The trainer object is designed to train a particular machine with a given energy function and loss. The example below uses the simple energy loss.

(defun simple-trainer (object
 (input ; the input state
 (output ; the output/label state
 (machine ; the machine
 (mout ; the output of the machine
 (cost ; the cost module
 (energy ; the energy (output of the cost) and
 (param ; the trainable parameter vector
)
A Trainer class: running the machine

Takes an input and a vector of possible labels (each of which is a vector, hence <label-set> is a matrix) and returns the index of the label that minimizes the energy. Fills up the vector <energies> with the energy produced by each possible label.

(defmethod simple-trainer run
 (sample label-set energies)
 (==> input resize (idx-dim sample 0))
 (idx-copy sample :input:x)
 (==> machine fprop input mout)
 (idx-bloop ((label label-set) (e energies))
 (==> output resize (idx-dim label 0))
 (idx-copy label :output:x)
 (==> cost fprop mout output energy)
 (e (:energy:x)))
 ;; find index of lowest energy
 (idx-d1indexmin energies))
A Trainer class: training the machine

Performs a learning update on one sample. `<sample>` is the input sample, `<label>` is the desired category (an integer), `<label-set>` is a matrix where the i-th row is the desired output for the i-th category, and `<update-args>` is a list of arguments for the parameter update method (e.g. learning rate and weight decay).

```
(defmethod simple-trainer learn-sample
  (sample label label-set update-args)
  (==> input resize (idx-dim sample 0))
  (idx-copy sample :input:x)
  (==> machine fprop input mout)
  (==> output resize (idx-dim label-set 1))
  (idx-copy (select label-set 0 (label 0)) :output:x)
  (==> cost fprop mout output energy)
  (==> cost bprop mout output energy)
  (==> machine bprop input mout)
  (==> param update update-args)
  (:energy:x))
```
Other Topologies

- The back-propagation procedure is not limited to feed-forward cascades.
- It can be applied to networks of module with any topology, as long as the connection graph is acyclic.
- If the graph is acyclic (no loops) then, we can easily find a suitable order in which to call the fprop method of each module.
- The bprop methods are called in the reverse order.
- If the graph has cycles (loops) we have a so-called recurrent network. This will be studied in a subsequent lecture.
More Modules

A rich repertoire of learning machines can be constructed with just a few module types in addition to the linear, sigmoid, and euclidean modules we have already seen. We will review a few important modules:

- The branch/plus module
- The switch module
- The Softmax module
- The logsum module
The Branch/Plus Module

- The PLUS module: a module with K inputs X_1, \ldots, X_K (of any type) that computes the sum of its inputs:

 $$X_{\text{out}} = \sum_k X_k$$

 back-prop:
 $$\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{\text{out}}} \quad \forall k$$

- The BRANCH module: a module with one input and K outputs X_1, \ldots, X_K (of any type) that simply copies its input on its outputs:

 $$X_k = X_{\text{in}} \quad \forall k \in [1..K]$$

 back-prop:
 $$\frac{\partial E}{\partial \text{in}} = \sum_k \frac{\partial E}{\partial X_k}$$
The Switch Module

- A module with K inputs X_1, \ldots, X_K (of any type) and one additional discrete-valued input Y.
- The value of the discrete input determines which of the N inputs is copied to the output.

$$X_{out} = \sum_{k} \delta(Y - k) X_k$$

$$\frac{\partial E}{\partial X_k} = \delta(Y - k) \frac{\partial E}{\partial X_{out}}$$

the gradient with respect to the output is copied to the gradient with respect to the switched-in input. The gradients of all other inputs are zero.
The Logsum Module

fprop:

\[X_{\text{out}} = -\frac{1}{\beta} \log \sum_{k} \exp(-\beta X_k) \]

bprop:

\[\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{\text{out}}} \frac{\exp(-\beta X_k)}{\sum_j \exp(-\beta X_j)} \]

or

\[\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{\text{out}}} P_k \]

with

\[P_k = \frac{\exp(-\beta X_k)}{\sum_j \exp(-\beta X_j)} \]
Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss $L_{ll}(W, Y^i, X^i) = E(W, Y^i, X^i) + \frac{1}{\beta} \log \sum_k \exp(-\beta E(W, k, X^i))$

- A classifier trained with the Log-Likelihood loss can be transformed into an equivalent machine trained with the energy loss.
- The transformed machine contains multiple “replicas” of the classifier, one replica for the desired output, and K replicas for each possible value of Y.
Softmax Module

A single vector as input, and a “normalized” vector as output:

\[
(X_{\text{out}})_i = \frac{\exp(-\beta x_i)}{\sum_k \exp(-\beta x_k)}
\]

Exercise: find the bprop

\[
\frac{\partial (X_{\text{out}})_i}{\partial x_j} = ???
\]
Radial Basis Function Network (RBF Net)

- Linearly combined Gaussian bumps.
- \(F(X, W, U) = \sum_i u_i \exp(-k_i (X - W_i)^2) \)
- The centers of the bumps can be initialized with the K-means algorithm (see below), and subsequently adjusted with gradient descent.
- This is a good architecture for regression and function approximation.
classification (y is scalar and discrete). Let’s denote $E(y, X, W) = E_y(X, W)$

MAP/MLE Loss Function:

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} [E_{y^i}(X^i, W) + \frac{1}{\beta} \log \sum_k \exp(-\beta E_k(X^i, W))]$$

This loss can be written as

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} -\frac{1}{\beta} \log \frac{\exp(-\beta E_{y^i}(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))}$$
Cross-Entropy and KL-Divergence

- let’s denote $P(j|X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))}$, then

 $$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \log \frac{1}{P(y^i|X^i, W)}$$

 $$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_k D_k(y^i) \log \frac{D_k(y^i)}{P(k|X^i, W)}$$

 with $D_k(y^i) = 1$ iff $k = y^i$, and 0 otherwise.

- example1: $D = (0, 0, 1, 0)$ and $P(.|X^i, W) = (0.1, 0.1, 0.7, 0.1)$. with $\beta = 1$, $L^i(W) = \log(1/0.7) = 0.3567$

- example2: $D = (0, 0, 1, 0)$ and $P(.|X^i, W) = (0, 0, 1, 0)$. with $\beta = 1$, $L^i(W) = \log(1/1) = 0$
Cross-Entropy and KL-Divergence

\[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_k(y^i) \log \frac{D_k(y^i)}{P(k|X^i, W)} \]

- \(L(W) \) is proportional to the cross-entropy between the conditional distribution of \(y \) given by the machine \(P(k|X^i, W) \) and the desired distribution over classes for sample \(i \), \(D_k(y^i) \) (equal to 1 for the desired class, and 0 for the other classes).

- The cross-entropy also called Kullback-Leibler divergence between two distributions \(Q(k) \) and \(P(k) \) is defined as:

\[\sum_{k} Q(k) \log \frac{Q(k)}{P(k)} \]

- It measures a sort of dissimilarity between two distributions.

- the KL-divergence is not a distance, because it is not symmetric, and it does not satisfy the triangular inequality.
Multiclass Classification and KL-Divergence

- Assume that our discriminant module $F(X, W)$ produces a vector of energies, with one energy $E_k(X, W)$ for each class.
- A switch module selects the smallest E_k to perform the classification.
- As shown above, the MAP/MLE loss below be seen as a KL-divergence between the desired distribution for y, and the distribution produced by the machine.

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} [E_{y_i}(X^i, W) + \frac{1}{\beta} \log \sum_k \exp(-\beta E_k(X^i, W))]$$
Multiclass Classification and Softmax

- The previous machine: discriminant function with one output per class + switch, with MAP/MLE loss
- It is equivalent to the following machine: discriminant function with one output per class + softmax + switch + log loss

\[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} - \log P(y^i | X, W) \]

with \(P(j | X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))} \) (softmax of the \(-E_j\)'s).

- Machines can be transformed into various equivalent forms to factorize the computation in advantageous ways.
Sometimes, one of the categories is “none of the above”, how can we handle that?

We add an extra energy wire E_0 for the “junk” category which does not depend on the input. E_0 can be a hand-chosen constant or can be equal to a trainable parameter (let’s call it w_0).

everything else is the same.
NN-RBF Hybrids

- Sigmoid units are generally more appropriate for low-level feature extraction.
- Euclidean/RBF units are generally more appropriate for final classifications, particularly if there are many classes.
- Hybrid architecture for multiclass classification: sigmoids below, RBFs on top + softmax + log loss.
Reparameterizing the function by transforming the space

$$E(Y, X, W) \rightarrow E(Y, X, G(U))$$

- gradient descent in U space:
 $$U \leftarrow U - \eta \frac{\partial G}{\partial U} \frac{\partial E(Y, X, W)}{\partial W}$$
- equivalent to the following algorithm in W space:
 $$W \leftarrow W - \eta \frac{\partial G}{\partial U} \frac{\partial G}{\partial U} \frac{\partial E(Y, X, W)}{\partial W}$$
- dimensions:
 $$[N_w \times N_u][N_u \times N_w][N_w]$$
Parameter-Space Transforms: Weight Sharing

- A single parameter is replicated multiple times in a machine
- \(E(Y, X, w_1, \ldots, w_i, \ldots, w_j, \ldots) \rightarrow E(Y, X, w_1, \ldots, u_k, \ldots, u_k, \ldots) \)
- Gradient: \[\frac{\partial E()}{\partial u_k} = \frac{\partial E()}{\partial w_i} + \frac{\partial E()}{\partial w_j} \]
- \(w_i \) and \(w_j \) are tied, or equivalently, \(u_k \) is shared between two locations.
Parameter Sharing between Replicas

- We have seen this before: a parameter controls several replicas of a machine.

\[E(Y_1, Y_2, X, W) = E_1(Y_1, X, W) + E_1(Y_2, X, W) \]

- gradient:

\[\frac{\partial E(Y_1, Y_2, X, W)}{\partial W} = \frac{\partial E_1(Y_1, X, W)}{\partial W} + \frac{\partial E_1(Y_2, X, W)}{\partial W} \]

- \(W\) is shared between two (or more) instances of the machine: just sum up the gradient contributions from each instance.
Path Summation (Path Integral)

One variable influences the output through several others

- \(E(Y, X, W) = E(Y, F_1(X, W), F_2(X, W), F_3(X, W), V) \)

- gradient: \(\frac{\partial E(Y,X,W)}{\partial X} = \sum_i \frac{\partial E_i(Y,S_i,V)}{\partial S_i} \frac{\partial F_i(X,W)}{\partial X} \)

- gradient: \(\frac{\partial E(Y,X,W)}{\partial W} = \sum_i \frac{\partial E_i(Y,S_i,V)}{\partial S_i} \frac{\partial F_i(X,W)}{\partial W} \)

- there is no need to implement these rules explicitly. They come out naturally of the object-oriented implementation.
Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input space, but globally inconsistent. **Example: piecewise linearly separable function.**

- **Solution:** a machine composed of several “experts” that are specialized on subdomains of the input space.
- The output is a weighted combination of the outputs of each expert. The weights are produced by a “gater” network that identifies which subdomain the input vector is in.

\[
F(X, W) = \sum_k u_k F^k(X, W^k) \quad \text{with}
\]

\[
u_k = \frac{\exp(-\beta G_k(X,W^0))}{\sum_k \exp(-\beta G_k(X,W^0))}
\]

- the expert weights \(u_k\) are obtained by softmax-ing the outputs of the gater.
- **example:** the two experts are linear regressors, the gater is a logistic regressor.
Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectors X_t.

- simple idea: the machine takes a time window as input
- $R = F(X_t, X_{t-1}, X_{t-2}, W)$
- Examples of use:
 - predict the next sample in a time series (e.g. stock market, water consumption)
 - predict the next character or word in a text
 - classify an intron/exon transition in a DNA sequence
Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.

- layer1 $X_t^1 = F^1(X_t, X_{t-1}, X_{t-2}, W^1)$
- layer2 $X_t^2 = F^1(X_t^1, X_{t-1}^1, X_{t-2}^1, W^2)$
- cost $E_t = C(X_t^1, Y_t)$

Examples:
- predict the next sample in a time series with long-term memory (e.g. stock market, water consumption)
- recognize spoken words
- recognize gestures and handwritten characters on a pen computer.

How do we train?
Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step t.

- in our example, this is influenced by 5 time steps on the input.
- train this network in isolation, taking those 5 time steps as the input.
- **Surprise**: we have three identical replicas of the first layer units that share the same weights.
- We know how to deal with that.
- do the regular backprop, and add up the contributions to the gradient from the 3 replicas.
Convolutional Module

If the first layer is a set of linear units with sigmoids, we can view it as performing a sort of *multiple discrete convolutions* of the input sequence.

- 1D convolution operation:
 \[S_t^1 = \sum_{j=1}^{T} W_j^1 X_{t-j}. \]
- \(w_{jk} \quad j \in [1, T] \) is a *convolution kernel*
- sigmoid \(X_t^1 = \tanh(S_t^1) \)
- derivative: \(\frac{\partial E}{\partial w_{jk}^1} = \sum_{t=1}^{3} \frac{\partial E}{\partial S_t^1} X_{t-j} \)
Simple Recurrent Machines

The output of a machine is fed back to some of its inputs Z. $Z_{t+1} = F(X_t, Z_t, W)$, where t is a time index. The input X is not just a vector but a sequence of vectors X_t.

- This machine is a *dynamical system* with an internal state Z_t.
- Hidden Markov Models are a special case of recurrent machines where F is linear.
To train a recurrent net: “unfold” it in time and turn it into a feed-forward net with as many layers as there are time steps in the input sequence.

An unfolded recurrent net is a very “deep” machine where all the layers are identical and share the same weights.

\[\frac{\partial E}{\partial W} = \sum_t \frac{\partial E}{\partial Z_t} \frac{\partial F(X_t, Z_t, W)}{\partial W} \]

This method is called back-propagation through time.

Examples of use: process control (steel mill, chemical plant, pollution control....), robot control, dynamical system modelling...