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Unsupervised Learning

The basics idea of unsupervised learning: Learn an energy functionE(Y ) such that
E(Y ) is small ifY is “similar” to the training samples, andE(Y ) is large ifY is
“different” from the training samples. What we mean by “similar” and “different” is
somewhat arbitrary and must be defined for each problem.

Probabilistic unsupervised learning: Density
Estimation. Find a functionf suchf(Y )
approximates the empirical probability density ofY ,
p(Y ), as well as possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold or
surface that is as close as possible to all the samples.

Compression/Quantization: discover a function that
for each input computes a compact “code” from which
the input can be reconstructed.
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Parametric Density Estimation

Use Maximum Likelihood: Given a modelP (Y |W ), find the parameterW that best
“explains” the training samples, i.e. theW that maximizes the likelihood of the
training samplesY 1, Y 2, ...Y P . Assuming that the total data likelihood factorizes into
individual sample likelihoods:

P (Y 1, Y 2, ...Y P |W ) =
∏

i

P (Y i|W )

Equivalently, find theW that minimizes the negative log likelihood.

L(W ) = −log
∏

i

P (Y i|W ) =
∑

i

−logP (Y i|W )

This is calledparametric estimation because we assume that the family of possible
densities is parameterized byW .
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Parametric Density Estimation

AssumingP (Y |W ) is the normalized exponential of an energy function:

P (Y |W ) =
exp(−βE(Y, W ))

∫

exp(−βE(Y, W ))dY

and after an irrelevant division byβ, we get the loss function:

L(W ) =
∑

i

(

E(Y i, W ) +
1

β
log

∫

exp(−βE(Y, W ))dY

)

The Maximum A Posteriori Estimate is similar but includes a penalty onW :

L(W ) =
∑

i

(

E(Y i, W ) +
1

β
log

∫

exp(−βE(Y, W ))dY

)

+ H(W )
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Example: Univariate Gaussian

Maximum Likelihood: find the parameters
of a Gaussian that best “explains” the
training samplesy1, y2, ....yP .

negative log-likelihood of the data (one
dimension):L(m, v) =

−
∑

i log 1√
2πv

exp(− 1
2v (yi −m)2)

L(m, v) =
1

2

∑

i

1

v
(yi −m)2 + log 2πv

Minimize L(m, v) with respect tom andv.
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Example: Univariate Gaussian

Minimize L(m, v) with respect tom

∂L(m, v)

∂m
=

1

2

∑

i

1

v
(yi −m) = 0

Hence,m = 1
P

∑

i yi

Now minimizeL(m, v) with respect tov

∂L(m, v)

∂v
=

1

2

∑

i

(

−
1

v2
(yi −m)2 +

1

v

)

= 0

Hencev = 1
P

∑

i(y
i −m)2

surprise-surprise: The maximum likelihood estimates of the mean and variance
of a Gaussian are the mean and variance of the samples.
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Example: Multi-variate Gaussian

Maximum Likelihood: find the parameters of a Gaussian that best “explains” the
training samplesY 1, Y 2, ....Y P .
The negative log-likelihood of the data (M is a vector,V is a matrix):

L(M, V ) = −
∑

i

log
(

|2πV |−1/2 exp(−1/2(Y i −M)′V −1(Y i −M))
)

L(M, V ) =
1

2

∑

i

(Y i −M)′V −1(Y i −M)− log |V −1|+ log(2π)
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Multi-variate Gaussian (continued)

L(M, V ) =
1

2

∑

i

(Y i −M)′V −1(Y i −M)− log |V −1|+ log(2π)

∂L(M, V )

∂M
=

1

2

∑

i

V −1(Y i −M) = 0

Hence,M = 1
P

∑

i Y i Now minimizeL(M, V ) with respect toV −1

∂L(M, V )

∂V −1
=

1

2

∑

i

(

(Y i −M)(Y i −M)′ − V
)

(using the fact∂ log |V −1|
∂V −1 = V ′).

HenceV = 1
P

∑

i(Y
i −M)(Y i −M)′
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Non-Parametric Methods: Parzen Windows

The sample distribution can be seen as a
bunch of delta functions.Idea: make it
smooth.

Place a “bump” around each training
sampleY i.

example: Gaussian bump
gi(Y ) = 1

Z exp(−K||Y − Y i||2) whereZ

is the Gaussian normalization constant.

The density isP (Y ) = 1
P ∼

P
i=1 gi(Y )

It’s simple, but it’s expensive.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/33



Dimensionality Reduction

A slightly simpler problem than full-fledged density estimation: Find a
low-dimensional surface (a manifold) that is as close as possible to the training
samples.

Example 1: reducing the number of input
variables (features) to a classifier so as to reduce
the over-parameterization problem.

Example 2: images of human faces can be seen as
vectors in a very high dimensional space. Actual
faces reside in a small subspace of that large
space. If we had a parameterization of the
manifold of all possible faces, we could generate
new faces or interpolate between faces by moving
around that surface. (this has been done, see
Blanz and Vetter “Face recognition based on
fitting a 3D morphable model” IEEE Trans. PAMI
25:1063-1074, 2003).

Example 3: Parameterizing the possible shapes of
a mouth so we can make a simulated human speak
(see http://www.vir2elle.com).

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/33



Linear Subspace: Principal Component Analysis

Problem: find alinear manifold that best approximates the samples. In other words,
find a linear projectionP such that the projection of the samples are as close as
possible to the originals.

We have a training setY 1...Y P . We assume all
the components have zero mean. If not we center
the vectors by subtracting the mean from each
component.

Question: what is the direction that we can
remove (project out) while minimally affecting
the training set.

Let U be a unit vector in that dimension

Removing the dimension in the direction ofU will

cost usC =
∑P

i=1(Y
i′U)2 (the square length of

the projections ofY i onU ).
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Principal Component Analysis

Removing the dimension in the direction ofU will cost usC =
∑P

i=1(Y
i′U)2

(the square length of the projections ofY i onU ).

C =
∑P

i=1 U ′Y iY i′U = [U ′ ∑P
i=1 Y iY i′]U Q: How do we pickU so as to

minimize the quantity in the bracket?

The covariance matrixA =
∑P

i=1 Y iY i′ can be diagonalized:A = QΛQ′,
whereQ is a rotation matrix, whose linesQi are the normalized (and mutually
orthogonal) eigenvectors ofA, andΛ a diagonal matrix that contain the
(positive) eigenvalues ofA.

It is easy to see that the unit vectorU that minimizesU ′QΛQ′ is aligned with
the eigenvector of smallest eigenvalue ofA.

To eliminate more directions, we can repeat the process while remaining in the
orthogonal space of the previously found directions.

Practically: we simply find firstK eigenvectors ofA (associated with theK
largest eigenvalues) and keep those.
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Principal Component Analysis (PCA)

step 1: We have a training setY 1...Y P whose component variables have zero
mean (or have been centered).

step 2: compute the covariance matrixA = 1
P

∑P
i=1 Y iY i′

step 3: diagonalize the covariance matrix:A = Q′ΛQ,

step 4: Construct the matrixQk whose rows are the the eigenvectors of largest
eigenvalues ofA (a subset of rows ofQ).

Multiplying a vector byQk gives the projections of the vector onto the principal
eigenvectors ofA. We can Now compute thek PCA features of any vectorY as
PCAk(Y ) = QkY .
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K-Means Clustering

Idea: find K prototype vectors that “best represent” the
training samplesY 1...Y P . More precisely, findK vec-
torsM1, ...MK , such that

L =
P

∑

i=1

K
min
k=1
||Y i −Mk||2

is minimized. In other words, theMk are chosen such
that the error caused by replacing anyY i by its closest
prototype is minimized.
Application 1:Discovering hidden categories.
Application 2:Lossy data compression: to code a vector,
find the prototypeMk that is closest to it, and transmitk.
This process is calledVector Quantization.
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Algorithm for K-Means Clustering

Minimizing L: ∂L
∂Mk = 2

∑

i∈Sk(Mk − Y i) = 0 whereSk is the set ofi for

whichMk is the closest prototype toY i. We get:

Mk =
1

|Sk|

∑

i∈Sk

Y i

where|Sk| is the number of elements inSk.

Algorithm:

initialize theMk (e.g. randomly).
repeat until convergence:

for eachk compute the setSk, the set of alli for which ||Mk − Y i||2 is
smaller than all other||M j − Y i||2.

computeMk = 1
|Sk|

∑

i∈Sk Y i

iterate

Naturally, this algorithm works with any distance measure.
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Hierarchical K-Means

Problem:Sometimes, K-Means may get stuck in very bad solutions (e.g. some
prototypes have no samples assigned to them).
This is often caused by inappropriate initialization of theprototypes.
Cure: Hierarchical K-Means.
Main Idea:: run K-Means withK = 2, then run again K-Means withK = 2 on each
of the two subsets of samples (those assigned to prototype 1,and those assigned to
prototype 2).
What do we use K-Means for?: data compression (vector quantization)
initialization of RBF nets of Mixtures of Gaussian.
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Latent Variables

Latent variables are unobserved random variablesZ that enter into the energy function
E(Y, Z, X, W ).

TheX variable (input) is always observed, theY must be
predicted. TheZ variable islatent: it is not observed. We
need tomarginalize the joint probabilityP (Y, Z|X, W )
overZ to getP (Y |X, W ):

P (Y |X, W ) =

∫

P (Y, z|X, W )dz

The following discussion treats the case where an obser-
vationX is present. In the unsupervised case, there is no
observation. We can simply remove the symbolX from
all the slides below.
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Latent Variables: example

Let’s say we have a bunch of images of a Boeing 747 under various viewing angles
(let’s call the angleZ), and another bunch of images of an Airbus A-380, also under
various viewing angles.
Let’s assume that we are given a “similarity” functionE(Y, Z, X) whereY is the label
(Boeing or Aribus),Z is the latent variable (the viewing angle), andX the image. For
example,E(Airbus, 20, X) will give us a low energy ifX is similar to our prototype
image of an Airbus under 20 degree viewing angle. For example, E could be defined
as:

E(Y, Z, X) = ||X −RY Z ||
2

whereRY Z is our prototype image of planeY at angleZ.
When asked about the category of an image, we are never given the viewing angle, but
knowing it would make our task simpler.
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Latent Variables: marginalization

In terms of energy function,P (Y, Z|X, W ) can be written as:

P (Y, Z|X, W ) =
exp(−βE(Y, Z, X, W ))

∫

exp(−βE(y, z, X, W ))dzdy

Therefore,P (Y |X, W ) =
∫

P (Y, z|X, W )dz becomes:

P (Y |X, W ) =

∫

exp(−βE(Y, z, X, W ))
∫

exp(−βE(y, z′, X, W ))dz′dy
dz

since the denominator doesn’t depend onz:

P (Y |X, W ) =

∫

exp(−βE(Y, z, X, W ))dz
∫

exp(−βE(y, z′, X, W ))dz′dy

If Z is a multidimensional variable, this could be very difficultto compute.

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/33



Latent Variables: example of marginalization

E(Y, Z, X) = ||X −RY Z ||
2

P (Y, Z|X, W ) =
exp(−β||X −RY Z ||

2)
∫

exp(−β||X −RY Z ||2dzdy

It’s a Gaussian with meanRY Z , and variance1/β.

P (Airbus|X) =
∑

Z

exp(−β||X −RAirbus Z ||
2)

∑

Z exp(−β||X −RBoeing Z ||2) + exp(−β||X −RAirbus Z ||2)

It’s a sum of Gaussians.
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Latent Variables: max likelihood inference

Very often, given an observationX, we merely want to know the value ofY that is the
most likely:Y ∗ = argmaxY P (Y |X, W )

Y ∗ = argmaxY

∫

exp(−βE(Y, z, X, W ))dz
∫

exp(−βE(y, z′, X, W ))dz′dy

Since the denominator does not depend onY , we can simply remove it:

Y ∗ = argmaxY

∫

exp(−βE(Y, z, X, W ))dz

By taking log and dividing byβ, we get:

Y ∗ = argminY −
1

β
log

[
∫

exp(−βE(Y, z, X, W ))dz

]

This is thelogsum of the energies for all values ofZ, also called theHelmholtz free
Energy of the ensemble of states whenZ varies.
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Latent Variables: example of max likelihood

E(Y, Z, X) = ||X −RY Z ||
2

Y ∗ = argminY −
1

β
log

[

∑

z

exp(−β||X −RY Z ||
2)

]
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Latent Variables: zero-temperature limit

Computing the most likelyY using the free energy:

Y ∗ = argminY −
1

β
log

[
∫

exp(−βE(Y, z, X, W ))dz

]

still requires to compute a (possibly horrible) integral overZ.
One possible shortcut is to makeβ go to infinity. Then, as we have seen before, the
logsum reduces to themin, hence:

lim
β→∞

Y ∗ = argminY min
Z

E(Y, Z, X, W )

In this case, inference is a lot simpler: to find the “best” value ofY , find the
combination of values of bothZ andY that minimize the energy:

E(Y ∗, Z∗, X, W ) = min
Y,Z

E(Y, Z, X, W )

and returnY ∗.
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Latent Variables: example of zero-temp limit

E(Y, Z, X) = ||X −RY Z ||
2

E(Y ∗, Z∗, X, W ) = min
Y,Z
||X −RY Z ||

2

and returnY ∗.
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Example: Mixture Models

We haveK normalized densitiesP k(Y |W k), each of which has a positive coefficient
αk (whose sum overk is 1), and a switch controlled by a discrete latent variableZ that
picks one of the component densities. There is no inputX, only an “output”Y (whose
distribution is to be modeled) and a latent variableZ.

The likelihood for one sampleY i:

P (Y i, Z|W ) =
∑

k

αkPk(Y i|W k)

with
∑

k αk = 1. Using Bayes’ rule, we can compute the
posterior prob of the mixture components for each data
pointY i:

rk(Y i) = P (Z = k|Y i, W ) =
αkPk(Y i|W k)

∑

j αjPj(Y i|W j)

These quantities are called “responsabilities”.
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Learning a Mixture Model with Gradient

We can learn a mixture with gradient descent, but there are much better methods as we
will see later. The negative log-likelihood of the data is:

L = − log
∏

i

P (Y i|W ) =
∑

i

−logP (Y i|W )

Let us consider the likelihood of one data pointY i:

Li = −logP (Y i|W ) = −log
∑

k

αkPk(Y i|W )

∂Li

∂W
=

1

P (Y i|W )

∑

k

αk
∂Pk(Y i|W )

∂W
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Learning a Mixture Model with Gradient (cont)

∂Li

∂W
=

1

P (Y i|W )

∑

k

αk
∂Pk(Y i|W )

∂W

=
∑

k

αk
1

P (Y i|W )
Pk(Y i|W )

∂ log Pk(Y i|W )

∂W

=
∑

k

αk
Pk(Y i|W )

P (Y i|W )

∂ log Pk(Y i|W )

∂W
==

∑

k

rk(Y i)αk
∂ log Pk(Y i|W )

∂W

The gradient is the weighted sum of gradients of the individual components weighted
by the responsabilities.
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Example: Gaussian Mixture

P (Y |W ) =
∑

k

αk|2πV k|−1/2 exp(−1/2(Y −Mk)′(V k)
−1

(Y −Mk))

This is used a lot in speech recognition.
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The Expectation-Maximization Algorithm

Optimizing likelihoods with gradient is the only option in some cases, but there is a
considerably more efficient procedure known as EM.
Every time we update the parametersW , the distribution over latent variablesZ must
be updated as well (because it depends onW .
The basic idea of EMis to keep the distribution overZ constant while we find the
optimalW , then we recompute the new distribution overZ that result from the new
W , and we iterate. This process is sometimes calledcoordinate descent.
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EM: The Trick

The negative log likelihood for a sampleY i is:

Li = − log P (Y i|W ) = − log

∫

P (Y i, Z|W )dZ

For any distributionq(Z) we can write:

Li = − log

∫

q(Z)
P (Y i, Z|W )

q(Z)
dZ

We now use Jensen’s inequality, which says that for any concave functionG (such as
log)

−G(

∫

p(z)f(z)dz) ≤ −

∫

p(z)G(f(z))dz

We get:

Li ≤ F i = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ
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EM

Li ≤ F i = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

EM minimizesF i by alternately
finding theq(Z) that mininizesF (E-step)
then finding theW that minimizesF M-step)
E-step:q(Z)t+1 ← argminqF

i(q(Z)t, W t)

M-step:W (Z)t+1 ← argminW F i(q(Z)t+1, W t)

Y. LeCun: Machine Learning and Pattern Recognition – p. 31/33



M Step

We can decompose the free energy:

F i(q(Z), W ) = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

= −

∫

q(Z) log P (Y i, Z|W )dZ +

∫

q(Z) log q(Z)dZ

The first term is the expected energy with distributionq(Z), the second is the entropy
of q(Z), and does not depend onW .
So in the M-step, we only need to consider the first term when minimizing with
respect toq(Z).

W (Z)t+1 ← argminW −

∫

q(Z) log P (Y i, Z|W )dZ
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E Step

Proposition: the value ofq(Z) that minimizes the free energy isq(Z) = P (Z|Y i, W )
This is the posterior distrib over the latent variabled given teh sample and the current
parameter.
Proof:

F i(P (Z|Y i, W ), W ) = −

∫

P (Z|Y i, W ) log
P (Y i, Z|W )

P (Z|Y i, W )
dZ

= −

∫

P (Z|Y i, W ) log P (Y i|W )dZ =

− log P (Y i|W )

∫

z

P (Z|Y i, W ) = − log P (Y i|W ).1
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