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Unsupervised Learning

The basics idea of unsupervised learnibgarn an energy functiof'(Y') such that
E(Y)is small ifY is “similar” to the training samples, anBl(Y) is large if Y is
“different” from the training samples. What we mean by “dami and “different” is
somewhat arbitrary and must be defined for each problem.

Probabilistic unsupervised learning: Density
Estimation. Find a functiorf suchf(Y")
approximates the empirical probability densityof
p(Y'), as well as possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold or
surface that is as close as possible to all the samples.

Compression/Quantization: discover a function that
for each input computes a compact “code” from which
the input can be reconstructed.
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Parametric Density Estimation

Use Maximum Likelihood Given a modelP (Y |W), find the parametéil that best
“explains” the training samples, i.e. thE& that maximizes the likelihood of the

training sampled’!, Y2, ...Y*. Assuming that the total data likelihood factorizes into
iIndividual sample likelihoods:

P(YLY?  YP W) =] PYW)

Equivalently, find thd¥” that minimizes the negative log likelihood.

L(W) = —log H P(Y'|W) =Y —logP(Y'|W)

7

This is calledparametric estimation because we assume that the family of possible
densities is parameterized by .
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Parametric Density Estimation

AssumingP (Y |W) is the normalized exponential of an energy function:

. eXp(—ﬁE(Y, W))
PY|W) = [exp(—BE(Y,W))dY

and after an irrelevant division by, we get the loss function:

LW)=Y)_ (E(Y’i,W) + %log/exp(—ﬁE(Y, W))dY)

)

The Maximum A Posteriori Estimate is similar but includesemalty onlV:

LW)=>" (E(Y@',W) + %log / exp(—BE(Y, W))dY) + H(W)

)
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Example: Univariate Gaussian

Maximum Likelihood: find the parameters
of a Gaussian that best “explains” the

training sampleg®, v2, ....y".

negative log-likelinood of the data (one
dimension):L(m,v) =

— 30, log S exp(— & (57 —m)?)

L(m,v) = —

1 .
Z “(y* —m)? + log 2mv
—~

Minimize L(m,v) with respect ton andv.
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Example: Univariate Gaussian

Minimize L(m,v) with respect tan

aLéZ’U) _ %Zl(yz —m) =0

_ 1 '
Hencemn = 5 ) . ¢

Now minimize L(m, v) with respect taw

OL(m,v) _ }Z (_i(yz‘ —m)? 4 1) —0

ov 2 V2 v

Hencev = + >, (y" — m)?

surprise-surpriseThe maximum likelihood estimates of the mean and variance
of a Gaussian are the mean and variance of the samples.
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Example: Multi-variate Gaussian

Maximum Likelihood: find the parameters of a Gaussian that texplains” the
training sample§’!, Y2, ...Y".
The negative log-likelihood of the data/( is a vector,V is a matrix):

L(M,V) = Zlog(pm V2 exp(~1/2(Y = MYVTHYT — M)

L(M,V) = % SV - MYVLY = M) — log [V + log(2r)

1
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Multi-variate Gaussian (continued)

L(M,V) = % D (Y= MYVTHY? = M) —log|V ™| + log(2n)

1

(9LMV ZV B 0

Hence, M = + >, Y Now minimize L(M, V') with respect td/ !

OL(M,V 1 ; ; )
e = S (@ = =y - V)
- log |V 1 /
(using the fact ag‘/'_l - V.

HenceV = £ > (Y — M)(Y* — M)’
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Non-Parametric M ethods. Parzen Windows

The sample distribution can be seen as a

bunch of delta functionddea: make it
smooth.

Place a “bump” around each training
sampleY™.

example: Gaussian bump

g:;(Y) = 2 exp(—K||Y — Y"*||?) whereZ
IS the Gaussian normalization constant.

The density isP(Y) = 5 ~f; ¢:(Y)

It's simple, but it's expensive.
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Dimensionality Reduction

A slightly simpler problem than full-fledged density esttma: Find a
low-dimensional surface (a manifold) that is as close asiptesto the training

samples.

Example 1: reducing the number of input

variables (features) to a classifier so as to reduce
the over-parameterization problem.

Example 2: images of human faces can be seen a:
vectors in a very high dimensional space. Actual
faces reside in a small subspace of that large
space. If we had a parameterization of the
manifold of all possible faces, we could generate
new faces or interpolate between faces by moving
around that surface. (this has been done, see
Blanz and Vetter “Face recognition based on

fitting a 3D morphable model” IEEE Trans. PAMI
25:1063-1074, 2003).

Example 3: Parameterizing the possible shapes o
a mouth so we can make a simulated human spea
(see http://www.vir2elle.com).
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Linear Subspace: Principal Component Analysis

Problem: find dinear manifold that best approximates the samples. In other words
find a linear projectionP such that the projection of the samples are as close as
possible to the originals.

We have a training sét!...Y*. We assume all
the components have zero mean. If not we center

the vectors by subtracting the mean from each
component.

Question: what is the direction that we can
remove (project out) while minimally affecting
the training set.

Let U be a unit vector in that dimension
Removing the dimension in the directionGfwill
cost usC' = Y., (YV'U)? (the square length of
the projections ot onU).
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Principal Component Analysis

Removing the dimension in the direction@fwill cost usC' = Zf:l(Y’“U)2
(the square length of the projections¥f onU).

C=N" UYiYy'u=[UY, YY"]U Q: How do we pickl/ so as to
minimize the quantity in the bracket?

The covariance matrid = >_/_ | YY" can be diagonalizedd = QAQ’,
where() is a rotation matrix, whose lingg; are the normalized (and mutually

orthogonal) eigenvectors of, andA a diagonal matrix that contain the
(positive) eigenvalues od.

It is easy to see that the unit vectdrthat minimizes/’'QAQ’ is aligned with
the eigenvector of smallest eigenvalueAf

To eliminate more directions, we can repeat the procesewé@rhaining in the
orthogonal space of the previously found directions.

Practically: we simply find firsf& eigenvectors ol (associated with th&
largest eigenvalues) and keep those.
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Principal Component Analysis (PCA)

step 1: We have a training sgt'...Y Y whose component variables have zero
mean (or have been centered).

step 2: compute the covariance matdx= % ZL yivye
step 3: diagonalize the covariance matk= Q’'AQ,

step 4: Construct the matri@® whose rows are the the eigenvectors of largest
eigenvalues ofd (a subset of rows af)).

Multiplying a vector byQ* gives the projections of the vector onto the principal
eigenvectors ofd. We can Now compute thie PCA features of any vectdr as

PCAX(Y) = Q+Y.
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K-Means Clustering

ldea find K prototype vectors that “best represent” the
training sampled!...Y*. More precisely, findK vec-
torsM1,...M*, such that

P

K )
L=} min[]y’— M

1=1

is minimized. In other words, thé/* are chosen such
that the error caused by replacing ariy by its closest
prototype is minimized.

Application 1:Discovering hidden categories.
Application 2:Lossy data compression: to code a vector,
find the prototypel/* that is closest to it, and transnhit
This process is calledector Quantization.
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Algorithm for K-Means Clustering

Minimizing L: 2L =23, o (M* — Y?) = 0 whereS* is the set of for

which M* is the closest prototype 6°. We get:

1 i
M’“:WZY

1€Sk

where|S¥| is the number of elements ist*.

Algorithm:;

initialize the M * (e.g. randomly).
repeat until convergence:

for eachk compute the sef*, the set of all for which || M* — Y*||? is
smaller than all othel{ M7 — Y*||?.

computeM* = g 37 o Y
iterate
Naturally, this algorithm works with any distance measure.
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Hierarchical K-Means

Problem:Sometimes, K-Means may get stuck in very bad solutions (erges
prototypes have no samples assigned to them).
This is often caused by inappropriate initialization of gretotypes.

Cure Hierarchical K-Means.
Main Idea: run K-Means withK = 2, then run again K-Means witR® = 2 on each

of the two subsets of samples (those assigned to prototygredlthose assigned to

prototype 2).
What do we use K-Means fardata compression (vector quantization)
initialization of RBF nets of Mixtures of Gaussian.
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L atent Variables

Latent variables are unobserved random variabldisat enter into the energy function
E(Y,Z, X, W).

E

The X variable (input) is always observed, tHiemust be
predicted. The&Z variable islatent: it is not observed. We
need tomarginalize the joint probabilityP(Y, Z| X, W)
E( overZ to getP (Y| X, W):
Y 2,%X W)
/7 /”

PY|X, W) = / P(Y, 2| X, W)dz

The following discussion treats the case where an obsel
vation X Is present. In the unsupervised case, there is nc
observation. We can simply remove the symkXofrom

all the slides below.

X z Y
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L atent Variables. example

Let’s say we have a bunch of images of a Boeing 747 under \v&vi@wing angles
(let's call the angleZ), and another bunch of images of an Airbus A-380, also under
various viewing angles.
Let’'s assume that we are given a “similarity” functiéifY, Z, X') whereY is the label
(Boeing or Aribus),Z is the latent variable (the viewing angle), akdthe image. For
example F(Airbus, 20, X) will give us a low energy ifX is similar to our prototype
image of an Airbus under 20 degree viewing angle. For exanipleould be defined
as:

E(Y7 Z7X) — ||X — RYZ||2

whereRy ~ is our prototype image of plang at angleZ.
When asked about the category of an image, we are never gneendwing angle, but
knowing it would make our task simpler.
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L atent Variables. marginalization

In terms of energy function? (Y, Z| X, W) can be written as:

 exp(—BE(Y, Z,X,W))
P2 W) = T o BBy, 2 X, W))dzdy

Therefore,P(Y|X, W) = [ P(Y, z| X, W)dz becomes:

eXp(_ﬁE(Yv 2 Xa W))

d
Jexp(—BE(y, 2/, X, W))dz'dy "~

PY|X,W) =

since the denominator doesn’t dependzon

_ Jexp(=BE(Y,z, X, W))d=z
P(Y|X7 W) B feXp(_BE(ya Z/7X7 W))dzldy

If Z is a multidimensional variable, this could be very difficidtcompute.
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L atent Variables. example of marginalization

E(Y,Z,X)=|X — Ryz||?

exp(—f||X — Ryz||?)
PY ZIX. W) =
V21X W) = T b BIIX = Ry | 2d=dy

It's a Gaussian with meaRy ~, and variancé /.

=3 exp(—B|IX — Rairbus z|*)
— 27 ¢xp(—PB||X — Rpoeing z[|?) + exp(—0||X — Raibus z[|?)

P(Airbus| X

It's a sum of Gaussians.
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L atent Variables. max likelihood inference

Very often, given an observatioki, we merely want to know the value &f that is the
most likely: Y* = argmax, P(Y| X, W)

[ exp(—BE(Y, 2z, X,W))dz

Y* =
Y T b (—BE(y, 2, X, W))dz'dy

Since the denominator does not depend’gnve can simply remove it:
Y* = argmaXY/eXp(—ﬁE(Y,z,X, W))dz

By taking log and dividing by3, we get:

1
Y* = argminy, — 3 log [/ exp(—0FE(Y,z, X, W))dz

This is thelogsum of the energies for all values &f, also called thédelmholtz free
Energy of the ensemble of states wh&hvaries.

Y. LeCun: Machine Learnina and Pattern Recoanition — bD.



L atent Variables. example of max likelihood

E(Y,Z,X)=|X — Ryz||?

_ 1
Y* = argminy — 3 log Zexp(—ﬁHX — Ryz||?)
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L atent Variables. zero-temperature limit

Computing the most likely” using the free energy:

1
Y* = argminy, — 3 log [/ exp(—BE(Y,z, X, W))dz

still requires to compute a (possibly horrible) integraéo¥ .
One possible shortcut is to makego to infinity. Then, as we have seen before, the
logsum reduces to thenin, hence:

Blim Y* = argmin, mZin EY,Z, X, W)

In this case, inference is a lot simpler: to find the “besteabfY’, find the
combination of values of bot andY that minimize the energy:

BE(Y*, 2", X,W) =minE(Y, Z, X, W)

and returny *.
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L atent Variables. example of zero-temp limit

E(Y,Z,X)=|X — Ryz||?

E(Y”, 2%, X, W) =min ||X - Ryz||*

and returny *.
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Example: Mixture Models

We haveK normalized densitie®*(Y'|WW*), each of which has a positive coefficient

a” (whose sum ovek is 1), and a switch controlled by a discrete latent varigbkhat

picks one of the component densities. There is no idpubnly an “output”Y (whose
distribution is to be modeled) and a latent variaBle

The likelihood for one sampl&*:

P(Y', ZIW) =) o P(YI[WF)
k

with >, o* = 1. Using Bayes’ rule, we can compute the

posterior prob of the mixture components for each data
pointY*:

. . o P (Y WF
(v = P(z = Ky’ w) = R
7 J

These quantities are called “responsabilities”.
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Learning a Mixture M odel with Gradient

We can learn a mixture with gradient descent, but there ahrbetter methods as we
will see later. The negative log-likelihood of the data is:

L =—log H P(YHW) =Y —logP(Y'|W)

Let us consider the likelihood of one data polfit

L' = —logP(Y'|W) = —logZakPk(Yi\W)
k

oL 1 AP, (Y |W)
oW — P(Yi[W) ;O"“ oW
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Learning a Mixture M odel with Gradient (cont)

oLt 1 AP, (Y| W)
oW — P(YiW) 20 g

_ 0 0log Py (Y'|W)

“PYHW) oW oW

k k

The gradient is the weighted sum of gradients of the indiaidaomponents weighted
by the responsalbilities.
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Example: Gaussian Mixture

PYIW) =S apl2nVE| "2 exp(—1/2(Y — M*Y (V) (Y — M*))
k

This is used a lot in speech recognition.
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The Expectation-M aximization Algorithm

Optimizing likelihoods with gradient is the only option inree cases, but there is a
considerably more efficient procedure known as EM.

Every time we update the parameté&¥ys the distribution over latent variablés must
be updated as well (because it depends$lan

The basic idea of ENb to keep the distribution ovef constant while we find the
optimal W, then we recompute the new distribution ovethat result from the new
W, and we iterate. This process is sometimes caléeadinate descent.
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EM: TheTrick

The negative log likelihood for a sampi€ is:
L' = —log P(Y'|W) = —1og/P(Y’i,Z|W)dZ

For any distributiony(Z) we can write:

P(Y', Z|W)

q(Z) “

L' = —log/Q(Z)

We now use Jensen’s inequality, which says that for any a@ftanctionG (such as
log)

G / p(2)f(2)dz) < — / p(2)G(f(2))dz

We get:
Y*, Z|W)
q(Z)
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L'< F' = —/q(Z)log il



EM

7

EM minimizesF* by alternately

finding theq(Z) that mininizesF' (E-step)

then finding thél” that minimizest’ M -step)
E-step:q(Z)"* — argmin F*(q(Z)", W?)
M-step: W (Z)**T! «— argminy, F*(q(Z)t1, W)
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M Step

We can decompose the free energy:

P(Yi, Z|W)
q(Z)

Fia(2).W) = - [ a(2)log 17

= —/q(Z) log P(Y', Z|W)dZ + /q(Z) log q(Z)dZ
The first term is the expected energy with distributigty ), the second is the entropy
of ¢(Z), and does not depend .

So in the M-step, we only need to consider the first term whemmmzing with
respect toy(~7).

W (Z)**! « argming, — / q¢(Z)log P(Y", Z|W)dZ
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E Step

Proposition the value ofy(Z) that minimizes the free energyi$2) = P(Z|Y*, W)
This is the posterior distrib over the latent variabled giteh sample and the current

parameter.

Proof:
P(Yi, Z|W)

FY (P(Z|Y" —— | P(Z|Y? ] . d7Z
(P W) W) = = [ P W)log ol

— —/P(Z|Yi,W) log P(Y'|\W)dZ =

—1ogP(Yi|W)/P(Z\Yi,W) = —log P(Y'|W).1

z
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