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Ensemble Methods

Democracy applied to decision making: 1,000,000 Lerning Machines Can’t Be
Wrong.

Generate many learning machines that are slightly different from each other,
and make them vote.

This can be viewed as a way to perform regularization

Example: Bayesian learning. The outputs produced by replicas of the machine
for each possible value of the parameter vector are added with weights that
reflect the conditional probability of the parameter vectorgiven the training
dataset.

The key idea of ensemble methods: find a way to make each replica of the
learning machine different from the others, yet useful.
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Full Bayesian Learning: keep’em all

Training set:X = (X1, X2, . . .Xp), and Y = (Y 1, Y 2, . . . Y p)
Full Bayesian prediction: average answers for allW , weighted byP (W |X ,Y):

P (Y |X,X ,Y) =

∫

P (Y |X, W )P (W |X ,Y)dW

Where

P (W |Y,X ) =
P (Y|X , W )P (W |X )

P (Y|X )

where the denominator is a normalization term:

P (Y|X ) =

∫

P (Y|X , W )P (W |X )dW

that ensures that
∫

P (W |S)dW = 1.
this is generally intractable. Approximations must be used: Laplace, Sampling,
Variational approximations...
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Variational Bayesian Method

Main idea: approximateP (W |S) with some parameterized model that we can actually
compute.
ChooseP (W |S) (i.e. P (W |X ,Y)) within in a familyQ(W ), so that it best
approximates the realP (W |S) in Kulback-Leibler terms.
Replace the log likelihood by avariational free energy(we will see more of that when
we study the Expectation-Maximization Algorithm):

− log P (Y |X,X ,Y) = − log

∫

P (Y |X, W )P (W |X ,Y)dW

− log P (Y |X,X ,Y) = − log

∫

P (Y |X, W )Q(W )P (W |X ,Y)/Q(W )dW
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Variational Bayes

− log P (Y |X,X ,Y) = − log

∫

Q(W )P (Y |X, W )P (W |X ,Y)/Q(W )dW

This is the expectation (average) ofP (Y |X, W )P (W |X ,Y)/Q(W ) under
distributionQ(W ).
We use Jensen’s inequality: the− log of an average is less than the average of the
− log’s, because− log is a concave function (with a positive secnd derivative), hence:

− log P (Y |X,X ,Y) < −

∫

Q(W ) log[P (Y |X, W )P (W |X ,Y)/Q(W )]dW

− log P (Y |X,X ,Y) <

−

∫

Q(W ) log[P (Y |X, W )]dW −

∫

Q(W ) log P (W |X ,Y)/Q(W )]dW
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Variational Bayes

− log P (Y |X,X ,Y) <

−

∫

Q(W ) log[P (Y |X, W )]dW −

∫

Q(W ) log P (W |X ,Y)/Q(W )]dW

The first term is the average energy under distributionQ(W ), the second term is the
Kullback-Leibler divergencebetweenP (W |X ,Y) andQ(W ) (akin to a relative
entropy).
The right-hand side is very much like thefree energyin statistical physics.
More details athttp://variational-bayes.org
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Bootstrap/Bagging

A simple idea: use different subsets of the training set.

The Bootstrap method consists in generating multiple training set by drawing
samples from the original training setwith replacement.

The Bagging method consists simply in averaging of the outputs produced by
each of the instances.
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Boosting

Train a machine on the training set.

construct a new training set in which samples that the first machine got wrong
have a higher weight (or probability of being picked).

train another copy of the machine on this set

make the overall output of the system a weighted sum of all thetrained models
where the weights are higher for machines that make less mistakes.

iterate

This technique trains new machines on samples that the previously trained
machines found difficult.

This is a way to build multiple “experts” that specialize on different types of
patterns.
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Adaboost

0. given a training set(X1, y1), ...(XP , yP )

1. Initialize the observation weightsvi = 1/P, i = 1, 2, ..., P .

2. Form = 1 to M do:
(a) Train a classifierGm(X) on the training set by drawing each samplei

with probabilityvi.

(b) computeEm =
∑P

i=1 vi{y
i 6= Gm(Xi)}

(c) computeαm = 1
2 log((1− Em)/Em)

(d) setDi ← vi exp[αm{y
i 6= Gm(Xi)}] and,vi = Di

P

P

i=1
Di

for

i = 1, 2, ..., P .

outputG(X) = sign
(

∑M
m=1 αmGm(X)

)
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Adaboost = Greedy Gradient Descent

Adaboost greedily minimizesL =
∑P

i=1 exp (−yiF (Xi)) assuming thatF (X)

is a linear combination of elementary classifiersF (X) =
∑M

m=1 αmGm(X).

Let’s assume that we have already trained the firstM − 1 elementary classifiers
(calledweak learners).

How should we train theM -th classifier, and what value should we giveαM so
as to maximally decrease the loss exponentialLexp.

Lexp =

P
∑

i=1

exp (−yi
M
∑

m=1

αmGm(X))
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Adaboost = Greedy Gradient Descent

Lexp =

P
∑

i=1

exp (−yi
M
∑

m=1

αmGm(X))

This loss can be decomposed as follows:

Lexp =

P
∑

i=1

exp (−yi
M−1
∑

m=1

αmGm(X)) exp (−yiαMGM (X))

Lexp =

P
∑

i=1

Di
M−1 exp (−yiαMGM (X))

Finding theGM (X) that mininizesLexp can be performed by giving each training a
sample a weightvi proportional toDi

M−1 and training theM -th copy of the weak

learner on this re-weighted training set.vi is simply a normalized version ofDi:

vi = Di
M−1/

∑P
i=1 Di

M−1
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Computing the combination weight

Now we need to compute the combination weight for the new weaklearnerαM . We
will choose the value that minimizes the loss. To find the optimal value, we
differentiate the loss:

∂Lexp

∂αM
= −

P
∑

i=1

Di
M−1y

iGM (X) exp (−yiαMGM (X)) = 0

We can decompose the sum into two terms, those for which the weak learner gave the
right answer (yiGM (X) = 1), and those for which it was wrong (yiGM (X) = −1):

∑

i∈right

Di
M−1 exp (−αM ) +

∑

i∈wrong

−Di
M−1 exp (αM ) = 0
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Computing the combination weight

Since each training sample was weighted byDi
M−1, the sum

∑

i∈wrong−Di
M−1 is

simply the expected number of mistakes made by the weak learner on the weighted
training setPwrong:

Pright exp (−αM )− Pwrong exp (αM ) = 0

Or
(P − Pwrong) exp (−αM )− Pwrong exp (αM ) = 0

whereP is the total size of the training set. Solving forαM , we get:

αM =
1

2
log

P − Pwrong

Pwrong
=

1

2
log

1− EM

EM

WhereEM is the proportion of errors made by theM -th learning on the training set
weigthed by theDi

M−1.
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An Overview of Learning Theory

The main purpose of Learning Theory:

Give formulae and techniques to predict/estimate the generalization error.

Give well-principled methods to minimize the generalization error.

Most formulae for the expected risk (generalization error)are of the form:

Eexpected = Etrain + c
h

Pα

Wherec is a constant,P is the number of training samples,alpha is a constant
between 0.5 and 1.0, andh is a measure ofcapacityof the family of functions
implemented by the model.
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Estimating the Expected Risk

PROBLEM 1: In fact, many formulae are probabilistic upper bounds rather than
equalities: “with probability1− δ”:

Eexpected < Etrain + c(δ)
h

Pα

PROBLEM 2: The bound formulae derived from general learning theoriesare
generally extremely loose, so you can’t just plug in numbersand hope that the
formula will give you useful information. That is because general formulae
cannot take into account the peculiarities of the problem athand.

PROBLEM 3: The “capacity” termh is generally impossible to know for a
complex model family. Intuitively,h is akin to some sort ofeffective number of
free parameters(which may or may not reflect the actual number of free
parameters).
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Bayesian Formula for Model Selection

Bayesian Information Criterion (BIC):

Eexpected = Etrain +
log(P )

2

h

P

can be derived from a Bayesian inference formula with a so-called “Laplace”
approximation (2nd order taylor expansion of the log likelihood around the
MLE estimate).
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Structural Risk Minimization

Structural Risk Minimization: these are very general bounds derived from first
principles. The bad news is that they are distribution free,and therefore very
loose.

SRM bound for classification: with probability1− δ:

Eexpected ≤ Etrain +
ǫ

2

(

1 +

√

1 +
4Etrain

ǫ

)

with ǫ = a1
h[log(a2P/h)+1]−log(δ/4)

P , wherea1, a2 are constant not furnished by
the theory, andh is theVapnik-Chervonenkis Dimensionof the family of
function.

SRM bound for regression

Eexpected ≤
Etrain

(1− c
√

(ǫ))+

with the sameǫ as above.
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An Example of How to get a Bound

The hypothesis space of our model is the family of all possible functions
indexed by our parameterW :

H : {F (Y, X, W ),∀W}

That set may have an infinite (possibly uncountable) cardinality.

One view of learning: each training example eliminates elements of the
hypothesis space that disagree with it.
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An Example of How to get a Bound

Let’s assume that the number of hypotheses is finite and equalto k:
W1, W2, ...Wk.

Let’s assume the loss is binary: 0 if correct, 1 if error.

Let’s define the expected error for a particular hypothesisEexp(Wi), the error
thatWi over an infinite training set.

Let’s define the empirical error forP examples:EP
emp(Wi), the error thatWi

over a particular training set of sizeP .

The Hoeffding/Chernoff bound tells us:

P (|Eexp(Wi)− EP
emp(Wi)| > ǫ) < 2 exp(−2ǫ2P )

The Hoeffding/Chernoff bound is a wonderful formula that tells us how fast the
average of a variable computed over a finite set of sample converges to the true
expectation (average over an inifinte number of samples) as we increase the
number of samples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/24



Bound on the Expected Error

Since the probability of the union of a set of events is bounded above by the sum of the
individual event probabilities, we can write:

P (∃Wi, |Eexp(Wi)− EP
emp(Wi)| > ǫ) ≤

k
∑

i=1

2 exp(−2ǫ2P ) = 2k exp(−2ǫ2P )

this can be rewritten as

P (∀Wi, |Eexp(Wi)− EP
emp(Wi)| ≤ ǫ) > 1− 2k exp(−2ǫ2P )

This is a uniform convergence bound, because it holds for allhypotheses.
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Bound on the Expected Error

Let’s defineδ = 2k exp(−2ǫ2P ). Suppose we holdP andδ, and solve forǫ, we get
with probability1− δ:

Eexp(W ) ≤ EP
emp(W ) +

√

1

2P
log

2k

δ

In particular, the previous inequality is true for the hypothesisWtrain that minimizes
the training set error:

Eexp(Wtrain) ≤ EP
emp(Wtrain) +

√

1

2P
log

2k

δ
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VC-dimension

The previous bound assumed the space of hypotheses was finite(with k
hypotheses).

The Vapnik-Chervonenkis approach derives similar resultsfor infinite
hypotheses spaces.

key idea: as far as we are concerned, two hypotheses are identical if they
produce the same classification on our dataset: identical hypotheses are put into
equivalence classes.

The formulae we obtain are the SRM formulae shown a few slidesback whereh
is the VC-dimension of the family of functions

The VC-dim is defined as the largest number of points (in any position) that our
family of function could classify in every possible ways.

EXAMPLE: The VC-dim of linear classifier withN inputs isN + 1: in
dimension 2, there is a set of 3 points on which all23 dichotomies are linearly
separable. There is no such set with 4 points.
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VC-dimension, continued

The VC-dim and the SRM formulae are very interesting conceptually, because
they are derived with a minimal set of assumptions.

The VC theory allows us to “derive” and quantify the intuitive notion of
Occam’s Razor fromfirst principles.

Occam’s Razor is the idea that simple models are preferable to complex one.

Until the VC theory, Occam’s Razor was assumed to be a good idea, or was
derived from rather contrived sets of assumptions.
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How Can we get the Constants?

Recall that a good general form for the generalization erroris:

Eexpected = Etrain + c
h

Pα

The constantsc depends on the task and the learning algorithm used,h depends on the
model, and0.5 ≤ α ≤ 1 depends on the type of task (e.g. regression versus
classification).
We canmeasurethe constantsc andα for a particular task by running a learning
machine with a knownh on the task (e.g. a linear classifier for whichh = N + 1) with
various size of the training set.
Then, if we assumec is constant from model to model, we can measureh for unknown
learning machine by running on several size of training set and fitting the curve.
This process is rather long and expensive, and rarely worth it.
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