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Before we get started...

Course web site: http://www.cs.nyu.edu/ yann/2005f-G22-2565-001/index.html

Evaluation: Assignements (mostly small programming projects) [65%] + larger
final project [35%].

Course mailing list:
http://www.cs.nyu.edu/mailman/listinfo/g22_2565_001_fa05

Text Books: mainly “Pattern Classification” by Duda, Hart, and Stork, but a
number of other books can be used reference material: “Neural Networks for
Pattern Recognition” by Bishop, and “Element of Statistical Learning” by
Hastie, Tibshirani and Friedman.

... but we will mostly use resarch papers and tutorials.

formal prerequisite: linear algebra. You might want to brush up on probability
theory, multivariate calculus (partial derivatives ...), optimization (least square
method...), and the method of Lagrange multipliers for constrained
optimization. We will review those topics in class.

Programming projects: can be done in any language, but ISTRONGLY
recommend to use Lush ( http://lush.sf.net ). Skeleton code inLush will be
provided for most projects.
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What is Learning?

Learning is acquiring and improving performance through experience.

Pretty much all animals with a central nervous system are capable of learning
(even the simplest ones).

What does it mean for a computer to learn? Why would we want them to learn?
How do we get them to learn?

We want computers to learn when it is too difficult or too expensive to program
them directly to perform a task.

Get the computer to program itself by showing examples of inputs and outputs.

In reality: we will write a “parameterized” program, and letthe learning
algorithm find the set of parameters that best approximates the desired function
or behavior.
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Different Types of Learning

Supervised Learning: given training examples of inputs andcorresponding
outputs, produce the “correct” outputs for new inputs. Example: character
recognition.

Reinforcement Learning (similar to animal learning): an agent takes inputs from
the environment, and takes actions that affect the environment. Occasionally,
the agent gets a scalar reward or punishment. The goal is to learn to produce
action sequences that maximize the expected reward (e.g. driving a robot
without bumping into obstacles). I won’t talk much about that in this course.

Unsupervised Learning: given only inputs as training, find structure in the
world: discover clusters, manifolds, characterize the areas of the space to which
the observed inputs belong (e.g.: clustering, probability density estimation,
novelty detection, compression, embedding).
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Related Fields

Statistical Estimation: statistical estimation attemptsto solve the same problem
as machine learning. Most learning techniques are statistical in nature.

Pattern Recognition: pattern recognition is when the output of the learning
machine is a set of discrete categories.

Neural Networks: neural nets are now one many techniques forstatistical
machine learning.

Data Mining: data mining is a large application area for machine learning.

Adaptive Optimal Control: non-linear adaptive control techniques are very
similar to machine learning methods.

Machine Learning methods are an essential ingredient in many fields:
bio-informatics, natural language processing, web searchand text classification,
speech and handwriting recognition, fraud detection, financial time-series
prediction, industrial process control, database marketing....
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Applications

handwriting recognition, OCR: reading checks and zipcodes, handwriting
recognition for tablet PCs.

speech recognition, speaker recognition/verification

security: face detection and recognition, event detectionin videos.

text classification: indexing, web search.

computer vision: object detection and recognition.

diagnosis: medical diagnosis (e.g. pap smears processing)

adaptive control: locomotion control for legged robots, navigation for mobile
robots, minimizing pollutant emissions for chemical plants, predicting
consumption for utilites...

fraud detection: e.g. detection of “unusual” usage patternsfor credit cards or
calling cards.

database marketing: predicting who is more likely to respond to an ad campaign.

(...and the antidote) spam filtering.

games (e.g. backgammon).

Financial prediction (many people on Wall Street use machine learning).
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Demos / Concrete Examples

Handwritten Digit Recognition: supervised learning for classification

Handwritten Word Recognition: weakly supervised learningfor classification
with many classes

Face detection: supervised learning for detection (faces against everything else
in the world).

Object Recognition: supervised learning for detection andrecognition with
highly complex variabilities

Robot Navigation: supervised learning and reinforcement learning for control.
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Two Kinds of Supervised Learning

Regression: also known as “curve fitting”
or “function approximation”. Learn a
continuous input-output mapping from a
limited number of examples (possibly
noisy).

Classification: outputs are discrete vari-
ables (category labels). Learn a decision
boundary that separates one class from the
other. Generally, a “confidence” is also de-
sired (how sure are we that the input be-
longs to the chosen category).
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Unsupervised Learning

Unsupervised learning comes down to this: if the input lookslike the training samples,
output a small number, if it doesn’t, output a large number.

This is a horrendously ill-posed problem in high
dimension. To do it right, we must guess/discover
the hidden structure of the inputs. Methods differ
by their assumptions about the nature of the data.

A Special Case: Density Estimation. Find a
functionf suchf(X) approximates the
probability density ofX, p(X), as well as
possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold
or surface near which the data lives.

Compression/Quantization: discover a function
that for each input computes a compact “code”
from which the input can be reconstructed.
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Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.

when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.

PROBLEM: in general, new inputs are different from trainingsamples.

The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.

rote learning is memorization without generalization.

The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.
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A Simple Trick: Nearest Neighbor Matching

Instead of insisting that the input be exactly
identical to one of the training samples, let’s
compute the “distances” between the input and all
the memorized samples (aka the prototypes).

1-Nearest Neighbor Rule: pick the class of the
nearest prototype.

K-Nearest Neighbor Rule: pick the class that has
the majority among the K nearest prototypes.

PROBLEM: What is the right distance measure?

PROBLEM: This is horrendously expensive if the
number of prototypes is large.

PROBLEM: do we have any guarantee that we get
the best possible performance as the number of
training samples increases?
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How Biology Does It

The first attempts at machine learning in the 50’s,
and the development of artificial neural networks
in the 80’s and 90’s were inspired by biology.

Nervous Systems are networks of neurons
interconnected through synapses

Learning and memory are changes in the
“efficacy” of the synapses

HUGE SIMPLIFICATION: a neuron computes a
weighted sum of its inputs (where the weights are
the synaptic efficacies) and fires when that sum
exceeds a threshold.

Hebbian learning (from Hebb, 1947): synaptic
weights change as a function of the pre- and
post-synaptic activities.

orders of magnitude: each neuron has103 to 105

synapses. Brain sizes (number of neurons): house
fly: 105; mouse:5.106, human:1010.
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The Linear Classifier

Historically, the Linear Classifier was designed as a highlysimplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

y = f(

i=N
∑

i=0

wixi)

With f is the threshold function:f(z) = 1 iff
z > 0, f(z) = −1 otherwise.x0 is assumed
to be constant equal to 1, andw0 is interpreted
as a bias.
In vector form: W = (w0, w1....wn), X =
(1, x1...xn):

y = f(W ′X)

The hyperplaneW ′X = 0 partitions the space
in two categories.W is orthogonal to the hy-
perplane.
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Vector Inputs

With vector-based classifiers such as the linear classifier,we must represent objects in
the world as vectors.
Each component is a measurement or a feature of the the objectto be classified.
For example, the grayscale values of all the pixels in an image can be seen as a (very
high-dimensional) vector.
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A Simple Idea for Learning: Error Correction

We have atraining set Sconsisting ofP input-output
pairs:S = (X1, y1), (X2, y2), ....(XP , yP ).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for samplep:

wi(t + 1) = wi(t) + (yp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).
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The Perceptron Learning Procedure

Theorem: If the classes are linearly separable (i.e. separable by a hyperplane), then
the Perceptron procedure will converge to a solution in a finite number of steps.
Proof: Let’s denote byW ∗ a normalized vector in the direction of a solution. Suppose
all X are within a ball of radiusR. Without loss of generality, we replace allXp

whoseyp is -1 by−Xp, and set allyp to 1. Let us now define the margin
M = minpW

∗Xp. Each time there is an error,W.W ∗ increases by at least
X.W ∗ ≥M . This meansWfinal.W

∗ ≥ NM whereN is the total number of weight
updates (total number of errors). But, the change in square magnitude ofW is
bounded by the square magnitude of the current sampleXp, which is itself bounded
by R2. Therefore,|Wfinal|2 ≤ NR2. combining the two inequalities

Wfinal.W
∗ ≥ NM and|Wfinal| ≤

√
NR, we have

Wfinal.W
∗/|Wfinal| ≥

√

(N)M/R

. Since the left hand side is upper bounded by 1, we deduce

N ≤ R2/M2
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Good News, Bad News

The perceptron learning procedure can learn a linear decision surface,if such a
surface existsthat separates the two classes. If no perfect solution exists, the
perceptron procedure will keep wobbling around.
What class of problems isLinearly Separable, and learnable by a Perceptron?
There are many interesting applications where the data can be represented in a way
that makes the classes (nearly) linearly separable: e.g. text classification using “bag of
words” representations (e.g. for spam filtering).
Unfortunately, the really interesting applications are generally not linearly separable.
This is why most people abandonned the field between the late 60’s and the early 80’s.
We will come back to the linear separability problem later.
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Regression, Mean Squared Error

Regression or function approximation is finding a
function that approximates a set of samples as well
as possible.
Classic example: linear regression. We are
given a training set S of input/output pairsS =

{(X1, y1), (X2, y2)....(XP , yP )}, and we must find
the parameters of a linear function that best predicts
they’s from theX ’s in the least square sense. In other
words, we must find the parameterW that minimizes
the quadraticloss functionL(W,S):

L(W,S) =
1

P

P
∑

i=1

L(W, yi, Xi)

where theper-sample loss functionL(W, yi, Xi) is defined as:

L(W, yi, Xi) =
1

2
(yi −W ′Xi)2
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Regression: Solution

L(W ) =
1

P

P
∑

i=1

1

2
(yi −W ′Xi)2

W ∗ = argminWL(W ) = argminW

1

P

P
∑

i=1

1

2
(yi −W ′Xi)2

At the solution,W satisfies the extremality condition:

dL(W )

dW
= 0

d
[

1
P

∑P

i=1
1
2 (yi −W ′Xi)2

]

dW
= 0

P
∑

i=1

d
[

1
2 (yi −W ′Xi)2

]

dW
= 0
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A digression on multivariate calculus

W : a vector of dimensionN . W ′ denotes the transpose ofW , i.e. if W is
N × 1 (column vector),W ′ is 1×N (line vector).

F (W ): a multivariate scalar-valued function (anN -dimensional surface in an
N + 1 dimensional space).

dF (W )

dW
=

[

∂F (W )

∂w1
,
∂F (W )

∂w2
, . . .

∂F (W )

∂wN

]

is the gradient ofF (W ) with respect toW (it’s a line vector).

The gradient of a function that mapsN -dim vectors scalars is a1×N line
vector.

example 1: linear function:F (W ) = W ′X whereX is anN -dim vector:
d(W ′X)

dW
= X ′

example 2: quadratic functionF (W ) = (y −W ′X)2 wherey is a scalar:
d(y−W ′X)2

dW
= −2(y −W ′X)X ′.
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Regression: Solution

The gradient ofL(W) is:

dL(W )

dW
=

P
∑

i=1

d
[

1
2 (yi −W ′Xi)2

]

dW
=

P
∑

i=1

−(yi −W ′Xi)Xi′

The extremality condition becomes:

1

P

P
∑

i=1

−(yi −W ′Xi)Xi′ = 0

Which we can rewrite as:

[

P
∑

i=1

yiXi

]

−
[

P
∑

i=1

XiXi′

]

W = 0
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Regression: Direct Solution

P
∑

i=1

yiXi − [

P
∑

i=1

XiXi′]W = 0

Can be written as:

[
P

∑

i=1

XiXi′]W =
P

∑

i=1

yiXi

This is a linear system that can be solved with a number of traditional numerical
methods (although it may be ill-conditioned or singular).

If the covariance matrix A =
∑P

i=1 XiXi′ is non singular, the solution is:

W ∗ =

[

P
∑

i=1

XiXi′

]−1
P

∑

i=1

yiXi
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Regression: Iterative Solution

Gradient-based minimization: W (t + 1) = W (t)− η dL(W )
dW

whereη is a well chosen coefficient (often a scalar, sometimes diagonal matrix with
positive entries, occasionally a full symmetric positive definite matrix).
Thek-th component of the gradient of the quadratic lossL(W ) is:

∂L(W )

∂wk

=

P
∑

i=1

−(yi −W (t)′Xi)xi
k

If η is a scalar or a diagonal matrix, we can write the udpate equation for a single

component ofW : wk(t + 1) = wk(t) + η
∑P

i=1(y
i −W (t)′Xi)xi

k

This update rules converges for well-chosen, small-enoughvalues ofη (more on this
later).
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Regression, Online/Stochastic Gradient

Online gradient descent, aka Stochastic Gradient:

W (t + 1) = W (t)− η
d(W, Y i, Xi)

dW

wk(t + 1) = wk(t) + η(t)(yi −W (t)′Xi)xi
k

No sum!The average gradient is replaced by its instantaneous value.
This is calledstochastic gradient descent. In many practical situation it is
enormously fasterthan batch gradient.
But the convergence analysis of this method is very tricky.
One condition for convergence is thatη(t) must be decreased according to a schedule
such that

∑

t η(t)2 converges while
∑

t η(t) diverges.
One possible such sequence isη(t) = η0/t.
We can also use second-order methods, but we will keep that for later.
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Least Mean Squared Error for Classification

We can use the Mean Squared Error criterion with
a linear regressor to perform classification (although
this is clearly suboptimal).
We compute a linear discriminant function
G(W, X) = W ′X and compare it to a thresholdT .
If G(W, X) is larger thanT , we classifyX in class
1, if it is smaller thanT , we classifyX n class 2.

To computeW , we simply minimize the quadratic loss function

L(W ) =
1

P

P
∑

i=1

1

2
(yi −W ′Xi)2

whereyi = +1 if training sampleXi is of class 1 andyi = −1 if training
sampleXi is of class 2.

This is called the Adaline algorithm (Widrow-Hoff 1960).
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Linear Classifiers

In multiple dimensions, the linear discriminant functionG(W, X) = W ′X partitions
the space into two half-spaces separated by a hyperplane.
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A Richer Class of Functions

What if we know that the process that generated
our samples is non linear? We can use a richer
family of functions, e.g. polynomials, sum of
trigonometric functions....
PROBLEM : if the family of functions is too rich,
we run the risk ofoverfitting the data. If the fam-
ily is too restrictive we run the risk of not being
able to approximate the training data very well.
QUESTIONS: How can we choose the richness
of the family of functions? Can we predict the per-
formance on new data as a function of the training
error and the richness of the family of functions?
Simply minimizing the training error may not give
us a solution that will do well on new data.

Y. LeCun: Machine Learning and Pattern Recognition – p. 27/29



Learning as Function Estimation

pick amachineG(W, X) parameterized byW . It
can be complicated and non-linear, but it better be
differentiable with respect toW .

pick aper-sample loss functionL(Y, G(W, X)).

pick a training set
S = (X1, Y 1), (X2, Y 2), ....(XP , Y P ).

find theW that minimizes
L(W,S) = 1

P

∑

i L(Y i, G(W, Xi))
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Learning as Function Estimation (continued)

If L(Y i, G(W, Xi)) is differentiable with respect to
W , use a gradient-based minimization technique:

W ←W − η
∂L(W )

∂W

or use a stochastic gradient minimization technique:

W ←W − η
∂L(Y i, G(W, Xi))

∂W

Y. LeCun: Machine Learning and Pattern Recognition – p. 29/29


	Before we get started...
	What is Learning?
	Different Types of Learning
	Related Fields
	Applications
	Demos / Concrete Examples
	Two Kinds of Supervised Learning
	Unsupervised Learning
	Learning is NOT Memorization
	A Simple Trick: Nearest Neighbor Matching
	How Biology Does It
	The Linear Classifier
	Vector Inputs
	A Simple Idea for Learning: Error Correction
	The Perceptron Learning Procedure
	Good News, Bad News
	Regression, Mean Squared Error
	Regression: Solution
	A digression on multivariate calculus
	Regression: Solution
	Regression: Direct Solution
	Regression: Iterative Solution
	Regression, Online/Stochastic Gradient
	Least Mean Squared Error for Classification
	Linear Classifiers
	A Richer Class of Functions
	Learning as Function Estimation
	Learning as Function Estimation (continued)

