G22.2110-003 Programming Languages - Fall 2012
 Lecture 8

Thomas Wies
New York University

Review

Last lecture

- Types

Outline

- ML

Sources:

- "Programming in Standard ML" by Robert Harper, available from the class website.
- "ML for the working programmer, 2nd edition" by Lawrence C. Paulson, Cambridge University Press, 1996
- PLP, ch. 10

ML overview

- originally developed by Robin Milner for writing theorem provers
- functional: functions are first-class values
- garbage collection
- strong and static typing; powerful type system
- parametric polymorphism (somewhat like AdA generics)
- structural equivalence
- all with type inference!
- advanced module system
- exceptions
- miscellaneous features:
- datatypes (merge of enumerated literals and variant records)
- pattern matching
- references (like "const pointers")

Popular ML Implementations and Dialects

- Standard ML of New Jersey (SML/NJ)
- Poly/ML
- MLton
- OCaml
- F\#

A sample SML/NJ interactive session

```
- val k = 5; user input
val k = 5 : int system response
- k * k * k;
val it = 125 : int 'it' denotes the last computation
- [1, 2, 3];
val it = [1,2,3] : int list
- ["hello", "world"];
val it = ["hello","world"] : string list
- 1 :: [2, 3];
val it = [1,2,3] : int list
```

Operations on lists

```
- null [1, 2];
val it = false : bool
- null [];
val it = true : bool
- hd [1, 2, 3];
val it = 1 : int
- tl [1, 2, 3];
val it = [2, 3] : int list
- [];
```

val it $=[]$: 'a list this list is polymorphic

Simple functions

A function declaration:

$$
\begin{aligned}
& \text { - fun abs } \mathrm{x}=\text { if } \mathrm{x}>=0.0 \text { then } \mathrm{x} \text { else }{ }^{\sim} \mathrm{x} \text {; } \\
& \text { val abs }=\text { fn : real }->\text { real }
\end{aligned}
$$

A function expression

$$
\begin{aligned}
& \text { - val abs }=f n \times x \text { if } \mathrm{x}>=0.0 \text { then } \mathrm{x} \text { else }{ }^{\sim} \mathrm{x} \text {; } \\
& \text { val abs }=\text { fn : real }->\text { real }
\end{aligned}
$$

fn is like lambda in Scheme.

Functions

- fun length xs =

```
    if null xs
```

 then 0
 else 1 + length (tl xs);
 val length $=f n$: 'a list -> int
'a denotes a type variable;
length can be applied to lists of any element type
The same function, written in pattern-matching style:

- fun length [] = 0
| length (x::xs) = 1 + length xs;
val length $=f n:$ 'a list -> int

Type inference and polymorphism

Advantages of type inference and polymorphism:

- frees you from having to write types.

A type can be more complex than the expression whose type it is, e.g., flip

- with type inference, you get polymorphism for free:
- no need to specify that a function is polymorphic
- no need to "instantiate" a polymorphic function when it is applied

Multiple arguments?

- All functions in ML take exactly one argument
- If a function needs multiple arguments, we can

1. pass a tuple:

- (53, "hello"); (*a tuple *) val it = (53, "hello") : int * string
We can also use tuples to return multiple results.

2. use currying (named after Haskell Curry, a logician)

The tuple solution

Another function; takes two lists and yields their concatenation

```
- fun append ([], is) = is
    | append1 (x::xs, ys) = x :: append1 (xs, ys);
val append1 = fn: 'a list * 'a list -> 'a list
```

- append ([1,2,3], [8,9]);
val it $=[1,2,3,8,9]$: int list

Currying

The same function, written in curried style:

$$
\begin{aligned}
& \text { - fun append2 [] ys = ys } \\
& \text { | append2 (x::xs) ys }=\mathrm{x}:: \operatorname{append} 2 \mathrm{xs} \text { ys; } \\
& \text { val append2 = fn: 'a list } \rightarrow \text { ' 'a list } \rightarrow \text { 'a list } \\
& \text { - append2 [1, 2, 3] [8, 9]; } \\
& \text { val it }=[1,2,3,8,9] \text { : int list } \\
& \text { - val app123 = append2 [1,2,3]; } \\
& \text { val app123 = fn : int list -> int list } \\
& \text { - app123 [8,9]; } \\
& \text { val it }=[1,2,3,8,9]: \text { int list }
\end{aligned}
$$

More partial application

But what if we want to provide the other argument instead, i.e. append $[8,9]$ to its argument?

- here is one way: (the ADA/C/C++/JAVA way)

$$
\text { fun appTo89 xs }=\text { append2 xs }[8,9] \text {; }
$$

- here is another: (using a higher-order function)

$$
\text { val appTo89 = flip append2 }[8,9] \text {; }
$$

flip is a function which takes a curried function and "flips" its two arguments. We define it on the next frame...

Type inference example

```
fun flip f y x = f x y
```


Type inference example

```
fun flip f y x = f x y
```

The type of flip is $(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma$. Why?

Type inference example

```
fun flip f y x = f x y
```

The type of flip is $(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma$. Why?

- Consider (f x). f is a function; its argument has the same type as $\mathrm{x} . \mathrm{f}: A \rightarrow B \quad \mathrm{x}: A \quad(\mathrm{f} \mathrm{x}): B$
- Now consider ($\mathrm{f} \mathrm{x} y$). Because function application is left-associative, $f x y \equiv(f x) y$. Therefore, ($f x$) must be a function, and its argument must have the same type as y :
(f x) : $C \rightarrow D$
y : C
(f x y) : D
- Note that B must be the same as $C \rightarrow D$. We say that B must unify with $C \rightarrow D$.
- The return type of flip is whatever the type of $f x y$ is. After renaming the types, we have the type given at the top.

Type rules

The type system is defined in terms of inference rules. For example, here is the rule for variables:

$$
\frac{(x: \tau) \in E}{E \vdash x: \tau}
$$

and the one for function calls:

$$
\frac{E \vdash e_{1}: \tau^{\prime} \rightarrow \tau \quad E \vdash e_{2}: \tau^{\prime}}{E \vdash e_{1} e_{2}: \tau}
$$

and here is the rule for if expressions:

$$
\frac{E \vdash e: \text { bool } \quad E \vdash e_{1}: \tau \quad E \vdash e_{2}: \tau}{E \vdash \text { if } e \text { then } e_{1} \text { else } e_{2}: \tau}
$$

Passing functions

- pred is a predicate : a function that returns a boolean
- exists checks whether pred is true for any member of the list

$$
\begin{aligned}
& \text { - exists (fn i }=>\text { i }=1 \text {) }[2,3,4] \text {; } \\
& \text { val it }=\text { false : bool }
\end{aligned}
$$

Applying functionals

$$
\begin{aligned}
& \text { - exists (fn i }=>~ i=1) ~[2, ~ 3, ~ 4] ; \\
& \text { val it }=\text { false : bool }
\end{aligned}
$$

Now partially apply exists:

$$
\begin{aligned}
& \text { - val hasOne = exists (fn i => i = 1); } \\
& \text { val hasOne = fn : int list -> bool } \\
& \text { - hasOne }[3,2,1] \text {; } \\
& \text { val it = true : bool }
\end{aligned}
$$

Functionals 2

```
fun all pred [] = true
    | all pred (x::xs) = pred x andalso all pred xs
fun filter pred [] = []
    | filter pred (x :: xs) =
        if pred x
        then x :: filter pred xs
        else filter pred xs
```

 all \(:(\alpha \rightarrow\) bool \() \rightarrow \alpha\) list \(\rightarrow\) bool
 filter $:(\alpha \rightarrow$ mol $) \rightarrow \alpha$ list $\rightarrow \alpha$ list

Block structure and nesting

let provides local scope:
(* standard Newton-Raphson *)
fun findroot (a, $x, a c c)=$
let val nextx $=(a / x+x) / 2.0$
(* nextx is the next approximation *)
in
if abs (x - nextx) < acc * x
then nextx
else findroot (a, nextx, acc)
end

A classic in functional form: quicksort

```
fun qSort op< [] = []
qSort \(o p<[x]=[x]\)
    | qSort op< (a::bs) =
let fun partition left right [] =
                        (left, right) (* done partitioning *)
    | partition left right (x::xs) =
        (* put \(x\) to left or right *)
        if \(\mathrm{x}<\mathrm{a}\)
        then partition (x:: left) right xs
        else partition left (x: right) xs
        val (left, right) = partition [] [] bs
    in
        qSort op< left @ a : : qSort op< right
    end
```

qSort $:(\alpha * \alpha \rightarrow$ bool $) \rightarrow \alpha$ list $\rightarrow \alpha$ list

Another variant of mergesort

```
fun qSort op< [] = []
    | qSort op< [x] = [x]
    | qSort op< (a::bs) =
        let fun deposit (x, (left, right)) =
        if x < a
        then (x::left, right)
        else (left, x::right)
        val (left, right) = foldl deposit ([], []) bs
    in
        qSort op< left @ a :: qSort op< right
        end
```

 qSort \(:(\alpha * \alpha \rightarrow\) bool \() \rightarrow \alpha\) list \(\rightarrow \alpha\) list

The type system

- primitive types: bool, int, char, real, string, unit
- constructors: list, array, product (tuple), function, record
- "datatypes": a way to make new types
- structural equivalence (except for datatypes)
- as opposed to name equivalence in e.g. Ada
- an expression has a corresponding type expression
- the interpreter builds the type expression for each input
- type checking requires that type of functions' parameters match the type of their arguments, and that the type of the context matches the the type of the function's result

ML records

Records in ML obey structural equivalence (unlike records in many other languages).

A type declaration: only needed if you want to refer to this type by name

$$
\text { type vec }=\{x \text { : real, } y \text { : real }\} ;
$$

A variable declaration:

$$
\text { val } v=\{x=2.3, y=4.1\} ;
$$

Field selection:
\#x v;

Pattern matching in a function:

```
fun dist {x,y} =
    sqrt (pow (x, 2.0) + pow (y, 2.0))
```


Datatypes

A datatype declaration:

- defines a new type that is not equivalent to any other type (like name equivalence)
- introduces data constructors
- data constructors can be used in patterns
- they are also values themselves

Datatype example

```
datatype tree = Leaf of int
    | Node of tree * tree
```

Leaf and Node are data constructors:

- Leaf : int \rightarrow tree
- Node : tree $*$ tree \rightarrow tree

Pattern Matching

We can define functions by pattern matching:

```
fun sum (Leaf t) = t
    | sum (Node (t1, t2)) = sum t1 + sum t2
fun flatten (Leaf t) = [t]
    | flatten (Node (t1, t2)) =
        flatten t1 @ flatten t2
```

 flatten : tree \(\rightarrow\) int list

Parameterized datatypes

```
datatype 'a gentree =
    Leaf of 'a
    | Node of 'a gentree * 'a gentree
val names \(=\) Node (Leaf "this", Leaf "that")
```

names: string gentree

The rules of pattern matching

Pattern elements:

- integer literals: 4, 19
- character literals: \#' a'
- string literals: "hello"
- data constructors: Node (...)
- depending on type, may have arguments, which would also be patterns
- variables: x, ys
- wildcard:

Convention is to capitalize data constructors, and start variables with lower-case.

More rules of pattern matching

Special forms:

- (), \{\} - the unit value
- [] - empty list
- [p1, p2, ..., pn] means (p1 :: (p2 :: ... (pn :: [])...))
- (p1, p2, ..., pn) - a tuple
- \{field1, field2, ... fieldn\} - a record
- \{field1, field2, ... fieldn, ...\}
- a partially specified record
- v as p
$-v$ is a name for the entire pattern p

Common idiom: option

option is a built-in datatype:

```
datatype 'a option = NONE | SOME of 'a
```

Defining a simple lookup function:

```
fun lookup eq key [] = NONE
    | lookup eq key ((k,v)::kvs) =
    if eq key k
    then SOME v
    else lookup eq key kvs
```

Is the type of lookup:

$$
(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \alpha \rightarrow(\alpha * \beta) \text { list } \rightarrow \beta \text { option? }
$$

Common idiom: option

option is a built-in datatype:

```
datatype 'a option = NONE | SOME of 'a
```

Defining a simple lookup function:

```
fun lookup eq key [] = NONE
    | lookup eq key ((k,v)::kvs) =
    if eq key k
    then SOME v
    else lookup eq key kvs
```

Is the type of lookup:

$$
(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \alpha \rightarrow(\alpha * \beta) \text { list } \rightarrow \beta \text { option? }
$$

No! It's slightly more general:

$$
\left(\alpha_{1} \rightarrow \alpha_{2} \rightarrow \text { bool }\right) \rightarrow \alpha_{1} \rightarrow\left(\alpha_{2} * \beta\right) \text { list } \rightarrow \beta \text { option }
$$

Another lookup function

We don't need to pass two arguments when one will do:

```
fun lookup _ [] = NONE
    | lookup checkKey ((k,v)::kvs) =
    if checkKey k
    then SOME v
    else lookup checkKey kvs
```

The type of this lookup:

$$
(\alpha \rightarrow \text { bool }) \rightarrow(\alpha * \beta) \text { list } \rightarrow \beta \text { option }
$$

Useful library functions

- map $:(\alpha \rightarrow \beta) \rightarrow \alpha$ list $\rightarrow \beta$ list

$$
\begin{aligned}
& \operatorname{map}(\mathrm{fn} i=>\text { i }+1)[7,15,3] \\
& \Longrightarrow[8,16,4]
\end{aligned}
$$

- foldl: $(\alpha * \beta \rightarrow \beta) \rightarrow \beta \rightarrow \alpha$ list $\rightarrow \beta$

$$
\begin{aligned}
& \text { foldl (fn (a,b) => "(" ~ a ~ "+" ~ b ~ ")") } \\
& \text { "0" ["1", "2", "3"] } \\
& \Longrightarrow \quad "(3+(2+(1+0))) "
\end{aligned}
$$

- foldr: $(\alpha * \beta \rightarrow \beta) \rightarrow \beta \rightarrow \alpha$ list $\rightarrow \beta$

$$
\begin{aligned}
& \text { foldr (fn (a,b) => "(" ~ a ~ "+" ~ b ~ ")") } \\
& \text { "0" ["1", "2", "3"] } \\
& \Longrightarrow \quad "(1+(2+(3+0))) "
\end{aligned}
$$

- filter $:(\alpha \rightarrow$ bool $) \rightarrow \alpha$ list $\rightarrow \alpha$ list

Overloading

Ad hoc overloading interferes with type inference:

```
fun plus x y = x + y
```

Operator ' + ' is overloaded, but types cannot be resolved from context (defaults to int).

We can use explicit typing to select interpretation:

$$
\begin{aligned}
& \text { fun } \operatorname{mix} 1(x, y, z)=x * y+z: r e a l \\
& \text { fun } \operatorname{mix} 2(x: ~ r e a l, ~ y, ~ z) ~
\end{aligned}
$$

Parametric polymorphism vs. generics

- a function whose type expression has type variables applies to an infinite set of types
- equality of type expressions means structural not name equivalence
- all applications of a polymorphic function use the same body: no need to instantiate

```
let val ints = [1, 2, 3]
    val strs = ["this", "that"]
in
    len ints + (* int list -> int *)
    len strs (* string list -> int *)
end
```


ML signature

An ML signature specifies an interface for a module.

```
signature STACK =
sig
```

```
type stack
```

type stack
exception Empty
exception Empty
val empty : stack
val empty : stack
val push : char * stack -> stack
val push : char * stack -> stack
val pop : stack -> char * stack
val pop : stack -> char * stack
val isEmpty : stack -> bool
val isEmpty : stack -> bool
end

```

\section*{ML structure}
structure Stack : STACK =
struct
\[
\begin{aligned}
& \text { type stack = char list } \\
& \text { exception Empty } \\
& \text { val empty }=[] \\
& \text { val push }=\text { op:: } \\
& \text { fun pop }(c:: c s)=(c, c s) \\
& \qquad \text { pop [] = raise Empty } \\
& \text { fun isEmpty }[]=\text { true } \\
& \quad \mid \quad \text { isEmpty }-=\text { false }
\end{aligned}
\]
end```

