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Abstract. Termination of a heap-manipulating program generally depends on
preconditions that expressheap assumptions(i.e., assertions describing reach-
ability, aliasing, separation and sharing in the heap). We present an algorithm
for the inference of such preconditions. The algorithm exploits a unique inter-
play between counterexample-producing abstract termination checkerand shape
analysis. The shape analysis produces heap assumptions on demand toeliminate
counterexamples, i.e., non-terminating abstract computations. The experiments
with our prototype implementation indicate its practical potential.

1 Introduction

Heap-manipulating programs are prone to termination errors [2]. Manually inferring
preconditions that exclude such errors is both tedious and hard, since the termination
reasoning must involve theshapeof the heap (we use the term shape in the broad sense
to describe how heap locations and heap regions are aliased,inter-reachable, separated,
and shared). In this paper, we present an algorithm HEAPINFER that automates this
inference process. Given a heap-manipulating program, ouralgorithm computes a set
of conditions on the shape of initial states, e.g., at the entry point of a given code frag-
ment, that lead to terminating computations. We identify a class ofregularprograms for
which the algorithm HEAPINFER is complete. An evaluation on characteristic examples
practically demonstrates that the inferred preconditionsare sufficiently weak.

Our algorithm iteratively applies a termination analysis to a ‘shape-free’ abstrac-
tion of the program. HEAPINFER avoids invocation of shape analysis until it finds a
counterexample in the form of a non-terminating abstract computation, i.e., it applies
shape analysis on demand. The shape analysis produces aheap assumption, which is
an assertion describing the heap shape. This assumption refines either the abstraction
or the precondition. As the result, the refinement step eliminates the counterexample.
Thus, we obtain an iterative refinement scheme that applies counterexamples to guide
the refinement of abstractions and preconditions.

The ‘shape-free’ abstraction and the demand-driven application of shape analysis
rely on several specifics of termination proofs. A termination analysis synthesizes ter-
mination arguments in the form of ranking functions (whenever possible). To define a
ranking function directly on heaps does not seem appropriate. The notion of a rank is
intimately related to numbers. Thus, an intermediate step of our algorithm is to trans-
late the input program over pointer variables, aheap programPH, into a program over
integer variables, which we call ameasure programPM . This translation step from heap
to measure programs represents a low-cost and coarse ‘shape-free’ abstraction.



The algorithm HEAPINFERapplies a termination analysis toPM at the next step. We
obtain either a termination proof forPM and, hence, also forPH, or a counterexample,
i.e., an infinite trace ofPM . In general, the attempt to find a termination proof forPM

fails. This is not surprising as weexpectthat a termination proof must involve some
amount of information that onlyshape analysiscan compute. Shape analysis is noto-
riously expensive, however. Hence, our algorithm calls a shape analysis on demand,
i.e., for a specific, isolated task: to check the validity of an invariant assertion which
is crafted for the counterexample. Recent shape analysis tools can exploit this kind of
specificity by adapting the degree of precision, and thus keeping the practical cost of
shape analysis at a minimum [3, 25]. Furthermore, these tools can efficiently handle
series of analysis requests. They reuse results obtained for previously processed queries
when proving a new assertion, and thus avoid re-computationfrom scratch.

If the shape analysis proves the validity of the invariant assertion by checking a cor-
respondingassertstatement inPH, then HEAPINFER inserts a correspondingassume
statement into the measure programPM . Thus, it will refine the abstraction represented
by PM . The refined version ofPM still represents a sound abstraction ofPH, but the
previously discovered counterexample is no longer feasible in the programPM . The in-
variant assertion, which is crafted to exclude the counterexample ofPM , is an expression
over integer variables. The expression can be evaluated inPM as well as inPH. Thus, it
is meaningful in theassertstatement of the programPH over pointer variables as well
as in theassumestatement in the programPM over integer variables.

In summary, the proposed algorithm HEAPINFER exploits a unique interplay be-
tween failed abstract termination proofs and shape analysis and applies an interleaving
of abstraction and precondition refinement. Thus, we obtainthe (to our knowledge first)
algorithm for the inference of preconditions on the heap shape that guarantee termina-
tion of heap-manipulating programs. The experiments with our prototype implemen-
tation indicate its practical potential. We applied our implementation on characteristic
fragments of heap manipulating programs, see [19], including kernel code from an op-
erating system [17]. The inferred preconditions match the intended calling environment,
and were confirmed as such by the kernel developers.

Related Work.Our work fills a gap between two recent lines of research: termination
proofs under given preconditions (for heap-manipulating programs), and precondition
inference for correctness properties other than termination (memory safety of heap-
manipulating programs and other safety properties). Our algorithm exploits the recent
advances in the respected areas by utilizing the corresponding analyses as subpro-
cedures: shape analysis for heap-manipulating programs and termination analysis of
integer-manipulating programs.

The recent termination analyses for heap manipulating programs, e.g., [2,5], do not
focus on precondition inference, but rather on proving termination under given precon-
ditions. They do not take advantage of lazy reasoning about the heap. Unlike [2], the
present version of our algorithm does not account for memorysafety. It can be extended
to track information related to memory safety by using measures, similarly to [5,15].

The idea of extracting ranking functions from heap-manipulating programs by trans-
lating its statements into updates of integer variables is very natural and is classical by
now. The existing transformations of heap-manipulating programs into programs over
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integer variables in [2, 5] are sophisticated. Each transformation uses a form of shape
analysis as a preliminary step, i.e., before translating toa program over integer variables.
The shape analysis is used to eagerly infer strongest invariants for the whole program,
and is oblivious to the actual proof obligations required for termination reasoning. The
cost of the translation and the size of the resulting programover integer variables de-
pend on the number of shapes computed by the shape analysis. In contrast, our work
aims at minimizing the cost of the shape analysis by using it only for checking specially
crafted assertions. The complexity of the translation stepinto a measure program does
not depend on the number of shapes. It is cubic in the number ofpointer variables and
linear in the number of statements of the heap program.

The recently proposed algorithm for deriving preconditions for memory safety of
list-manipulating programs [8] employs quite different technical concepts. It neither
applies shape analysis lazily, nor infers to preconditionsfor termination.

There is a large amount of related work on shape analysis (thesynthesis of invariant
assertions about the heap). A partial selection of various approaches contains [4, 6, 12,
13,22]. Our algorithm uses shape analysis as a black box. While not requiring and being
dependent on any particular implementation of shape analysis, HEAPINFERcan benefit
from shape analyses that are property-directed, e.g. [3,25].

To the best of our knowledge, our work is the first that appliesshape analysis on
demand for inferring preconditions. A graph-based heap analysis [22] can be lazily
combined with predicate abstraction [14] to improve its precision in proving safety
properties [3].

Our algorithm relies on a termination prover for programs over numerical domains.
There exist several practical methods and tools for provingtermination of such pro-
grams, e.g. [7, 9, 10, 11, 16]. All these tools can be employedby our algorithm (after
adding an extension to produce counterexamples, if necessary).

2 Preconditions for kernel code

A major application area of termination analyses for heap manipulating programs is
low-level operating systems code [1,2]. Often the operating system kernel contains sub-
routines whose termination is an inevitable requirement for ensuring that the operating
system remains responsive.

Figure 1 presents an example of such a subroutine. It shows a fragment of the system
call handlerprocess_kill found in the process scheduler of the operating system
VAMOS [17]. The handler kills the process with the given process ID. The handler
needs to ensure consistency of the process scheduler’s datastructures, e.g.ready list.
The ready list keeps track of all processes that are ready forbeing scheduled. When
a process with identifierprocess is killed, the handler ensures that the process is
removed from the ready list (if it is contained). Furthermore, the maximal priority of the
remaining ready processes is recomputed. The outer loop in the handler code traverses
the ready list until eitherprocess is found orNULL is reached. Ifprocess is found
it is removed from the list. Furthermore, ifprocess has maximal priority, then the
inner loop traverses the ready list once more to compute the new maximal priority of
the remaining ready processes.
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int process_kill(unsigned int pid) {
proc_id = pid & 127u;
process = pid2pcb(proc_id); ...
prev_elem = NULL;
ready_list_elem = ready_list;
while ((ready_list_elem != NULL) && (found == false)) {
proc_id2 = ready_list_elem->pid;
if (proc_id == proc_id2) {

if (prev_elem != NULL)
prev_elem->next = ready_list_elem->next;

else
ready_list = ready_list_elem->next;

ready_list_elem->next = NULL;
if (process->priority == max_prio) {

highest_prio = 0u;
highest_search = ready_list;
while (highest_search != NULL) {

if (highest_search->priority > highest_prio)
highest_prio = highest_search->priority;

highest_search = highest_search->next;
}
max_prio = highest_prio;

} ...
found = true;

}
prev_elem = ready_list_elem;
ready_list_elem = ready_list_elem->next;

} ...
}

Fig. 1. System call handler from the process scheduler of the VAMOS kernel [17].

The execution of the handlerprocess_kill may diverge if we call it from an
arbitrary program state. The termination property of the code depends on the shape of
the ready list. For example, if the ready list is cyclic and does not containprocess
then the outer loop does not terminate.

Our algorithm HEAPINFERautomatically infers the necessary preconditions for ter-
mination:process_kill expects the ready list to be acyclic. At the first inference
step, the algorithm automatically introduces integer variables that measure the length
of paths along pointer fields in the heap. Their value may be infinity, represented by∞,
which indicates that the corresponding path does not exist in the heap. In our exam-
ple, there are three measures that track the length of the paths following thenext
link from (1) ready_list to NULL, (2) ready_list_elem to NULL, and (3)
highest_search toNULL. We refer to these measuresM1, M2, andM3 respectively.

Then, HEAPINFER translates the heap program into a measure program over inte-
gers. For example, the first conjunct in the loop condition ofthe outer loop is translated
to the disequality testM2 6= 0, and the outer loop decrements the measureM2 if its value
is different from∞. Next, the precondition inference process iteratively applies a termi-
nation analysis to the measure program and a shape analysis to the heap program. The
shape analysis is used to derive new facts from the heap program that rule out spurious
non-terminating computations in the measure program. Whenever such a computation
cannot be ruled out, the precondition is strengthened. Boththe precondition and the fact
derived from the heap program are assertions over measures.

In our example, the first termination check on the measure program fails. As a coun-
terexample, it reports an infinite computation in which the measureM2 is initially ∞
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and is never decremented in the outer loop. This is becauseM1 (and thusM2) is initially
unconstrained and might have value∞. This computation is feasible and corresponds
to the infinite traversal of the ready list in case it iscyclic. Consequently, the infer-
ence algorithm strengthens the precondition by the assertion M1 < ∞. This rules out
any infinite iteration of the outer loop in the measure program, and, hence, of the heap
program.

Nevertheless, the next application of the termination analysis fails and produces a
counterexample that infinitely often iterates through the inner loop with the value of
measureM3 being equal to∞. This might come as a surprise, because acyclicity of the
ready list, expressed asM1 < ∞, is preserved by the heap updates in the body of the
outer loop. Thus, the heap program maintainsM3 < ∞ at entry to the inner loop. How-
ever, due to the loss of precision by the measure abstraction, this fact cannot be derived
for the measure program. Now, the inference algorithm applies the shape analysis to
check the validity of the assertionM3 < ∞ at the entry to the inner loop. This assertion
is expressible using a reachability predicate supported bythe shape analysis. The shape
analysis verifies thatM3 < ∞ holds. This fact is propagated to the measure program by
assumingM3 < ∞ at the inner loop entry that, in turn, makes the subsequent termina-
tion check succeed. The inference process stops and reportsthe preconditionM1 < ∞.
It states thatprocess_kill expects an acyclic ready list.

3 Preliminaries

We now provide necessary definitions of heap manipulating programs, their computa-
tions, and properties. To simplify presentation, we restrict ourselves to heap programs
that manipulate singly-linked lists. An extension to multi-linked lists is discussed in the
technical report [19].

Heap programs.We represent aheap programPH by a tuple(V,L, ℓ0, T ). Here,V is
a finite set of program variables. Each variablev ∈ V ranges over a set of memory
addresses.L is a finite set of control locations of the program that includes the initial
locationℓ0. We assume a distinguished program variablepc that ranges over the control
locationsL, and is includes inV . T is a finite set of program transitions. Each transi-
tion τ = (ℓ, grd , op, ℓ′) consists of an entry and exit locationsℓ andℓ′, respectively,
a guardgrd , and operationop. Guards and operations are defined by the following
grammar, wherev ∈ V \ {pc} andn is a data structure link name.

exp ::= v | exp.n

grd ::= true | false | exp = exp | grd ∧ grd | ¬grd

op ::= assert(grd) | v := v | v := v.n | v.n := v | new(v)

A states = (stack , h) of a heap program is a valuation of the program variables
stack together with the heap functionh. The heap functionh is a total function from
addresses to addresses. Functionh models singly-linked data structures manipulated by
the program. Given a variablev ∈ V , we writes(v) for the valuation ofv in the states.
We writes[v 7→ e] to represent a states′ such thats′(v) = e and for eachu ∈ V \ {v}
we haves′(u) = s(u).

Each transitionτ = (ℓ, grd , op, ℓ′) represents a transition relationρτ that contains
pairs of states(s, s′) such thats(pc) = ℓ, s |= grd and the following conditions apply to
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s ands′. If op is an operationassert(grd), we have eithers |= grd ands′ = s[pc 7→ ℓ′],
or s 6|= grd ands′ = s[pc 7→ ℓE ]. For dealing with update operations, we define an
evaluationfunctioneval that computes the value of an expression in a given state.

eval(s, exp)
def

=

(

s(v) if exp = v,

h(eval(s, exp′)) if exp = exp′.n .

For an operation that updates a program variablev := exp, we haves′ = s[pc 7→
ℓ′, v 7→ eval(s, exp)]. In case of heap update operationv.n := exp, we haves′ =
s[pc 7→ ℓ′] and the heap functionh is modified at the addresseval(s, v.n) to map to the
valueeval(s, exp). Finally, if the update operation is an allocation operation new(v)
thens′ = s[pc 7→ ℓ′, v 7→ a] andh is updated toh ∪ {a 7→ a′} wherea /∈ dom(h)
is a fresh address anda′ ∈ dom(h) ∪ {a}. We assume a garbage-collected heap where
we always allocate a fresh address, but we put no constraint on the value of the heap
function for that fresh address. For a states and transitionτ we denote bypost(τ, s)
the set of allτ -successors ofs.

A programcomputationis a (possibly infinite) sequenceσ = s0
τ0→ s1

τ1→ . . . of
states and transitions such thats0(pc) = ℓ0, for each pair of consecutive statessi and
si+1 we havesi+1 ∈ post(τi, si). If σ is finite then for its final state, says, and for each
transitionsτ ∈ T we havepost(τ, s) = ∅.

Measure Programs.A measure is a termM(e1, e2) wheree1 ande2 are expressions. It
denotes the length of the shortest (possibly empty)n-path in the heap from the address
denoted bye1 to the address denoted bye2, and∞ if such a path does not exist.

We extend the evaluation functioneval from expressions to measures as follows:

eval(s, M(e1, e2))
def

=

(

∞ if for all i ∈ N : s |= e1.n
i 6= e2

min{ i ∈ N | s |= e1.n
i = e2 } otherwise.

Measure assertions are defined by the following grammar:

rel ::= < | > | ≤ | ≥ | =

const ::= 0 | 1 | 2 | · · · | ∞

mexp ::= const | M(exp, exp) | mexp + mexp | mexp − mexp

atom ::= true | false | mexp rel mexp

assn ::= atom | ¬assn | assn ∧ assn

A measure programPM = (M,L, ℓ0, T ) is a program whose program variablesM
are the set of all measures. The set of locationsL, and initial locationℓ0 are as for
heap programs. A state of a measure program is a valuation of the pc together with
valuations of all measures. Transitions of measure programs are guarded by measure
assertions and perform simultaneous updates of all measures. Updates of measures are
expressed in terms of measure expressionsmexp.

Memory safety.The totality of heap functionh implies that in a heap programP there
exists no computation that can fail because of memory manipulation error, i.e.,P is
memory safe. This assumption simplifies the presentation ofour ‘shape-free’ abstrac-
tion of heap programs, and can be easily avoided in practice by using measures for
proving memory safety.
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input
PH: heap program
M : set of tracked measures

vars
PM : measure program
sti : measure statement at locationℓi and with guardguard i

PRE: measure assertion
begin

PM := Translate(M, PH)
PRE:= true

repeat
if PM terminatesthen

return “termination under preconditionPRE”
else

st1 . . . stm−1.(stm . . . stn)ω := choose infinite trace inPM

i := choose position in{m, . . . , n}
if under preconditionPRE, PH ∪ ℓi : assert(¬guard i) is safethen

PM := PM ∪ ℓi : assume(¬guard i)
else

PRE:= PRE∧ wlp(PH, at ℓi → ¬guard i)
done

end.

Fig. 2. Algorithm HEAPINFER for demand-driven inference of heap assumptions. The algorithm
uses three oracles: 1) the termination test on a measure program, 2) the safety check on theinput
heap program strengthened by a measure assertion, and 3) the weakest-precondition operator on
measure assertions for the input heap program.

4 Algorithm

We present our algorithm HEAPINFER for the automatic inference of heap assumptions
for termination in Figure 2. It takes as input a heap programPH and a set of measures
to be tracked for proving termination ofPH. The output of the algorithm is a set of
preconditions that guarantee termination of the input heapprogram.

HEAPINFER executes in two phases: the translation of the heap program into a
measure program that simulates the heap program, and a counterexample-guided refine-
ment. The refinement phase iteratively derives two kinds of new facts. First, it computes
invariants of the heap program that eliminate spurious non-terminating computations in
the measure program. Second, it infers preconditions that exclude feasible infinite com-
putations in the heap program. In the following we describe the two phases of HEAP-
INFER in more details. Section 5 supports this description with illustrative examples.

Translation.Figure 3 presents the functionTranslate that is used in line 1 of HEAP-
INFER to translate a heap programPH into a measure program under a given set of
tracked measuresM . The translation can be seen as a source-to-source transformation.
Each transition of the heap program is translated to a set of transitions in the measure
program. An update operationupd in the heap program is translated to a simultane-
ous update of all measures in the measure program (tracked oruntracked). Tracked
measuresM(e1, e2) are updated according to the update functionMupd(e1, e2), as de-
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PH = (V,L, ℓ0, ℓE , T )

Translate(M, PH) = (M,L, ℓ0, ℓE ,
[

τ∈T

trlT(M, τ))

trlT(M, (ℓ, g, op, ℓ′)) = bifurcate(ℓ, trlG(g), trlO(M, op), ℓ′)

trlG(e1 = e2) = M(e1, e2) = 0

trlG(true) = true

trlG(false) = false

trlG(¬grd) = ¬(trlG(grd))

trlG(grd1 ∧ grd2) = trlG(grd1) ∧ trlG(grd2)

trlO(M, assert(grd)) = assert(trlG(grd))

trlO(M, upd) = [ms := trlU(M, upd ,ms) | ms ∈ M]

trlU(M, upd , M(t1, t2)) =

(

Mupd(t1, t2) if M(t1, t2) ∈ M

∗ otherwise

If op is x := y then

Mop(e1, e2)
def

= M(e1[y/x], e2[y/x])

If op is x := y.n then

Mop(x, x)
def

= 0
Mop(x.ni, x.nj)

def

= Mop(y.ni+1, y.nj+1)
Mop(e, x)

def

=
M(e, y) = ∞ ⇒ M(e, y.n)
M(e, y) < ∞

M(y, y.n) = 1
M(y.n, e) 6= 0 ⇒ M(e, y) + 1
M(y.n, e) = 0 ⇒ 0

M(y, y.n) = 0 ⇒ M(e, y)

Mop(x, e)
def

=
M(y, e) = ∞ ⇒ ∞
M(y, e) < ∞

M(y, e) > 0 ⇒ M(y, e) − 1
M(y, e) = 0

M(y, y.n) = 1 ⇒ M(y.n, e)
M(y, y.n) = 0 ⇒ 0

Mop(x.ni, e)
def

= Mop(y.ni+1, e)
Mop(e, x.ni)

def

= Mop(e, y.ni+1)
Mop(e1, e2)

def

= M(e1, e2)

If op is x.n := y then
let e1 = z.ni ande2 = w.nj

Mop(e1, e2)
def

=
i > 0 ∧ M(z, x) = k ∧ k < i ⇒

Mop(y.ni−k−1, e2)
j > 0 ∧ M(w, x) = k ∧ k < j ⇒

Mop(e1, y.nj−k−1)
(i > 0 → M(z, x) ≥ M(z, e1)) ∧
(j > 0 → M(w, x) ≥ M(w, e2))

M(e1, e2) ≤ M(e1, x) ⇒ M(e1, e2)
M(e1, e2) > M(e1, x)

M(y, e2) < ∞ ∧ M(y, e2) ≤ M(y, x) ⇒
M(e1, x) + 1 + M(y, e2)

M(y, e2) = ∞∨ M(y, e2) > M(y, x) ⇒ ∞

If op is new(x) then

Mop(x, x)
def

= 0
Mop(e, x)

def

= ∞
Mop(x, e)

def

= k, k ∈ N
+ ∪ {∞}

Mop(e, x.ni)
def

= ∗
Mop(x.ni, e)

def

= ∗
Mop(e1, e2)

def

= M(e1, e2)

Fig. 3. Translation of a heap program to a measure program. We use∗ to denote a non-
deterministically chosen element fromN ∪ {∞}. Here,bifurcate creates a set of transitions for
each choice of measure updates,trlT, trlG, trlO, andtrlU translate transitions, guards, operations
and updates, respectively.
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fined in Figure 3, while untracked measures are non-deterministically assigned a value
from N ∪ {∞}.

The rules in Figure 3 defining the update functions should be read in the top-down
way. The rule that matches first is applied. We only provide a detailed description for
the translation of heap updatesx.n := y and omit other cases for brevity. Such heap
updates are translated into updates of measures of the formM(z.ni, w.nj). Since the
heap functionn occurs in the subexpressionsz.ni andw.nj of the measure, the trans-
lation needs to take into account the effect of the heap update to the denotation of these
subexpressions. The first two cases apply the rule recursively until x does neither occur
on the path fromz to z.ni nor on the path fromw to w.nj . Thus, eventually the third
case applies. It is divided into three subcases. The first subcase handles the situation
whenx does not occur on the path fromz.ni to w.nj . Here, the measure remains un-
changed. The second subcase deals with the situation whenx is reachable fromz.ni and
the update introduces a new path fromz.ni to w.nj via x andy. Finally, the third sub-
case accounts for the update eliminating any existing pathsbetweenz.ni andw.nj . We
present a soundness proof of the translation in the extendedversion of the paper [19].

Note that the provided updates of measures are precise with the exception of update
expressions for new statements. Here, precision means thatthe evaluation of an update
expressionMop(e1, e2) in a given states determines the value ofM(e1, e2) in the post
state ofs under operationop. Update expressions of new statements are not precise in
this sense, because new statements translate into nondeterministic updates.

Each of the update functionsMupd(e1, e2) defines a set of guarded update expres-
sions of the formgrd ⇒ exp with the following meaning. Ifgrd is satisfied in the
current state of the measure program then the next value of measureM(e1, e2) is deter-
mined byexp.

Finally, the functionbifurcate transforms a single transition with guarded update
expressions for each tracked measure into a set of transitions. Each of the resulting
transitions corresponds to one possible choice of picking one of the guarded update
expressions per tracked measure. The guard of each resulting transition is the translated
guard of the original transition in the heap program conjoined with the guards of the
chosen guarded update expressions.

Choosing measures to track.We determine the set of tracked measuresM using a sim-
ple heuristic. Initially, we consider measures that are required for the precise translation
of loop conditions. During the translation, additional measures are lazily taken into con-
sideration if they occur in updates of existing tracked measures according to Figure 3.
To ensure that the setM remains finite we only track measures of the formM(x, y)
wherex andy are program variables. Note that the precision of the inference algorithm
is monotonic with respect toM , i.e., adding more measures to the set will result in
weaker preconditions.

Refinement loop.The core of algorithm HEAPINFER is its counterexample-guided re-
finement loop. In each iteration of the algorithm a termination checker is applied to
check whether the measure program terminates under currentpreconditionPRE. If the
termination check succeeds then HEAPINFER stops and guarantees that the heap pro-
gram is guaranteed to terminate underPRE. Otherwise, there exists a non-terminating
computation in the measure program. The algorithm non-deterministically chooses one
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of these computations:st1 . . . stm−1.(stm . . . stn)ω. Now there are two possible cases.
First, the selected computation is spurious,i.e., there is no corresponding computation
in the heap program. Second, the computation is feasible in the heap program. To deter-
mine whether the counterexample is feasible, the algorithmchooses a guardgrd i from
the loop segment(stm . . . stn). Then, a safety checker is called to verify whether the
negation ofgrd i is an invariant of the heap program at locationℓi under the current
preconditionPRE.

If this safety check succeeds then we conclude that the foundcounterexample is
spurious. In this case, we strengthen the guards of all transitions that start atℓi in the
measure program using the measure assertion¬grd i, and hence eliminate the coun-
terexample from the measure program.

If the safety check fails, then the counterexample might correspond to a feasible
computation in the heap program (or some other choice ofgrd i will prove its spurious-
ness). The algorithm invokes an oracle that computes the weakest precondition of the
negated guardgrd i and adds it to the current precondition. If the same counterexample
is produced in a later iteration of the refinement loop then the negation of guardgrd i is
an invariant of the heap program at locationℓi under the new precondition. Thus, the
counterexample is eliminated eventually.

If there is a counterexample in the measure program that is spurious, but all guards
in its loop are reachable by some finite computation in the heap program, then the infer-
ence algorithm will produce a precondition which is too strong. In this case the safety
check in line 9 will fail on all of the loop guards and the refinement will rule out the
counterexample by strengthening the precondition. This incompleteness is deliberate.
In such a case a ranking function based on measures simply does not exist. However,
we do not expect to observe this incompleteness on program loops typically found in
low-level system code.

Weakest preconditions of measure assertions.Algorithm HEAPINFER relies on an or-
aclewlp that computes the weakest precondition for a measure assertion and a heap
program. We propose a simple solution for implementing thisoracle.

Note that measure assertions are closed under weakest preconditions for loop free
heap programs. In fact, we can use the update functions from Figure 3 to compute
weakest preconditions for finite sequences of transitions.Assume that the current coun-
terexample pathπ in the refinement loop is of the formst1 . . . stm−1.(stm . . . stn)ω. If
the algorithm attempts to strengthen the precondition using a guardgrd i from a transi-
tion of the loop segment(stm . . . stn), then we update preconditionPREas follows:

PRE := widen(PRE∧ wlp(st1, . . . , sti−1,¬grd i)) .

The operatorwiden is a widening operator on measure assertions.widen(F ) identifies a
series of conjunctsC(x.ni), C(x.ni+1), . . . in F and replaces them by the unbounded
conjunction∀j ≥ 0 : C(x.ni+j).

If one uses update expressions of measures to compute weakest preconditions then
the only source for nondeterministic updates are new statements. We use a simple quan-
tifier elimination procedure to eliminate the resulting universal quantifiers in weakest
preconditions.
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The algorithm HEAPINFER has a solid theoretical foundation. We briefly sketched
soundness in the discussion above. Under assumption that the oracles for the termina-
tion check, safety check, andwlp computation always terminate, there exists a back-
tracking strategy on the nondeterministic choices (lines 7and 8) such that the refine-
ment loop in algorithm HEAPINFER always terminates. Finally, we identify a class of
regular programs for which the algorithm HEAPINFER is complete. That is, it com-
putes theweakestprecondition for termination of the input heap program. Thedetails
are presented in the extended version [19].

5 Example
We illustrate the algorithm HEAPINFER on a simple, yet instructive example. The
left-hand side of Figure 4 shows program TRAVERSE which traverses a singly-linked
list. We apply algorithm HEAPINFER to program TRAVERSE with the singleton set
of tracked measures containing onlyM(p, q). Executing line 1 in the algorithm yields
the measure programPM shown on the right-hand side of Figure 4. For legibility, we
omit the non-deterministic updates of untracked measures.ProgramPM does not always
terminate. Let us assume that the non-deterministic choicein line 7 of the algorithm
HEAPINFERselects the infinite computationǫ.(ℓ[1])ω that repeatedly executes the loop
body according to case1. There is only one position to choose in line 8 of the algorithm,
namely, the one associated with locationℓ and guardM(p, q) = ∞. As an assertion on
states of program TRAVERSE, this guard means thatq is not reachable fromp. Obvi-
ously, the negated guardM(p, q) < ∞ is not an invariant of program TRAVERSE at
locationℓ. Hence, the condition in line 9 does not hold. In this case, the weakest pre-
condition of the stemwlpǫ(M(p, q) < ∞) is again the assertionM(p, q) < ∞. Thus,
line 12 assignsPRE to M(p, q) < ∞.

One might expect that under the precondition thatq is reachable fromp the program
TRAVERSE terminates. HEAPINFER finds that it is not sufficient. The next iteration
of the algorithm produces the counterexampleℓ[2.2.1].(ℓ[1])ω. The loop part of this
infinite trace is the same as for the previous counterexample. Thus, we again choose
guardM(p, q) = ∞. The condition in line 9 is again false. The weakest precondition of
the negated guardwlpℓ[2.2.1](M(p, q) < ∞) simplifies to the assertion

M(p, q) > 0 ∨ M(p, p.n) = 0 ∨ M(p.n, q) < ∞ .

Line 12 updates the preconditionPRE to:

PRE≡ M(p, q) < ∞ ∧ (M(p, q) > 0 ∨ M(p, p.n) = 0 ∨ M(p.n, q) < ∞) .

The new preconditionPRE means thatq is reachable fromp and either (1)p is differ-
ent fromq or (2) they are aliased and either (2.1)p has a self-loop or (2.2)p is on a
non-trivial cycle. We expect that the program TRAVERSE terminates under the current
precondition. Indeed, the termination test of the measure programPM under the pre-
conditionPREsucceeds and the algorithm returns that the program terminates under the
preconditionPRE.

In [19], we discuss additional example programs that manipulate singly- and doubly-
linked lists. These examples are inspired by code fragmentsfound in low-level system
code, such as the example in Section 2.
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ℓ : do
p := p.n;

while p 6= q

ℓ : do
M(p, q) :=

1 M(p, q) = ∞ ⇒ ∞
2 M(p, q) < ∞
2.1 M(p, q) > 0 ⇒ M(p, q) − 1
2.2 M(p, q) = 0
2.2.1 M(p, p.n) = 1 ⇒ M(p.n, q)
2.2.2 M(p, p.n) = 0 ⇒ 0;

while M(p, q) > 0

Fig. 4. Program TRAVERSEand its associated measure programPM .

6 Implementation and experiments

We developed a prototype implementation, called BOUNCER, of our algorithm for the
demand-driven inference of heap assumptions. We applied BOUNCER to the example
programs in [19] and a scheduling routine from the VAMOS kernel [17].

BOUNCERapplies the BOHNE tool for symbolic shape analysis [24] to implement
the oracle that checks assertion validity of heap programs [20,23]. For proving termina-
tion of measure programs, BOUNCERapplies the ARMC tool for proving termination
of transition relations in linear arithmetic [18,21]. The oracle forwlp uses widening, as
described in Section 4.

We model the value∞ in our translation to a measure program by a negative inte-
ger constant, sayc. Our translation rewrites each measure expression according to the
following rules:

mexp = ∞ −→ mexp = c ,

mexp ≤ ∞ −→ mexp = c ∨ mexp ≥ 0 ,

mexp < ∞ −→ mexp ≥ 0 .

The rewriting step allows one to apply a termination checkerfor programs over numer-
ical domains as black-box.

While our implementation is preliminary, we observe that thebehavior of the al-
gorithm with respect to the number of applied measures is similar to the behavior of
algorithms for predicate abstraction with respect to the number of predicates. We be-
lieve that local use of measures, similarly to localized abstraction [14], can make our
tool scale to larger programs.

Our experiments with process scheduling functions from theVAMOS kernel show
that BOUNCERcan successfully infer preconditions for termination for interesting prac-
tical programs. In the current implementation, we had to manually abstract all non-heap
operations by non-deterministic choice. The inferred preconditions are in agreement
with the preconditions provided manually by the VAMOS developers.
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