(Y − k)Xk

∂E

∂Xk

= δ(Y − k)
∂E

∂Xout

the gradient with respect to the output is
copied to the gradient with respect to the
switched-in input. The gradients of all other
inputs are zero.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/30

The Logsum Module

fprop:

Xout = −
1

β
log

∑

k

exp(−βXk)

bprop:
∂E

∂Xk

=
∂E

∂Xout

exp(−βXk)∑
j exp(−βXj)

or
∂E

∂Xk

=
∂E

∂Xout
Pk

with

Pk =
exp(−βXk)∑
j exp(−βXj)

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/30

Log-Likelihood Loss function and Logsum Modules

MAP/MLE LossLll(W, Y i, Xi) = E(W, Y i, Xi) + 1
β

log
∑

k exp(−βE(W, k, Xi))

A classifier trained with the
Log-Likelihood loss can be
transformed into an equivalent
machine trained with the energy
loss.

The transformed machine contains
multiple “replicas” of the classifier,
one replica for the desired output,
andK replicas for each possible
value ofY .

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/30

Softmax Module

A single vector as input, and a “normalized” vector as output:

(Xout)i =
exp(−βxi)∑
k exp(−βxk)

Exercise: find the bprop
∂(Xout)i

∂xj

=???

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/30

Radial Basis Function Network (RBF Net)

Linearly combined Gaussian
bumps.

F (X, W, U) =∑
i ui exp(−ki(X −Wi)

2)

The centers of the bumps can be
initialized with the K-means
algorithm (see below), and
subsequently adjusted with gradient
descent.

This is a good architecture for re-
gression and function approxima-
tion.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/30

MAP/MLE Loss and Cross-Entropy

classification (y is scalar and discrete). Let’s denoteE(y, X, W) = Ey(X, W)

MAP/MLE Loss Function:

L(W) =
1

P

P∑

i=1

[Eyi(Xi, W) +
1

β
log

∑

k

exp(−βEk(Xi, W))]

This loss can be written as

L(W) =
1

P

P∑

i=1

−
1

β
log

exp(−βEyi(Xi, W))∑
k exp(−βEk(Xi, W))

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/30

Cross-Entropy and KL-Divergence

let’s denoteP (j|Xi, W) =
exp(−βEj(X

i,W))
P

k
exp(−βEk(Xi,W)) , then

L(W) =
1

P

P∑

i=1

1

β
log

1

P (yi|Xi, W)

L(W) =
1

P

P∑

i=1

1

β

∑

k

Dk(yi) log
Dk(yi)

P (k|Xi, W)

with Dk(yi) = 1 iff k = yi, and0 otherwise.

example1:D = (0, 0, 1, 0) andP (.|Xi, W) = (0.1, 0.1, 0.7, 0.1). with β = 1,
Li(W) = log(1/0.7) = 0.3567

example2:D = (0, 0, 1, 0) andP (.|Xi, W) = (0, 0, 1, 0). with β = 1,
Li(W) = log(1/1) = 0

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/30

Cross-Entropy and KL-Divergence

L(W) =
1

P

P∑

i=1

1

β

∑

k

Dk(yi) log
Dk(yi)

P (k|Xi, W)

L(W) is proportional to thecross-entropy between the conditional distribution
of y given by the machineP (k|Xi, W) and thedesired distribution over classes
for samplei, Dk(yi) (equal to 1 for the desired class, and 0 for the other
classes).

The cross-entropy also calledKullback-Leibler divergence between two
distributionsQ(k) andP (k) is defined as:

∑

k

Q(k) log
Q(k)

P (k)

It measures a sort of dissimilarity between two distributions.

the KL-divergence is not a distance, because it is not symmetric, and it does not
satisfy the triangular inequality.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/30

Multiclass Classification and KL-Divergence

Assume that our discriminant moduleF (X, W)
produces a vector of energies, with one energy
Ek(X, W) for each class.

A switch module selects the smallestEk to perform
the classification.

As shown above, the MAP/MLE loss below be seen
as a KL-divergence between the desired distribution
for y, and the distribution produced by the machine.

L(W) =
1

P

P∑

i=1

[Eyi(Xi, W)+
1

β
log

∑

k

exp(−βEk(Xi, W))]

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/30

Multiclass Classification and Softmax

The previous machine: discriminant function with one
output per class + switch, with MAP/MLE loss

It is equivalent to the following machine: discriminant
function with one output per class + softmax + switch
+ log loss

L(W) =
1

P

P∑

i=1

1

β
− log P (yi|X, W)

with P (j|Xi, W) =
exp(−βEj(X

i,W))
P

k
exp(−βEk(Xi,W)) (softmax of

the−Ej ’s).

Machines can be transformed into various equivalent
forms to factorize the computation in advantageous
ways.

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/30

Multiclass Classification with a Junk Category

Sometimes, one of the categories is “none of the above”, how can we handle
that?

We add an extra energy wireE0 for the “junk” category which does not depend
on the input.E0 can be a hand-chosen constant or can be equal to a trainable
parameter (let’s call itw0).

everything else is the same.

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/30

NN-RBF Hybrids

sigmoid units are generally more
appropriate for low-level feature
extraction.

Euclidean/RBF units are generally more
appropriate for final classifications,
particularly if there are many classes.

Hybrid architecture for multiclass classifi-
cation: sigmoids below, RBFs on top + soft-
max + log loss.

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/30

Parameter-Space Transforms

Reparameterizing the function by transforming the space

E(Y, X, W)→ E(Y, X, G(U))

gradient descent inU space:

U ← U − η ∂G
∂U

′ ∂E(Y,X,W)
∂W

′

equivalent to the following algorithm inW

space:W ←W − η ∂G
∂U

∂G
∂U

′ ∂E(Y,X,W)
∂W

′

dimensions:[Nw ×Nu][Nu ×Nw][Nw]

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/30

Parameter-Space Transforms: Weight Sharing

A single parameter is replicated multiple
times in a machine

E(Y, X, w1, . . . , wi, . . . , wj , . . .)→

E(Y, X, w1, . . . , uk, . . . , uk, . . .)

gradient:∂E()
∂uk

= ∂E()
∂wi

+ ∂E()
∂wj

wi and wj are tied, or equivalently,uk is
shared between two locations.

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/30

Parameter Sharing between Replicas

We have seen this before: a parameter controls
several replicas of a machine.

E(Y1, Y2, X, W) = E1(Y1, X, W)+E1(Y2, X, W)

gradient:
∂E(Y1,Y2,X,W)

∂W
= ∂E1(Y1,X,W)

∂W
+ ∂E1(Y2,X,W)

∂W

W is shared between two (or more) instances of
the machine: just sum up the gradient contribu-
tions from each instance.

Y. LeCun: Machine Learning and Pattern Recognition – p. 22/30

Path Summation (Path Integral)

One variable influences the output through several others

E(Y, X, W) =
E(Y, F1(X, W), F2(X, W), F3(X, W), V)

gradient:∂E(Y,X,W)
∂X

=
∑

i
∂Ei(Y,Si,V)

∂Si

∂Fi(X,W)
∂X

gradient:∂E(Y,X,W)
∂W

=
∑

i
∂Ei(Y,Si,V)

∂Si

∂Fi(X,W)
∂W

there is no need to implement these rules ex-
plicitely. They come out naturally of the object-
oriented implementation.

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/30

Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input
space, but globally inconsistent.Example: piecewise linearly separable function.

Solution: a machine composed of several
“experts” that are specialized on subdomains of
the input space.

The output is a weighted combination of the
outputs of each expert. The weights are produced
by a “gater” network that identifies which
subdomain the input vector is in.

F (X, W) =
∑

k ukF k(X, W k) with

uk = exp(−βGk(X,W 0))
P

k
exp(−βGk(X,W 0))

the expert weightsuk are obtained by softmax-ing
the outputs of the gater.

example: the two experts are linear regressors, the
gater is a logistic regressor.

Y. LeCun: Machine Learning and Pattern Recognition – p. 24/30

Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectorsXt.

simple idea: the machine takes a time
window as input

R = F (Xt, Xt−1, Xt−2, W)

Examples of use:
predict the next sample in a time
series (e.g. stock market, water
consumption)
predict the next character or word in a
text
classify an intron/exon transition in a
DNA sequence

Y. LeCun: Machine Learning and Pattern Recognition – p. 25/30

Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.
layer1X1

t = F 1(Xt, Xt−1, Xt−2, W
1)

layer2X2
t = F 1(X1

t , X1
t−1, X

1
t−2, W

2)

costEt = C(X1
t , Yt)

Examples:
predict the next sample in a time series with
long-term memory (e.g. stock market, water
consumption)
recognize spoken words
recognize gestures and handwritten
characters on a pen computer.

How do we train?

Y. LeCun: Machine Learning and Pattern Recognition – p. 26/30

Training a TDNN

Idea: isolate the minimal network that influences the energyat one particular time step
t.

in our example, this is influenced by 5 time
steps on the input.

train this network in isolation, taking those
5 time steps as the input.

Surprise: we have three identical replicas
of the first layer units that share the same
weights.

We know how to deal with that.

do the regular backprop, and add up the
contributions to the gradient from the 3
replicas

Y. LeCun: Machine Learning and Pattern Recognition – p. 27/30

Convolutional Module

If the first layer is a set of linear units with sigmoids, we canview it as performing a
sort ofmultiple discrete convolutions of the input sequence.

1D convolution operation:

S1
t =

∑T
j=1 W 1

j

′

Xt−j .

wjk j ∈ [1, T] is aconvolution kernel

sigmoidX1
t = tanh(S1

t)

derivative: ∂E
∂w1

j
k

=
∑3

t=1
∂E
∂S1

t

Xt−j

Y. LeCun: Machine Learning and Pattern Recognition – p. 28/30

Simple Recurrent Machines

The output of a machine is fed back to some of its inputsZ. Zt+1 = F (Xt, Zt, W),
wheret is a time index. The inputX is not just a vector but a sequence of vectorsXt.

This machine is adynamical system with
an internal stateZt.

Hidden Markov Models are a special case
of recurrent machines whereF is linear.

Y. LeCun: Machine Learning and Pattern Recognition – p. 29/30

Unfolded Recurrent Nets and Backprop through time

To train a recurrent net: “unfold” it in time
and turn it into a feed-forward net with as
many layers as there are time steps in the
input sequence.

An unfolded recurrent net is a very “deep”
machine where all the layers are identical
and share the same weights.

∂E
∂W

=
∑

t
∂E
∂Zt

∂F (Xt,Zt,W)
∂W

This method is calledback-propagation
through time.

examples of use: process control (steel mill,
chemical plant, pollution control....), robot
control, dynamical system modelling...

Y. LeCun: Machine Learning and Pattern Recognition – p. 30/30

	A Trainer class
	A Trainer class: running the machine
	A Trainer class: training the machine
	Other Topologies
	More Modules
	The Branch/Plus Module
	The Switch Module
	The Logsum Module
	Log-Likelihood Loss function and Logsum Modules
	Softmax Module
	Radial Basis Function Network (RBF Net)
	MAP/MLE Loss and Cross-Entropy
	Cross-Entropy and KL-Divergence
	Cross-Entropy and KL-Divergence
	Multiclass Classification and KL-Divergence
	Multiclass Classification and Softmax
	Multiclass Classification with a Junk Category
	NN-RBF Hybrids
	Parameter-Space Transforms
	Parameter-Space Transforms: Weight Sharing
	Parameter Sharing between Replicas
	Path Summation (Path Integral)
	Mixtures of Experts
	Sequence Processing: Time-Delayed Inputs
	Sequence Processing: Time-Delay Networks
	Training a TDNN
	Convolutional Module
	Simple Recurrent Machines
	Unfolded Recurrent Nets and Backprop through time

