
Heap Assumptions on Demand

Andreas Podelski1, Andrey Rybalchenko2, and Thomas Wies1

1 University of Freiburg, Freiburg, Germany
{podelski,wies}@informatik.uni-freiburg.de

2 Max Planck Institute for Software Systems, Saarbrücken, Germany
rybal@mpi-sws.mpg.de

Abstract. Termination of a heap-manipulating program generally de-
pends on preconditions that are heap assumptions (i.e., assertions de-
scribing reachability, aliasing, separation and sharing in the heap). We
present an algorithm for the inference of such preconditions. The al-
gorithm exploits a unique interplay between counterexample-producing
abstract termination checker and shape analysis. The shape analysis pro-
duces heap assumptions on demand to eliminate counterexamples, i.e.,
non-terminating abstract computations. The experiments with our pro-
totypical implementation indicate its practical potential.

1 Introduction

Heap-manipulating programs are prone to termination errors [2]. Manually in-
ferring preconditions that exclude such errors is both tedious and hard, since the
termination reasoning must involve the shape of the heap (we use the term shape
in the broad sense to describe how heap locations and heap regions are aliased,
inter-reachable, separated, and shared). In this paper, we present an algorithm
HeapInfer that automates this inference process. Given a heap-manipulating
program, our algorithm computes a set of conditions on the shape of initial
states, e.g., at the entry point of a given code fragment, that lead to terminating
computations. We identify a class of regular programs for which the algorithm
HeapInfer is complete. An evaluation on characteristic examples practically
demonstrates that the inferred preconditions are sufficiently weak.

Our algorithm iteratively applies a termination analysis to a ‘shape-free’
abstraction of the program. HeapInfer avoids invocation of shape analysis until
it finds a counterexample in the form of a non-terminating abstract computation,
i.e., it applies shape analysis on demand. The shape analysis produces a heap
assumption, which is an assertion describing the heap shape. This assumption
refines either the abstraction or the precondition. As the result, the refinement
step eliminates the counterexample. Thus, we obtain an iterative refinement
scheme that applies counterexamples to guide the refinement of abstractions
and preconditions.

The ‘shape-free’ abstraction and the demand-driven application of shape
analysis rely on several specifics of termination proofs. A termination analysis
synthesizes termination arguments in the form of ranking functions (whenever

possible). To define a ranking function directly on heaps does not seem appropri-
ate. The notion of a rank is intimately related to numbers. Thus, an intermediate
step of our algorithm is to translate the input program over pointer variables, a
heap program Ph, into a program over integer variables, which we call a measure
program Pm. This translation step from heap to measure programs represents a
low-cost and coarse ‘shape-free’ abstraction.

The algorithm HeapInfer applies a termination analysis to Pm at the next
step. We obtain either a termination proof for Pm and, hence, also for Ph, or a
counterexample, i.e., an infinite trace of Pm. In general, the attempt to find a
termination proof for Pm fails. This is not surprising as we expect that a termi-
nation proof must involve some amount of information that only shape analysis
can compute. Shape analysis is notoriously expensive, however. Hence, our algo-
rithm calls a shape analysis on demand, i.e., for a specific, isolated task: to check
the validity of an invariant assertion which is crafted for the counterexample.
Recent shape analysis tools can exploit this kind of specificity by adapting the
degree of precision, and thus keeping the practical cost of shape analysis at a
minimum [3,24]. Furthermore, these tools can efficiently handle series of analy-
sis requests. They reuse results obtained for previously processed queries when
proving a new assertion, and thus avoid re-computation from scratch.

If the shape analysis proves the validity of the invariant assertion by checking
a corresponding assert statement in Ph, then HeapInfer inserts a correspond-
ing assume statement into the measure program Pm. Thus, it will refine the
abstraction represented by Pm. The refined version of Pm still represents a sound
abstraction of Ph, but the previously discovered counterexample is no longer fea-
sible in the program Pm. The invariant assertion, which is crafted to exclude the
counterexample of Pm, is an expression over integer variables. The expression
can be evaluated in Pm as well as in Ph. Thus, it is meaningful in the assert
statement of the program Ph over pointer variables as well as in the assume
statement in the program Pm over integer variables.

In summary, the proposed algorithm HeapInfer exploits a unique interplay
between failed abstract termination proofs and shape analysis and applies an
interleaving of abstraction and precondition refinement. Thus, we obtain the (to
our knowledge first) algorithm for the inference of preconditions on the heap
shape that guarantee termination of heap-manipulating programs. The exper-
iments with our prototype implementation indicate its practical potential. We
applied our implementation on characteristic fragments of heap manipulating
programs including kernel code from an operating system [17]. The inferred pre-
conditions match the intended calling environment, and were confirmed as such
by the kernel developers.

Related Work. Our work fills a gap between two recent lines of research: termi-
nation proofs under given preconditions (for heap-manipulating programs), and
precondition inference for correctness properties other than termination (mem-
ory safety of heap-manipulating programs and other safety properties). Our al-
gorithm exploits the recent advances in the respected areas by utilizing the

2

corresponding analyses as subprocedures: shape analysis for heap-manipulating
programs and termination analysis of integer-manipulating programs.

The recent termination analyses for heap manipulating programs, e.g., [2,
5], do not focus on precondition inference, but rather on proving termination
under given preconditions. They do not take advantage of lazy reasoning about
the heap. Unlike [2], the present version of our algorithm does not account for
memory safety. It can be extended to track information related to memory safety
by using measures, similarly to [5, 15].

The idea of extracting ranking functions from heap-manipulating programs
by translating its statements into updates of integer variables is very natural and
is classical by now. The existing transformations of heap-manipulating programs
into programs over integer variables in [2,5] are sophisticated. Each transforma-
tion uses a form of shape analysis as a preliminary step, i.e., before translating
to a program over integer variables. The shape analysis is used to eagerly infer
strongest invariants for the whole program, and is oblivious to the actual proof
obligations required for termination reasoning. The cost of the translation and
the size of the resulting program over integer variables depend on the number
of shapes computed by the shape analysis. In contrast, our work aims at min-
imizing the cost of the shape analysis by using it only for checking specially
crafted assertions. The complexity of the translation step into a measure pro-
gram does not depend on the number of shapes. It is cubic in the number of
pointer variables and linear in the number of statements of the heap program.

The recently proposed algorithm for deriving preconditions for memory safety
of list-manipulating programs [8] employs quite different technical concepts. It
neither applies shape analysis lazily, nor infers to preconditions for termination.

There is a large amount of related work on shape analysis (the synthesis of
invariant assertions about the heap). A partial selection of various approaches
contains [4,6,12,13,21]. Our algorithm uses shape analysis as a black box. While
not requiring and being dependent on any particular implementation of shape
analysis, HeapInfer can benefit from shape analyses that are property-directed,
e.g. [3, 24].

To the best of our knowledge, our work is the first that applies shape analysis
on demand for inferring preconditions. A graph-based heap analysis [21] can be
lazily combined with predicate abstraction [14] to improve its precision in proving
safety properties [3].

Our algorithm relies on a termination prover for programs over numerical
domains. There exist several practical methods and tools for proving termination
of such programs, e.g. [7, 9, 10, 11, 16]. All these tools can be employed by our
algorithm (after adding an extension to produce counterexamples, if necessary).

2 Preconditions for Kernel Code

A major application area of termination analyses for heap manipulating pro-
grams is low-level operating systems code [1, 2]. Often the operating system

3

kernel contains subroutines whose termination is an inevitable requirement for
ensuring that the OS remains responsive.

See Figure 1 for a typical example of such a subroutine. It shows a fragment
of the system call handler process_kill found in the process scheduler of the
operating system VAMOS [17]. The handler kills the process with the given
process ID. Among other tasks, the handler needs to ensure consistency of the
process scheduler’s data structures, e.g. ready list. The ready list contains all
processes which are in a state ready for being scheduled. When a process with
identifier process is killed, the handler needs to ensure that it is removed from
the ready list (if it is contained). Furthermore, the maximal priority of the re-
maining ready processes needs to be recomputed. The outer loop in the handler
code traverses the ready list until either process is found or NULL is reached. If
process is found it is removed from the list. Furthermore, if process has max-
imal priority, then the inner loop traverses the ready list once more to compute
the new maximal priority of the remaining ready processes.

The execution of the handler process_kill may diverge if we call it from
an arbitrary program state. The termination property of the code depends on
the shape of the ready list. For example, if the ready list is cyclic and does not
contain process then the outer loop does not terminate.

Our algorithm automatically infers the necessary preconditions for termina-
tion: process_kill expects an acyclic ready list. First, it automatically intro-
duces integer variables that measure the length of paths along pointer fields in
the heap. Their value may be ∞, which indicates that the corresponding path
does not exist in the heap. In our example, there are three measures that track
the length of the paths following the next link from (1) ready_list to NULL, (2)
ready_list_elem to NULL, and (3) highest_search to NULL. We refer to these
measures as m1, m2, and m3.

Second, the algorithm translates the heap program into an integer program
over measures. For example, the first conjunct in the loop condition of the outer
loop is translated to the test (m2 6= 0), and the outer loop decrements the
measure m2 if m2 has a value different from ∞. Next, the precondition inference
process iteratively applies a termination analysis to the integer program and a
shape analysis to the heap program. The shape analysis is used to derive new
facts from the heap program that rule out spurious infinite computations in the
integer program. Whenever an infinite computation cannot be ruled out, the
precondition is strengthened. Both the precondition and the facts derived from
the heap program are assertions over measures.

In our example, the first termination check on the integer program fails.
As a counterexample, it produces an infinite computation where measure m2 is
initially ∞ and is never decremented in the outer loop. This is because m1 (and
thus m2) is initially unconstrained and might have value ∞. This computation
is feasible and corresponds to the infinite traversal of the ready list in case it
is cyclic. Consequently, the inference algorithm strengthens the precondition by
the assertion (m1 < ∞). This rules out any infinite iteration of the outer loop in
the integer program, and, hence, of the heap program.

4

int process_kill(unsigned int pid) {

proc_id = pid & 127u;

process = pid2pcb(proc_id); ...

prev_elem = NULL;

ready_list_elem = ready_list;

while ((ready_list_elem != NULL) && (found == false)) {

proc_id2 = ready_list_elem->pid;

if (proc_id == proc_id2) {

if (prev_elem != NULL)

prev_elem->next = ready_list_elem->next;

else

ready_list = ready_list_elem->next;

ready_list_elem->next = NULL;

if (process->priority == max_prio) {

highest_prio = 0u;

highest_search = ready_list;

while (highest_search != NULL) {

if (highest_search->priority > highest_prio)

highest_prio = highest_search->priority;

highest_search = highest_search->next;

}

max_prio = highest_prio;

}

memory_free(proc_id, process->page_table_length);

process->pid = 0u;

PT_SET_PREV_ELEM(process->page_table,0u,

(PT_PAGE_FIRST_VALUE),0u,0u,1u);

found = true;

}

prev_elem = ready_list_elem;

ready_list_elem = ready_list_elem->next;

} ...

}

Fig. 1. System call handler from the process scheduler of the VAMOS kernel [17].

5

Nevertheless, the next application of the termination analysis fails and pro-
duces a counterexample that infinitely often iterates through the inner loop with
the value of measure m3 being equal to ∞. This might come as a surprise, be-
cause acyclicity of the ready list, expressed as (m1 < ∞), is preserved by the
heap updates in the body of the outer loop. Thus, the heap program maintains
(m3 < ∞) at entry to the inner loop. However, due to the information loss in the
abstraction into measures, this fact cannot be derived for the integer program.
Now, the inference algorithm applies the shape analysis to check the validity of
the assertion (m3 < ∞) at the entry to the inner loop. This assertion is ex-
pressible in terms of a reachability predicate, which is supported by the shape
analysis. The shape analysis verifies that (m3 < ∞) holds. This fact is propa-
gated to the measure program by assuming (m3 < ∞) at the inner loop entry.
In turn, the subsequent termination check succeeds. Thus, the inference process
stops and reports the precondition (m1 < ∞), which means that process_kill
expects an acyclic ready list.

In the following, we make the translation to measure programs precise and
discuss the precondition inference algorithm in detail.

3 Preliminaries

In this section, we provide necessary definitions for heap manipulating programs,
their computations, and properties. To simplify presentation we restrict ourselves
to heap programs that manipulate singly-linked lists. In Section 7 we discuss an
extension to multi-linked lists.

A heap program Ph = (V,L, ℓ0, ℓE , T) consists of:

– V : a finite set of program variables. Each variable v ∈ V ranges over a set
of memory addresses.

– L: a finite set of control locations of the program. We assume a distinguished
program variable pc that ranges over the control locations, and add it to the
set of program variables V .

– ℓ0: an initial control location.
– ℓE : an error control location.
– T : a finite set of program transitions. Each transition τ = (ℓ, grd , op, ℓ′) con-

sists of an entry and exit locations ℓ and ℓ′, respectively, and a guard grd and
operation op. Guards and operations are defined by the following grammar,
where v ∈ V \ {pc} and n is a data structure link name.

exp ::= v | exp.n

grd ::= true | false | exp = exp | grd ∧ grd | ¬grd

op ::= assert(grd) | v := v | v := v.n | v.n := v | new(v)

States. A state s = (stack , h) of a heap program is a valuation of the pro-
gram variables stack , including pc, together with the heap function h. The heap
function h is a total function from addresses to addresses. Function h models
singly-linked data structures manipulated by the program.

6

Given a variable v ∈ V , we write s(v) for the valuation of v in the state s. We
write s[v 7→ e] to represent a state s′ such that s′(v) = e and for each u ∈ V \{v}
we have s′(u) = s(u).

Transition relations. Each transition τ = (ℓ, grd , op, ℓ′) represents a transition
relation ρτ that contains pairs of states (s, s′) such that s(pc) = ℓ, s |= grd , and,
additionally, s and s′ satisfy conditions given below for each operation kind. If
op is an operation assert(grd), we have either s |= grd and s′ = s[pc 7→ ℓ′], or
s 6|= grd and s′ = s[pc 7→ ℓE]. For dealing with update operations, we define an
evaluation function eval that computes the value of an expression w.r.t. a given
state.

eval(s, exp)
def

=

{

s(v) if exp = v,

h(eval(s, exp′)) if exp = exp′.n .

For an operation that updates a program variable v := exp, we have s′ = s[pc 7→
ℓ′, v 7→ eval(s, exp)]. In case of heap update operation v.n := exp, we have
s′ = s[pc 7→ ℓ′] and the heap function h is modified at the address eval(s, v.n)
to return the value eval(s, exp). Finally, if the update operation is an allocation
operation new(v) then s′ = s[pc 7→ ℓ′, v 7→ a] and h is updated to h ∪ {a 7→ a′}
where a /∈ dom(h) is a fresh address and a′ ∈ dom(h) ∪ {a}. Thus, we assume a
garbage-collected heap where we always allocate a fresh address, but we put no
constraint on the value of the heap function for that fresh address.

For a state s and transition τ we denote by post(τ, s) the set of all τ -successors
of s.

Computations. A program computation is a (possibly infinite) sequence σ =
s0, τ0, s1, τ1, . . . of states and transitions such that s0(pc) = ℓ0, for each pair of
consecutive states si and si+1 we have si+1 ∈ post(τi, si). If σ is finite then for
its final state, say s, and for each transitions τ ∈ T we have post(τ, s) = ∅.

Measures. A measure is a term m(e1, e2) where e1 and e2 are expressions. It
denotes the length of the shortest (possibly empty) n-path in the heap from the
address denoted by e1 to the address denoted by e2, and ∞ if such a path does
not exist.

We extend the evaluation function eval from expressions to measures as fol-
lows:

eval(s,m(e1, e2))
def

=

{

∞ if for all i ∈ N : s |= e1.n
i 6= e2

min{ i ∈ N | s |= e1.n
i = e2 } otherwise.

7

Measure Assertions. Measure assertions are defined by the following grammar:

rel ::= < | > | ≤ | ≥ | =

const ::= 0 | 1 | 2 | · · · | ∞

mexp ::= const | m(exp, exp) | mexp + mexp | mexp − mexp

atom ::= true | false | mexp rel mexp

assn ::= atom | ¬assn | assn ∧ assn

Measure Programs. A measure program Pm = (M,L, ℓ0, T) is a program whose
program variables M are the set of all measures. The set of locations L, and
initial location ℓ0 are as for heap programs. A state of a measure program is
a valuation of the pc together with valuations of all measures. Transitions of
measure programs are guarded by measure assertions and perform simultaneous
updates of all measures. Updates of measures are expressed in terms of measure
expressions mexp.

Memory safety. The totality of heap function h implies that in a heap program
P there exists no computation that can fail because of memory manipulation
error, i.e., P is memory safe. This assumption simplifies the presentation of our
‘shape-free’ abstraction of heap programs, but does not impose any practical
limitations.

4 Algorithm

This section presents our algorithm HeapInfer for the automatic inference of
heap assumptions for termination. Figure 2 shows the algorithm. It takes as
input a heap program Ph and a (super)set of measures that need to be tracked
in order to prove termination of Ph. The output of the algorithm is a set of
preconditions that guarantee termination of the input heap program.

The algorithm consists of two phases: (1) the translation of the heap program
into a measure program that simulates the heap program, and (2) a counterex-
ample driven refinement loop. The refinement loop iteratively derives two kinds
of new facts. First, it computes invariants of the heap program that eliminate
spurious infinite computations in the measure program. Second, it infers precon-
ditions that exclude feasible infinite computations in the heap program. In the
following, we describe the two phases of HeapInfer in more details. Section 5
supports the description with illustrative examples.

Translation Figure 3 defines the function Translate which is used in line 1 of the
algorithm to translate a heap program Ph to a measure program under a given
set of tracked measures M . The translation can be seen as a source-to-source
transformation of the heap program into a measure program. Each transition of
the heap program is translated to a set of transitions in the measure program.
An update operation upd in the heap program is translated to a simultaneous

8

1

2

3

4

5

6

7

8

9

10

11

13

14

15

input

Ph: heap program
M : set of tracked measures

vars

Pm : measure program
sti : measure statement at location ℓi and with guard guard i

pre: measure assertion
begin

Pm := Translate(M, Ph)
pre:= true

repeat

if Pm terminates then

return “termination under precondition pre”
else

st1 . . . stm−1.(stm . . . stn)ω := choose infinite trace in Pm

i := choose position in {m, . . . , n}
if under precondition pre,

Ph ∪ ℓi : assert(¬guard i) is safe
then

Pm := Pm ∪ ℓi : assume(¬guard i)
else

pre:= pre ∧ wp(Ph, at ℓi → ¬guard i)
done

end.

Fig. 2. Algorithm HeapInfer for demand-driven inference of heap assumptions. The
algorithm uses three oracles: 1) the termination test on a measure program, 2) the
safety check on the input heap program strengthened by a measure assertion, and 3)
the weakest-precondition operator on measure assertions for the input heap program.

update of all measures in the measure program (tracked or untracked). The
difference between tracked and untracked measures is that tracked measures
m(e1, e2) are updated according to the update function mupd(e1, e2) which is
defined in Figure 4 while untracked measures are non-deterministically assigned
a value from N ∪ {∞}.

The rules in Figure 4 that define the update functions should be read top
down. The rule that matches first is the one that applies. Most of the rules are
straightforward with the exception of the rule for translation of heap updates
x.n := y. This rule describes the translation of heap updates into updates of
measures of the general form m(z.ni, w.nj). Since the heap function n occurs in
the subexpressions z.ni and w.nj of the measure, the translation needs to take
into account the effect of the heap update to the denotation of these subexpres-
sions. The first two cases apply the rule recursively until x does neither occur on
the path from z to z.ni nor on the path from w to w.nj . Thus, eventually the
third case applies. The third case is again devided into three subcases. The first
subcase handles the situation where x does not occur on the path from z.ni to
w.nj , meaning that the measure does not change its value. The second subcase

9

handles the situation where x is reachable from z.ni and the update introduces
a new path from z.ni to w.nj via x and y. Finally, the last subcase handles the
situation where the update destroys any existing paths between z.ni and w.nj .

Each of the update functions mupd(e1, e2) defines a set of guarded update
expressions of the form grd ⇒ exp meaning that if grd is satisfied in the current
state of the measure program then the new value of measure m(e1, e2) is deter-
mined by exp. For example the update function for updates of the form x := y.n
and measures of the form m(x, e), where e does not contain x, defines the set of
guarded update expressions:

{ m(y, e) = ∞ ⇒ ∞,
m(y, e) < ∞ ∧ m(y, e) > 0 ⇒ m(y, e) − 1,
m(y, e) < ∞ ∧ m(y, e) = 0 ∧ m(y, y.n) = 1 ⇒ m(y.n, e),
m(y, e) < ∞ ∧ m(y, e) = 0 ∧ m(y, y.n) = 0 ⇒ 0

}

Note that in a given state of the measure program and for any given measure,
there is always exactly one guarded update expressions whose guard is satisfied,
i.e., updates of tracked measures are deterministic with the exception of updates
resulting from the translation of new statements which are itself nondeterminis-
tic.

Finally, the function bifurcate transforms a single transition with guarded
update expressions for each tracked measure into a set of transitions. Each of
the resulting transitions corresponds to one possible choice of picking one of the
guarded update expressions per tracked measure. The guard of each resulting
transition is the translated guard of the original transition in the heap program
conjoined with the guards of the chosen guarded update expressions.

The correctness of the translation is discussed in Section 6.

Tracked Measures We determine the set of tracked measures M using a simple
heuristic: Initially, we consider measures that are required for precise translation
of loop conditions. During the translation of the program additional measures
are tracked lazily if they occur in updates of existing tracked measures according
to Figure 4. To ensure that the set M remains finite we only track measures of
the form m(x, y) where x and y are program variables. Note that the inference
algorithm behaves monotonically with respect to M , i.e. adding more measures
to the set will result in weaker preconditions.

Refinement loop The core of algorithm HeapInfer is its counterexample driven
refinement loop. In each iteration of the algorithm a termination checker is called
to check whether the measure program terminates under current precondition
pre. If the termination check succeeds then the heap program, too, is guaranteed
to terminate under pre and the algorithm stops. Otherwise there exists some
infinite computation in the measure program, i.e., a counterexample for termi-
nation. The algorithm non-deterministically chooses one of these computations:

st1 . . . stm−1.(stm . . . stn)ω .

10

Ph = (V,L, ℓ0, ℓE , T)

Translate(M, Ph) = (M,L, ℓ0, ℓE ,
[

τ∈T

trlT(M, τ))

trlT(M, (ℓ, g, op, ℓ′)) = bifurcate(ℓ, trlG(g), trlO(M, op), ℓ′)

trlG(e1 = e2) = m(e1, e2) = 0

trlG(true) = true

trlG(false) = false

trlG(¬grd) = ¬(trlG(grd))

trlG(grd1 ∧ grd2) = trlG(grd1) ∧ trlG(grd2)

trlO(M, assert(grd)) = assert(trlG(grd))

trlO(M, upd) = [ms := trlU(M, upd ,ms) | ms ∈ M]

trlU(M, upd ,m(t1, t2)) =

(

mupd(t1, t2) if m(t1, t2) ∈ M

∗ otherwise

Fig. 3. Translation of a heap program to a measure program. We use ∗ to denote
a non-deterministically chosen element from N ∪ {∞}. Here, bifurcate creates a set
of transitions for each choice of measure updates, trlT, trlG, trlO, and trlU translate
transitions, guards, operations and updates, respectively.

Now there are two possible cases: either (1) this computation is spurious, i.e.,
there is no corresponding computation in the heap program, or (2) the computa-
tion is feasible in the heap program. To determine whether the counterexample
is feasible or not, the algorithm chooses some guard grd i from the loop segment
(stm . . . stn). Then, a safety checker is called to verify whether, under the current
precondition pre, the negation of grd i is an invariant of the heap program at
location ℓi.

If the safety check succeeds then it proves that the counterexample is spu-
rious. In this case we strengthen the guards of all outgoing transitions from ℓi

in the measure program by the measure assertion ¬grd i. This ensures that the
counterexample is no longer a computation of the strengthened measure pro-
gram.

If on the other hand the safety check fails, then the counterexample might
correspond to a feasible computation in the heap program (or some other choice
of grd i will prove its spuriousness). In this case the algorithm invokes an oracle
that computes the weakest precondition of the negated guard grd i and adds it
to the current precondition. If the same counterexample is produced in some
later iteration of the refinement loop then the negation of guard grd i is an
invariant of the heap program at location ℓi under the new precondition. Thus,
the counterexample is eliminated eventually.

If there is a counterexample in the measure program that is spurious but all
guards in its loop are reachable by some finite computation in the heap program

11

If op is x := y then

mop(e1, e2)
def

= m(e1[y/x], e2[y/x])

If op is x := y.n then

mop(x, x)
def

= 0
mop(x.ni, x.nj)

def

= mop(y.ni+1, y.nj+1)
mop(e, x)

def

=
m(e, y) = ∞ ⇒ m(e, y.n)
m(e, y) < ∞

m(y, y.n) = 1
m(y.n, e) 6= 0 ⇒ m(e, y) + 1
m(y.n, e) = 0 ⇒ 0

m(y, y.n) = 0 ⇒ m(e, y)

mop(x, e)
def

=
m(y, e) = ∞ ⇒ ∞
m(y, e) < ∞

m(y, e) > 0 ⇒ m(y, e) − 1
m(y, e) = 0

m(y, y.n) = 1 ⇒ m(y.n, e)
m(y, y.n) = 0 ⇒ 0

mop(x.ni, e)
def

= mop(y.ni+1, e)
mop(e, x.ni)

def

= mop(e, y.ni+1)
mop(e1, e2)

def

= m(e1, e2)

If op is x.n := y then
let e1 = z.ni and e2 = w.nj

mop(e1, e2)
def

=
i > 0 ∧ m(z, x) = k ∧ k < i ⇒

mop(y.ni−k−1, e2)
j > 0 ∧ m(w, x) = k ∧ k < j ⇒

mop(e1, y.nj−k−1)
(i > 0 → m(z, x) ≥ m(z, e1)) ∧
(j > 0 → m(w, x) ≥ m(w, e2))

m(e1, e2) ≤ m(e1, x) ⇒ m(e1, e2)
m(e1, e2) > m(e1, x)

m(y, e2) < ∞ ∧ m(y, e2) ≤ m(y, x) ⇒
m(e1, x) + 1 + m(y, e2)

m(y, e2) = ∞∨ m(y, e2) > m(y, x) ⇒ ∞

If op is new(x) then

mop(x, x)
def

= 0
mop(e, x)

def

= ∞
mop(x, e)

def

= k, k ∈ N
+ ∪ {∞}

mop(e, x.ni)
def

= ∗
mop(x.ni, e)

def

= ∗
mop(e1, e2)

def

= m(e1, e2)

Fig. 4. Updates of measures for all update operations in heap programs.

12

then the inference algorithm will produce a precondition which is too strong.
In this case the safety check in Line 10 will fail on all of the loop guards and
the refinement will rule out the counterexample by strengthening the precondi-
tion. This incompleteness is deliberate. In such a case a ranking function based
on measures simply does not exist. However, we do not expect to observe this
incompleteness for the kind of loops typically found in low-level system code.

Weakest preconditions of measure assertions Algorithm HeapInfer depends on
an oracle wp that computes the weakest precondition for a measure assertion and
a heap program. We propose a simple solution for implementing this oracle.

Note that measure assertions are closed under weakest preconditions for loop
free heap programs. In fact, we can use the update functions from Figure 4 to
compute weakest preconditions for finite sequences of transitions. Assume that
the current counterexample path π in the refinement loop is of the form

st1 . . . stm−1.(stm . . . stn)ω .

If the algorithm attempts to strengthen the precondition using some guard grd i

from a transition of the loop segment (stm . . . stn), then we update precondition
pre as follows:

pre := widen(pre ∧ wp(st1, . . . , sti−1,¬grd i)) .

The operator widen is a widening operator on measure assertions. widen(F) looks
for conjuncts of the form C(x.ni), C(x.ni+1), . . . in F and replaces them by an
“infinite” conjunction

∀j ≥ 0 : C(x.ni+j) .

Note that this is not to be confused with narrowing which is over-approximation
of a greatest fixed-point. Here we under-approximate a greatest fixed-point. Sec-
tion 5 provides an example where widening is needed to ensure termination of
algorithm HeapInfer with the above implementation of oracle wp.

If one uses update expressions of measures to compute weakest preconditions
then the only nondeterministic updates that affect weakest precondition com-
putation are those that come from the translation of new statements. We use a
very simple quantifier elimination procedure to eliminate the resulting universal
quantifiers in weakest preconditions.

5 Examples

We will now execute the algorithm HeapInfer on four instructive examples.
These examples are inspired by typical code fragments found in low-level system
code, such as the one discussed in Section 2. To clarify the presentation, we
represent programs in structured pseudo code and use assume statements to
represent guards of transitions and preconditions within programs. We further
omit the non-deterministic updates of untracked measures in measure programs.

13

Example 1: Traverse We first execute the algorithm on program Traverse

shown on the left hand side of Figure 5. We choose to only track measure m(p, q).
Executing line 3 in the algorithm yields the measure program Pm shown on the
right hand side of Figure 5. Program Pm does not always terminate. Let us
assume that the non-deterministic choice in line 7 of the algorithm HeapInfer

selects the infinite trace stem.(loop)ω that repeatedly executes the loop body
according to case 1. We use the notation empty.(ℓ[1])ω to refer to this infinite
trace. The stem is empty, and the loop consists of the statement

loop ≡ assume(m(p, q) = ∞);
m(p, q) := ∞;

There is only one position to choose in line 8 of the algorithm, namely, the one
associated with location ℓ and guard m(p, q) = ∞. As an assertion on states of
program Traverse, this guard means that q is not reachable from p. Obviously,
the negated guard m(p, q) < ∞ is not an invariant of program Traverse at
location ℓ. This means that the condition in line 9/10 does not hold. In this
case, the weakest precondition of the stem wpstem(m(p, q) < ∞) is again the
assertion m(p, q) < ∞. Thus, line 15 sets pre to m(p, q) < ∞.

One might expect that under the precondition that q is reachable from p the
program Traverse terminates. HeapInfer finds that it is not sufficient. The
next iteration of the algorithm produces the counterexample ℓ[2.2.1].(ℓ[1])ω. In
this counterexample stem consists of the statement:

ℓ : assume(m(p, q) < ∞);
assume(m(p, q) = 0);
assume(m(p, p.n) = 1);
m(p, q) := m(p.n, q);

The sequence loop is the same as before. We again choose guard m(p, q) = ∞.
Thus, the condition in line 9/10 is again false. The weakest precondition of the
negated guard wpstem(m(p, q) < ∞) is given by

(

m(p, q) < ∞ ∧ m(p, q) = 0 ∧
m(p, p.n) = 1

)

→ m(p.n, q) < ∞

which further simplifies to the assertion

m(p, q) > 0 ∨ m(p, p.n) = 0 ∨ m(p.n, q) < ∞ .

Line 15 updates the precondition pre to:

pre ≡ m(p, q) < ∞ ∧

m(p, q) > 0∨
m(p, p.n) = 0∨
m(p.n, q) < ∞

The new precondition pre means that q is reachable from p and either

– p is different from q

14

ℓ : do

p := p.n;
while p 6= q

ℓ : do

m(p, q) :=
1 m(p, q) = ∞ ⇒ ∞
2 m(p, q) < ∞
2.1 m(p, q) > 0 ⇒ m(p, q) − 1
2.2 m(p, q) = 0
2.2.1 m(p, p.n) = 1 ⇒ m(p.n, q)
2.2.2 m(p, p.n) = 0 ⇒ 0;

while m(p, q) > 0

Fig. 5. Program Traverse and its associated measure program Pm.

– or they are aliased and either
• p has a self-loop
• or p is on a non-trivial cycle

We expect that the program Traverse terminates under the current precon-
dition. Indeed, the termination test of the measure program Pm under the pre-
condition pre succeeds and the algorithm returns that the program terminates
under the precondition pre.

Example 2: DestructTraverse Next, we execute the algorithm on program
DestructTraverse shown in Figure 6. Program DestructTraverse is a
modified version of program Traverse that first performs a destructive update
x.n := y before traversing the list p. We also inserted a precondition that ensures
that p and q are not aliased. We expect that the destructive update affects
the termination behavior of the program. Thus the algorithm should derive a
precondition that differs from the one that was inferred in the previous example.

Again the only tracked measure in our run of the algorithm is m(p, q). Fig-
ure 7 shows the measure program resulting from the translation of program
DestructTraverse. First of all, observe that from the assume statement
assume(m(p, q) > 0) it follows that even after execution of the measure update
for x.n = y the assertion m(p, q) > 0 always holds. Thus, in the following we can
safely ignore all the 2.2 branches in the update of measure m(p, q) in the loop
body.

The first iteration of the algorithm produces the following counterexample
for termination:

(ℓ0, ℓ1[1]).(ℓ2[1])ω .

This counterexample corresponds to the situation where the destructive update
does not affect the path leaving p, but p does not reach q and thus the traversal
of p diverges. This is a real counterexample and hence the safety check for the
negated guard m(p, q) < ∞ of transition ℓ2[1] fails. Therefore, the precondition
pre is set to the weakest precondition of the assertion m(p, q) < ∞ for the stem
(ℓ0, ℓ1[1]):

pre ≡ m(p, q) ≤ m(p, x) → m(p, q) < ∞ .

15

The next iteration of the algorithm produces the counterexample:

(ℓ0, ℓ1[2.2]).(ℓ2[1])ω .

Here we have the situation that p might reach q before the destructive update,
but even if this is the case, x is lying on that path and y (and thus p after
the update) does not reach q. Hence traversing p after the update diverges.
Again, this is a real counterexample. Computing the weakest precondition of
stem (ℓ0, ℓ1[2.2]) for the negated guard of the loop transition ℓ2[1] results in the
assertion:

m(p, q) > m(p, x) → m(y, q) < ∞ .

Thus the precondition pre is updated to:

pre ≡ (m(p, q) ≤ m(p, x) → m(p, q) < ∞) ∧
(m(p, q) > m(p, x) → m(y, q) < ∞) .

The next iteration of the algorithm produces yet another counterexample:

(ℓ0, ℓ1[2.3]).(ℓ2[1])ω .

In this situation p again reaches x before reaching q and, furthermore, y reaches
x before reaching q. Thus the destructive update creates a pan-handle list p that
does not contain q and once more the subsequent traversal of p diverges. The
weakest precondition for the negated loop transition guard m(p, q) < ∞ results
in the assertion:

m(p, q) > m(p, x) → m(y, q) ≤ m(y, x)

and the precondition pre is set to:

pre ≡ (m(p, q) ≤ m(p, x) → m(p, q) < ∞) ∧
(m(p, q) > m(p, x) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, x)) .

The meaning of the precondition is:

– either p reaches q without reaching x first
– or p reaches x, but y reaches q before reaching x.

This precondition guarantees that the transition ℓ2[1] is not enabled, which we
propagate to the measure program by excluding the corresponding transition.
The next iteration of the algorithm proves that the measure program terminates
under precondition pre.

Example 3: SearchDestructTraverse The third example is program SearchDe-

structTraverse given in Figure 8. It is a modification of program Destruc-

tTraverse that first non-deterministically sets x to some address along the
path from p to q before it executes the destructive update x.n := y followed by
a traversal of p to q.

The loop that non-deterministically assigns x always terminates, because p
reaches q according to the assume statement at location ℓ0. However, we need

16

ℓ0 : assume(p 6= q);
ℓ1 : x.n := y;
ℓ2 : do

p := p.n;
while p 6= q

Fig. 6. Program DestructTraverse.

ℓ0 : assume(m(p, q) > 0);
ℓ1 : m(p, q) :=

1 m(p, q) ≤ m(p, x) ⇒ m(p, q)
2 m(p, q) > m(p, x)
2.1 m(y, q) < ∞ ∧

m(y, q) ≤ m(y, x) ⇒ m(p, x) + 1 + m(y, q)
2.2 m(y, q) = ∞ ⇒ ∞
2.3 m(y, q) > m(y, x) ⇒ ∞;

ℓ2 : do

m(p, q) :=
1 m(p, q) = ∞ ⇒ ∞
2 m(p, q) < ∞
2.1 m(p, q) > 0 ⇒ m(p, q) − 1
2.2 m(p, q) = 0
2.2.1 m(p, p.n) = 1 ⇒ m(p.n, q)
2.2.2 m(p, p.n) = 0 ⇒ 0;

while m(p, q) > 0

Fig. 7. Measure program Pm for DestructTraverse.

to track the measure m(x, q) in order to avoid that the algorithm infers false as
the only precondition (computing the weakest precondition for the negated loop
condition and the stem (ℓ0, ℓ1) and conjoining it with the assume statement gives
false). For our convenience we will track m(x, q) only until the end of the search
loop. The measure program resulting from the translation is shown in Figure 9.

The search loop can be proved terminating immediately. However, the rest
of the program behaves essentially in the same way as the previous example. If
we only consider counterexamples that exit the search loop immediately using
the break statement and then diverge in the traverse loop, then we compute the
precondition:

(m(p, q) > 0 → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p)) .

If we further consider counterexamples that iterate through the search loop at
most twice, then we get the partial precondition:

(m(p, q) > m(p, p) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p)) ∧
(m(p, q) > m(p, p.n) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p.n))

17

and counterexamples with up to three iterations gives us:

(m(p, q) > m(p, p) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p)) ∧
(m(p, q) > m(p, p.n) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p.n)) ∧
(m(p, q) > m(p, p.n2) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p.n2)) .

At this point the widening operator fires and produces the precondition pre:

∀i : m(p, q) > m(p, p.ni) → m(y, q) < ∞ ∧ m(y, q) ≤ m(y, p.ni)

This assertion expresses the fact that the list starting from y reaches q, but is
disjoint from the list that goes from p to q, i,e. the sharing point where the path
from p to q and the path from y to q meet is q itself. Under this precondition
the negated guard of ℓ4[1] is an invariant. This allows us to prove termination
of the measure program.

ℓ0 : assume(p 6= q ∧ q ∈ p.n∗);
ℓ1 : x := p;
ℓ2 : while x 6= q do

ℓ2,0 : if ∗ then break;
ℓ2,1 : x := x.n;
od

ℓ3 : x.n := y;
ℓ4 : do

p := p.n;
while p 6= q

Fig. 8. Program SearchDestructTraverse.

Example 4: CreateSearchDestructTraverse Finally, we discuss a pro-
gram CreateSearchDestructTraverse, which is found in Figure 10. This
program is as the previous example with the exception that the required precon-
dition for termination: “the list from p to q is disjoint from the list that goes from
y to q” is ensured by explicitly creating a fresh list from p to q. Thus program
CreateSearchDestructTraverse always terminates.

If we execute the algorithm on this example (provided we choose the right
measures for the create loop) then it returns precondition true after only two it-
erations. In the first iteration all counterexamples are of the form stem.(ℓ4[1])ω.
The safety check proves that the negated guard of the transition ℓ4[1] is an in-
variant. Inserting the corresponding assume statement into the measure program
excludes all infinite computations. Thus, in the second iteration the algorithm
proves termination of the measure program under precondition true.

6 Soundness

In the following we prove that our algorithm is sound.

18

ℓ0 : assume(0 < m(p, q) < ∞);
ℓ1 : m(x, q) := m(p, q);
ℓ2 : while m(x, q) > 0 do

ℓ2,0 : if ∗ then break;
ℓ2,1 : m(x, q) := m(x, q) − 1;
od

ℓ3 : m(p, q) :=
1 m(p, q) ≤ m(p, x) ⇒ m(p, q)
2 m(p, q) > m(p, x)
2.1 m(y, q) < ∞ ∧

m(y, q) ≤ m(y, x) ⇒ m(p, x) + 1 + m(y, q)
2.2 m(y, q) = ∞ ⇒ ∞
2.3 m(y, q) > m(y, x) ⇒ ∞;

ℓ4 : do

m(p, q) :=
1 m(p, q) = ∞ ⇒ ∞
2 m(p, q) < ∞
2.1 m(p, q) > 0 ⇒ m(p, q) − 1
2.2 m(p, q) = 0
2.2.1 m(p, p.n) = ⇒ m(p.n, q)
2.2.2 m(p, p.n) = 0 ⇒ 0;

while m(p, q) > 0

Fig. 9. Measure program Pm for SearchDestructTraverse.

ℓ0 : assume(p = q ∧ q ∈ y.n∗);
ℓ1 : do

ℓ1,0 : new(x);
ℓ1,1 : x.n := p;
ℓ1,2 : p := x;
ℓ1,3 : k := k − 1;
while k > 0

ℓ2 : while x 6= q do

ℓ2,0 : if ∗ then break;
ℓ2,1 : x := x.n;
od

ℓ3 : x.n := y;
ℓ4 : do

p := p.n;
while p 6= q

Fig. 10. Program CreateSearchDestructTraverse.

19

Proposition 1. Let F be a measure assertion and let sh and sm be states of
a heap, respectively a measure program. If sh and sm agree on the values of all
measures occurring in F then

sh |= F ⇐⇒ sm |= F .

Proposition 2. The translation of guards from heap to measure programs is
correct: let F be a guard in a heap program and let sh be a state of a heap then

sh |= F ⇐⇒ sh |= trlG(F) .

Proof Proof by structural induction on F . If F is of the form e1 = e2 then we
have: sh |= e1 = e2 iff the length of the maximal n-path between e1 and e2 is 0
iff sh |= m(e1, e2) = 0 iff sh |= trlG(F). All other cases are trivial.

Proposition 3. The translation of update operations from heap to measure pro-
grams is correct. Let τ be a transition in a heap program for some update op-
eration op and let s, s′ be states such that s′ ∈ post(τ, s) then we have for all
measures m(e1, e2)

either mop(e1, e2) = ∗ or eval(m(e1, e2), s
′) = eval(mop(e1, e2), s) .

Proof Sketch We need to prove that for all update operations op and measures
m(z.ni, w.nj) all the guarded update expressions defined by mop(z.ni, w.nj) are
correct. The proof is quite long. We restrict ourselves to the most interesting
case, namely where op is a destructive update of the form x.n := y.

We prove by induction on l
def

= i + j that for all i, j ∈ N

eval(m(z.ni, w.nj), s′) = eval(mop(z.ni, w.nj), s) .

Let l = 0 then the third case in the definition of mop(z.ni, w.nj) applies. Assume
that s satisfies m(z, w) ≤ m(z, x). Then either (a) m(z, w) = m(z, x) = ∞ or
(b) m(z, w) < ∞ ∧ m(z, w) ≤ m(z, x). In case (a) z has no outgoing path to w
and no outgoing path to x, thus no new path from z to w is created in s′ and
therefore

eval(m(z, w), s′) = eval(mop(z, w), s′) = ∞ .

In case (b) z has a path to w, but x is not lying on that path (though x and w
might be aliased). Thus, the destructive update of x.n does not affect the path
from z to w and hence

eval(m(z, w), s′) = eval(mop(z, w), s) = eval(m(z, w), s) .

Now assume that s satisfies m(z, w) > m(z, x) and furthermore

m(y, w) < ∞ ∧ m(y, w) ≤ m(y, x) .

In this case there is a path from z to w in s, but x lies on that path and x has
no alias with w. Furthermore, there is a path from y to w and x is not lying on

20

that path. Thus in s′ there is a new path created from z over x and y to w and
the minimal length of that path is m(z, x) + 1 + m(y, w) (the 1 comes from the
fact that x 6= w), i.e.

eval(m(z, w), s′)= eval(mop(z, w), s)
= eval(m(z, x) + 1 + m(y, w), s) .

Finally assume that s satisfies m(z, w) > m(z, x) and

m(y, w) = ∞∨ m(y, w) > m(y, x) .

In this case again there is a path from z to w in s, x lies on that path, and x
has no alias with w. Furthermore either there is no path from y to w in s or, if
it exists, x is again lying on that path. Thus the path from z to w is destroyed
in s′ and therefore:

eval(m(z, w), s′) = eval(mop(z, w), s) = ∞ .

Now let l > 0. First lets assume that i > 0 and s satisfies m(z, x) = k for some
k < i. Then x = z.nk and x 6= z.nl for all l < k. Then we know that state s′

satisfies z.nk+1 = y and thus we have by induction hypothesis

eval(m(z.ni, w.nj), s′) = eval(mop(y.ni−k−1, w.nj), s) .

The case for j > 0 where s satisfies m(w, x) = k for some k < j is analogous to
the previous case and the third case is again analogous to the base case of the
induction.

Proposition 4. The measure program Pm = Translate(Ph) simulates the heap
program Ph, formally: let σH = s0, τ0, s1, τ1, . . . be a computation of program Ph

then there exists a computation σM = s′0, τ
′

0, s
′

1, τ
′

1, . . . of program Pm such that
for all i states si and s′i agree on the values of all measures.

Proof For all i define s′i as the state of the measure program that agrees with
si on the values of all measures. Now choose any two consecutive states si and
si+1 in σH . Let τi = (ℓ, grd , op, ℓ′). From Prop. 2 and si |= grd it follows that
s′i |= trlG(grd). If operation op is an assert statement assert(g) then si = si+1

and hence s′i = s′i+1. Furthermore, by Prop. 2, si |= g implies s′i |= trlG(g). Thus
define τ ′

i = (ℓ, trlG(grd), assert(trlG(g)), ℓ′) and we have s′i+1 ∈ post(τi, s
′

i).
If on the other hand op is an update operation then by Prop. 3 we know that

for all measures m(e1, e2) we have

either mop(e1, e2) = ∗
or eval(m(e1, e2), si+1) = eval(mop(e1, e2), si) .

Thus for all tracked measures m(e1, e2) with mop(e1, e2) 6= ∗ we have

eval(m(e1, e2), s
′

i+1) = eval(mop(e1, e2), s
′

i) .

21

Consequently there is some transition τ ′ in the bifurcation of (ℓ, trlG(grd), trlO(op), ℓ′)
such that s′i+1 ∈ post(τ ′, s′i). Choose such τ ′ and define τ ′

i = τ ′.

We can conclude that for all i ∈ N we have s′i+1 ∈ post(τi, s
′

i), i.e. the
sequence

σM
def

= s′0, τ
′

0, s
′

1, τ
′

1, . . .

is a computation of the measure program.

Lemma 1. At the beginning of every iteration of the algorithm the measure
program Pm simulates the program Ph restricted to traces that satisfy the current
precondition pre.

Proof Proof by induction on the number of iterations. In the first iteration the
claim follows from Prop. 4. In any later iteration let P 0

m and pre0 be the measure
program and precondition at the beginning of the previous iteration of the loop.
Now let σH = s0, τ0, s1, τ1, . . . be a computation of Ph such that s0 satisfies pre.
In the previous iteration either the precondition pre0 was strengthened or an
assume statement was inserted into program P 0

m. In any case s0 satisfies pre0 and
thus by induction hypothesis there exists a computation σM = s′0, τ0, s

′

1, τ1, . . . of
program P 0

m such that s′0 satisfies pre0 and for all i states si and s′i agree on the
value of all measures. If the precondition was strengthend, then pre = pre0 ∧ F
for some measure assertion F and Ph = P 0

h . In this case σM is a computation
of Ph and by Prop. 1 s0 |= F implies s′0 |= F and thus s′0 satisfies the new
precondition pre.

If on the other hand program P 0
m was modified then pre = pre0. Let ℓ be

the program location with the modification and let assume(F) be the inserted
assume statement. Now define a new sequence σ′

M by replacing all transitions
τ ′

i = (ℓ, grd , op, ℓ′) in σM by transitions (ℓ, grd ∧ F, op, ℓ′). Since F is an invariant
of Ph at location ℓ all states si with si(pc) = ℓ satisfy F . Thus by proposition
Prop. 1 all states s′i at location ℓ satisfy F and therefore σ′

M is a computation
of program Pm.

Theorem 1 (Soundness). Given a heap program Ph, if the algorithm returns
a precondition pre then program Ph terminates under precondition pre.

Proof From Lemma 1 it follows that in the final iteration of the algorithm every
computation of program Ph that satisfies precondition pre has a counterpart
in the measure program Pm. Thus termination of Pm under precondition pre

implies termination of Ph under precondition pre.

Completeness We will now give a characterization of a subclass of heap programs
for which the algorithm is not only sound, but also complete. Intuitively, in the
subclass of regular heap programs the termination of a computation depends
solely on the shape of its states, i.e. on the truth value of measure assertions
(“shape-compatible computations are termination-equivalent”).

22

Definition 1. A heap program Ph is regular if every computation σ of Ph that
is shape-compatible with a non-terminating computation (stm, ..., stn)ω of the
measure program Pm is non-terminating itself. Here shape-compatible formally
means that for every statement sti (with location ℓi and guard grd i) on the loop
(i.e., for i = m, . . . , n), the computation σ reaches a state at the location ℓi

satisfying the measure assertion grd i.

The next statement assumes perfect oracles for “terminates”, “is safe” and
the weakest precondition operator wp.

Proposition 5 (Completeness). Applied to a regular program, the algorithm
excludes no terminating computation, i.e., for every terminating computation
σ there is one of the preconditions pre produced by the algorithm such that σ
satisfies pre.

Proof Given a finite computation σ of the heap program Ph, we will show that
in each iteration of the algorithm, when the algorithm has chosen an infinite
computation of the measure program, say st1 . . . stm−1.(stm . . . stn)ω, there ex-
ists a choice of a position i on the loop (i.e., between m and n), such that σ
satisfies the conjunct that is added to the precondition pre in that iteration. By
the assumption that Ph is regular, there exists a location ℓi (for some i between
m and n) such that σ never reaches ℓi in a state that satisfies grd i. Let the
algorithm choose the corresponding position i on the loop. Thus the conjunct
added to pre is of the form wp(at ℓi → ¬grd i). The computation σ satisfies this
conjunct since (at ℓi → ¬grd i) is an invariant of σ.

Progress and Termination In Section 4 we gave a very abstract version of the
algorithm that does not put any restriction on how non-deterministic choices
of counterexamples and guards are made and how backtracking is done, once a
valid precondition has been derived. As a consequence, algorithm HeapInfer

is not guaranteed to terminate. In the following we give sufficient restrictions
on the possibilities for backtracking such that the algorithm always terminates
(again under the assumption of perfect oracles for checking termination, safety,
and computing wp).

Proposition 6 (Progress). If an infinite trace of the measure program is cho-
sen as a counterexample to termination in an iteration of the refinement loop,
then the counterexample is eliminated eventually (within a finite number of iter-
ations of the repeat loop of the algorithm).

Proof The proof closely follows the discussion in Section 4.

In fact we know more. Namely: if a guard grd at some program location ℓ is
chosen in an iteration of the refinement loop, then all infinite computations in
the measure program that have a state satisfying grd at location ℓ are eventually
eliminated.

Proposition 7. The iterative refinement of the precondition pre terminates for
each sequence of choices for the guards grd made in the refinement loop.

23

Proof In each iteration of the refinement loop one guard grd is chosen. The
progress property guarantees that all infinite computations that have states sat-
isfying grd are eventually eliminated in some later iteration of the refinement
loop. If all guards are disabled then there are no infinite computations. Since the
number of guards grd is finite, eventually all infinite comptations are eliminated.
Thus the iterative refinement of precondition pre terminates for each sequence
of choices for the guards.

Proposition 8 (Termination). The algorithm HeapInfer terminates pro-
ducing a set of preconditions that ensure termination of the input program if
the backtracking points for non-deterministic choices in the refinement loop are
restricted in the following way: each time a valid precondition has been derived,
the algorithm backtracks to the earliest iteration of the algorithm where a differ-
ent guard can be chosen. If no such backtracking point exists then the algorithm
stops.

Proof In each iteration of the algorithm where all choices of guards in iterations
of smaller depth have been made, there exists only a finite number of sequences
of possible choices for the remaining guards. By Proposition 7 the iterative re-
finement of precondition pre with any such sequence of choices for the guards
terminates. Thus algorithm HeapInfer terminates with this backtracking strat-
egy producing a finite set of valid preconditions that ensure termination of the
input heap program.

Note that the restriction on the backtracking points made in Proposition 8
has no effect on the completeness of the algorithm for regular programs that we
obtained above.

7 Multi-linked data structures

We show how our algorithm presented in Section 4 can infer preconditions for
termination of programs that manipulate multi-linked heaps. We use an illus-
trative example, and highlight the issues that arise from the multi-linked setup.

We consider the program BothEnds shown in Figure 11. We refine our
notion of measure to account for different links. We extend measures to triples
whose first component is the name of a linking field. Such extended measure, say
m(l, e1, e2), denotes the length of the l-path similarly to the definition of measure
in Section 3. In our example, we consider measures m(n, x, y) and m(p, y, x) that
yield the measure program shown on the right hand side of Figure 11. The
translation into measure program is a straightforward extension of the singly-
linked case. We make the link name explicit, and treat different links in isolation.
That is, update expressions for the link n are oblivious to the existence of the
link p, and vica versa.

24

ℓ0 : while x 6= y do

if ∗ then

x := x.n;
else

y := y.p;
od

ℓ0 : while m(n, x, y) 6= 0 do

if ∗ then

ℓ1 : m(n, x, y) :=
1 m(n, x, y) = ∞ ⇒ ∞
2 m(n, x, y) < ∞
2.1 m(n, x, y) > 0 ⇒ m(n, x, y) − 1
2.2 m(n, x, y) = 0
2.2.1 m(n, x, x.n) = 1 ⇒ m(n, x.n, y)
2.2.2 m(n, x, x.n) = 0 0
ℓ2 : m(p, y, x) := m(p, y, x.n)

else

ℓ3 : m(n, x, y) := m(p, x, y.p)
ℓ4 : m(p, y, x) :=
1 m(p, y, x) = ∞ ⇒ ∞
2 m(p, y, x) < ∞
2.1 m(p, y, x) > 0 ⇒ m(p, y, x) − 1
2.2 m(p, y, x) = 0
2.2.1 m(p, y, y.p) = 1 ⇒ m(p, y.p, y)
2.2.2 m(p, y, y.p) = 0 ⇒ 0
od

Fig. 11. Program BothEnds and the associated measure program.

Our algorithm proceeds as outlined in Section 4. After five iterations, it infers
the precondition

m(n, x, y) > 0 → m(n, x, y) < ∞ ∧

m(n, x, y) > 1 → m(n, x, y.p) < ∞ ∧

∀i : m(n, x, y) > i → m(p, y, x.ni) < ∞ ∧

m(n, x, y) > 2 → m(n, x, y.p.p) < ∞ .

After applying widening, which is triggered by the chains 0, 1, 2 and y, y.p, y.p.p,
we report

pre ≡ ∀i : m(n, x, y) > i → m(p, y, x.ni) < ∞ ∧

∀i : m(n, x, y) > i → m(n, x, y.pi) < ∞ .

This precondition requires that y is reachable from x following the link n, and
all nodes on the n-path between x and y are reachable from y by traversing the
link p. That is, we have a doubly-linked list between x and y.

8 Implementation and experiments

We developed a prototype implementation, called Bouncer, of our algorithm
for the demand-driven inference of heap assumptions. We applied Bouncer to
the example programs in Section 5 and a scheduling routine from the VAMOS

kernel [17]. In the following, we present a brief overview of Bouncer.

25

Bouncer applies the Bohne tool for symbolic shape analysis [23] to im-
plement the oracle that checks assertion validity of heap programs [19, 22]. For
proving termination of measure programs, Bouncer applies the ARMC tool
for proving termination of transition relations in linear arithmetic [18, 20]. The
oracle for wp uses widening, as described in Section 4.

We model the value ∞ in our translation to a measure program by a neg-
ative integer constant, say c. Our translation rewrites each measure expression
according to the following rules:

mexp = ∞ −→ mexp = c,

mexp ≤ ∞ −→ mexp = c ∨ mexp ≥ 0,

mexp < ∞ −→ mexp ≥ 0.

Thus, we can apply a termination checker for programs over numerical domains
as black-box.

While our implementation is preliminary, we observe that the behavior of
the algorithm with respect to the number of applied measures is similar to the
behavior of algorithms for predicate abstraction with respect to the number of
predicates. We believe that using measures locally, in a way similar to localized
abstraction [14], can make our tool scale to larger programs.

Our experiments with process scheduling functions from the VAMOS ker-
nel show that Bouncer can successfully infer preconditions for termination for
interesting practical programs. In the current implementation, we had to manu-
ally abstract all non-heap operations by non-deterministic choice. The inferred
preconditions are in agreement with the preconditions provided manually by the
VAMOS developers.

9 Conclusion

The contribution of this paper is to present the (to our knowledge first) algorithm
to infer heap assumptions, i.e., preconditions on the shape of states for which
the computation of the given heap-manipulating program terminates, and to
investigate the theoretical basis of the algorithm and its practical potential.
A number of ideas and concepts have flown into the algorithm; their fruitful
combination may be of independent interest:

– Reasoning over a program with pointer variables can be delegated to reason-
ing over a ‘shape-free’ program whose first version is obtained by a syntax
translation (i.e., without shape analysis or any other reasoning procedure
over pointers) and whose subsequent versions are obtained by applying shape
analysis selectively (i.e., in order to recover the originally incurred loss of
precision where (and when) needed).

– The ‘computation’ of the new abstraction after each refinement step can
be implemented by a source-to-source transformation, more specifically by
inserting an assume statement (in contrast with the calls to a theorem prover
for the re-computation of the abstract transformer, in the setting of predicate
abstraction)

26

– Abstraction refinement can take place by plainly making explicit in the ab-
stract program (by inserting an assume statement) what has been found to
be implicit in the concrete program (by proving an invariant).

– By choosing the appropriate notion of ‘shape-free’ programs for the abstrac-
tion of program over pointer variables, one can apply the syntactically same
assertion to states of either kind of programs and use it to formulate an
invariant and an assume statement in the one and the other.

– A counterexample of the abstract program can be eliminated in the most
direct way by the insertion of an assume statement blocking the one branch
(in a non-deterministic choice) that was taken by the counterexample.

– The basic principle of eliminating counterexamples in counterexample-guided
abstraction refinement can be extended from spurious counterexample to
general counterexamples (spurious or not) in order to obtain an analogous
notion of counterexample-guided precondition refinement.

Future work may be to infer combined, heap-and -integer assumptions (such
as: “the input of a procedure must be a cyclic list of length strictly greater than
parameter sz”), and to investigate the computation of alias assumptions from
measure programs (based on the fact that aliasing is a special case of a measure
assertion).

Acknowledgments. Andrey Rybalchenko is supported in part by Microsoft Re-
search through the European Fellowship Programme. Thomas Wies is supported
by a Microsoft Research European PhD Scholarship.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. In CAV, 2007.

2. J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. In CAV, 2006.

3. D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In CAV, 2006.
4. I. Bogudlov, T. Lev-Ami, T. W. Reps, and M. Sagiv. Revamping TVLA: Making

parametric shape analysis competitive. In CAV, 2007.
5. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs

with lists are counter automata. In CAV, 2006.
6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular tree

model checking of complex dynamic data structures. In SAS, 2006.
7. A. Bradley, Z. Manna, and H. Sipma. The polyranking principle. In ICALP, 2005.
8. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Footprint analysis: A shape

analysis that discovers preconditions. In SAS, 2007.
9. M. Colón and H. Sipma. Practical methods for proving program termination. In

CAV, 2002.
10. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.

In PLDI, 2006.
11. P. Cousot. Proving program invariance and termination by parametric abstraction,

Lagrangian relaxation and semidefinite programming. In VMCAI, 2005.

27

12. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS, 2006.

13. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
POPL, 2005.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, 2004.

15. S. Magill, J. Berdine, E. M. Clarke, and B. Cook. Arithmetic strengthening for
shape analysis. In SAS, 2007.

16. P. Manolios and D. Vroon. Termination analysis with calling context graphs. In
CAV, 2006.

17. S. Maus. Developing an Operating System Kernel for the VAMP Processor.
Diploma thesis, Universität des Saarlandes, 2005.

18. A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model
checking with abstraction refinement. In PADL, 2007.

19. A. Podelski and T. Wies. Boolean heaps. In SAS, 2005.
20. A. Rybalchenko. ARMC. http://www.mpi-sws.org/∼rybal/armc/, 2008.
21. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM TOPLAS, 2002.
22. T. Wies. Symbolic Shape Analysis. Diploma thesis, Universität des Saarlandes,

Germany, 2004.
23. T. Wies. The Bohne Tool. http://swt.informatik.uni-freiburg.de/wies/bohne,

2008.
24. T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. Rinard. Verifying complex

properties using symbolic shape analysis. In HAV Workshop, 2007.

28

