
Error Invariants

Evren Ermis1, Martin Schäf2?, and Thomas Wies3

1 University of Freiburg
2 United Nations University, IIST, Macau

3 New York University

Abstract. Localizing the cause of an error in an error trace is one of the most
time-consuming aspects of debugging. We develop a novel technique to automate
this task. For this purpose, we introduce the concept of error invariants. An error
invariant for a position in an error trace is a formula over program variables that
over-approximates the reachable states at the given position while only capturing
states that will still produce the error, if execution of the trace is continued from
that position. Error invariants can be used for slicing error traces and for obtaining
concise error explanations. We present an algorithm that computes error invari-
ants from Craig interpolants, which we construct from proofs of unsatisfiability
of formulas that explain why an error trace violates a particular correctness as-
sertion. We demonstrate the effectiveness of our algorithm by using it to localize
faults in real-world programs.

1 Introduction

A central element of a programmer’s work routine is spending time on debugging. Par-
ticularly time-consuming (and often the most frustrating part of debugging) is the task
of fault localization [1, 3, 9, 10, 13, 14, 18, 20, 21], i.e., isolating the cause of an error by
inspecting a failed execution of the program. This task encompasses, for instance, the
identification of the program statements that are relevant for the error, and determining
the variables whose values should be tracked in order to understand the cause of the
error.

In this paper, we present a novel technique that enables automated fault localization
and the automatic generation of concise error explanations. The input to our technique
is a an error trace of the program, which consists of the sequence of program state-
ments whose execution produced an error, and formulas describing the initial states of
the trace and the expected output states (i.e., the assertion that was violated). Such error
traces can be obtained either from failing test cases or from counterexamples produced
by static analysis tools. Our technique is based on the new concept of error invariants.
An invariant for a given position in a trace is a formula satisfied by all states reaching
that position in an execution of the trace. An error invariant is an invariant for a position
in an error trace that only captures states that will still produce the error, if execution of
the trace is continued from that position. Hence, an error invariant provides an expla-
nation for the failure of the trace at the given position. We observe that inductive error
? Supported in part by the projects ARV and COLAB, funded by Macau Science and Technology

Development Fund.

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

2 Evren Ermis, Martin Schäf, and Thomas Wies

invariants, which are those error invariants that hold for consecutive positions in an er-
ror trace, characterize statements in the trace that are irrelevant for the error. That is,
if an error invariant holds for an interval of consecutive positions, no relevant changes
have occurred to error relevant variables in that interval. A statement that is enclosed by
an inductive error invariant can thus be replaced by any other statement that preserves
the invariant, without changing the nature of the error. Hence, inductive error invariants
can be used to compute slices of error traces that contain only relevant statements and
information about reachable states that helps to explain the cause of an error. Moreover,
error invariants characterize the relevant variables whose values should be tracked along
the execution of the error trace.

To compute inductive error invariants, we build on the idea of extended trace for-
mulas [14] to obtain an unsatisfiable formula from an error trace. We then compute
Craig interpolants for each position in the trace from the proof of unsatisfiability of this
formula. These Craig interpolants serve as candidate error invariants which we sub-
sequently propagate through the trace to check their inductiveness. Thus, we build on
existing techniques for synthesizing inductive invariants in program verification [12] to
compute inductive error invariants. We implemented our technique in a prototype tool
and evaluated it on error traces taken from the literature as well as real-world exam-
ples. For the error traces that we have considered, the error invariants computed by our
technique capture the precise cause of the error.

Related Work. Minimizing error traces to aid debugging is an active area of research.
Recently, static techniques for identifying relevant fragments of error traces have been
developed. Closest to our approach is Bug-Assist [13, 14], which uses a MAX-SAT
based algorithm to identify a maximal subset of statements from an error trace that can-
not be responsible for the failing of the execution. The remaining statements then form
an error trace such that removing any statements from this trace will result in a trace
that has normally terminating executions. One benefit of this approach is that a compact
error trace can be computed with a single MAX-SAT query while our approach requires
several calls to a theorem prover. On the other hand, our approach can further simplify
the error traces obtained by Bug-Assist because it may replace some of the remaining
statements with error invariants. For instance, if a relevant variable is incremented sev-
eral times in a row (e.g., in a loop), our approach may replace all these statement by
one invariant stating that the incremented variable is within a certain bound. Also, error
invariants identify variables that should be tracked during debugging and that highlight
the relevant changes to the program state. This is particularly useful for dense errors,
where the length of the error trace cannot be reduced significantly. A common limi-
tation of our approach and Bug-Assist is that control-relevant variables might not be
considered relevant. This, however, depends on the way error traces are encoded as
formulas.

Another way to minimize error traces is to compare failing with successful execu-
tions (e.g., [1, 9, 10, 17, 18, 20]). Ball et al. [1] present an algorithm for isolating parts
of an error trace that do not occur on feasible traces. Groce et al. [9–11] use distance
metrics for program executions to find minimal abstractions of error traces. For a given
counterexample, they find a passing execution that is as similar to the counterexample as
possible. The deviations between the passing and failing executions are then presented

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 3

int y=0;

void testFoo() {
int res = foo(0,-2,1);
CU_ASSERT(res>=0);

}

int foo(int a, int b, int x) {
x = x + a;
x = x + b;
y = y + a;
return x;

}

Fig. 1. Example of a failing unit test

as an explanation for the error. The major difference of these approaches to ours is that
they require passing executions that are similar to the failing execution as an additional
input. Hence, these approaches are limited to cases where it is possible to find adequate
passing runs that cover large portions of the original error trace.

Dynamic approaches can be used to reduce the cognitive load for the program-
mer. Delta Debugging (e.g., [3]) compares failing executions with passing executions
to identify relevant inputs that can be blamed for the failing of the execution. Dynamic
slicing (see, e.g., [21] for an overview) removes irrelevant fragments from error traces
based on dynamic control and data dependencies. Both approaches return a compact
representation of the original error trace. Hence, our approach of using error invariants
is orthogonal to delta debugging and dynamic slicing. Similar to Bug-Assist, dynamic
techniques can be used to compute a compressed error trace that serves as input to our
static analysis algorithm, which then computes further information about the error.

2 Overview and Illustrative Example

We demonstrate how error invariants can help to produce a more compact representa-
tion of an error trace using the illustrative example in Figure 1. We call this compact
representation an abstract error trace. The figure shows a procedure foo and a unit test
testFoo, which checks if foo returns a certain value when it is called on a particular
input. The tested procedure foo adds the variables a and b to x before returning the
new value of x. Further, foo increments the global variable y. The unit test testFoo
calls foo on an initial state where a=0, b=-2, and x=1, and then checks if foo re-
turns a value greater or equal to 0. However, this is not the case and the unit test fails.
From the failing test case we can derive the following error trace (ψ, π, φ), where the
path π is the sequence of statements executed on the trace:

ψ ≡ (a = 0 ∧ b = −2 ∧ x = 1 ∧ y = 0) φ ≡ x ≥ 0
π = `0 : x = x+ a; `1 : x = x+ b; `2 : y = y + a; `3 :

To understand why the post-condition x ≥ 0 of our unit test is violated, we first compute
a trace formula for the error trace, which is a conjunction of the pre-condition ψ, the
post-condition φ, and a formula representation TF(π) of the path π, such that the sat-
isfying assignments of the trace formula exactly correspond to the possible executions
of the path π that satisfy the pre and post-condition. The resulting formula

(a=0)∧(b=−2)∧(x=1)∧(y=0)∧(x′=x+a)∧(x′′=x′+b)∧(y′=y+a)∧(x′′ ≥ 0)

4 Evren Ermis, Martin Schäf, and Thomas Wies

is unsatisfiable, as the execution of the test case violates the assertion at the end of
the error trace. From the proof of unsatisfiability, we compute a sequence of formulas
I0, . . . , I3, where each Ii is an error invariant for position `i of the error trace. This
means that for each i, the formula ψ ∧ TF(π[0, i]) ⇒ Ii is valid and the formula
Ii∧TF(π[i, 3])∧φ is unsatisfiable, where π[0, i] is the prefix of the trace up to position
i and π[i, 3] the corresponding suffix. For our example, a possible sequence of error
invariants is as follows:

I0 ≡ (x = 1) ∧ (a = 0) ∧ (b = −2) I2 ≡ (x = −1)
I1 ≡ (x = 1) ∧ (b = −2) I3 ≡ (x = −1)

An error invariant Ii can be seen as an abstraction of the set of post states of the prefix
trace π[0, i] such that any execution of the suffix trace π[i, 3] that starts in a state sat-
isfying Ii will still fail. Thus, for each point of the error trace, the error invariant can
provide a concise explanation why the trace fails when the execution is continued from
that point. In particular, error invariants provide information about which variables are
responsible for an execution to fail and which values they have at each point. In our
example, I0 is a summary of the initial state and indicates that the variable a, b, and x
are responsible for the error. After executing x = x+ b, we can see from I2 that a and
b are no longer relevant and only x has to be considered. Further, we can see that the
value of variable y does not matter at all. Error invariants also help to identify irrelevant
statements in an error trace. Note that the formula I1 is a valid error invariant for both
positions `2 and `3. That is, I2 is inductive with respect to the statement y = y + a
and any execution of the suffix trace π[2, 3] that starts in a state satisfying I2 will still
fail. The fact that I2 is an error invariant for both `2 and `3 implies that the formula
ψ ∧ TF(π) ∧ φ will remain unsatisfiable even if y = y + a is removed from the
trace π. Thus, this statement is irrelevant for the error.

In the following sections, we formalize the concept of error invariants and present
an algorithm that synthesizes error invariants to compute concise abstractions of error
traces.

3 Preliminaries

We present programs and error traces using formulas in first-order logic. We assume
standard syntax and semantics of such formulas and use> and⊥ to denote the Boolean
constants for true and false, respectively. Let X be a set of program variables. A state
is a valuation of the variables from X . A state formula F is a first-order constraint over
free variables from X . A state formula F represents the set of all states s that satisfy F
and we write s |= F to denote that a state s satisfies F .

For a variable x ∈ X and i ∈ N, we denote by x〈i〉 the variable obtained from
x by adding i primes to it. The variable x〈i〉 models the value of x in a state that is
shifted i time steps into the future. We extend this shift function from variables to sets
of variables, as expected, and we denote by X ′ the set of variables X〈1〉. For a formula
F with free variables from Y , we write F 〈i〉 for the formula obtained by replacing each
occurrence of a variable y ∈ Y in F with the variable y〈i〉. We denote by x〈−i〉 the
inverse operation of x〈i〉, which we also extend to formulas. A transition formula T is

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 5

a first-order constraint over free variables from X ∪X ′, where the variables X ′ denote
the values of the variables from X in the next state. A transition formula T represents a
binary relation on states and we write s, s′ |= T to denote that the pair of states (s, s′)
is in the relation represented by T .

A program P over variables X is simply a finite set of transition formulas over
X ∪ X ′. Each transition formula T ∈ P models the semantics of a single program
statement. Note that control can be model implicitly via a dedicated program variable
pc ∈ X for the program counter. The correctness assertion of a program can be stated as
a relation between the pre and the post states of the program’s executions. A witness of
the incorrectness of the program is given by an error trace. An error trace consists of a
state formula, describing the initial states from which a failed execution can start, a path
of the program describing the statements of the failed execution, and a state formula,
which describes the violated correctness assertion.

Formally, a path π of a program P is a finite sequence of transition formulas in P .
Let π = T0, . . . , Tn−1 be a path. For 0 ≤ i ≤ j ≤ n, we denote by π[i, j] the subpath
Ti, . . . , Tj−1 of π that goes from position i to position j. We use π[i] to represent the
i-th transition formula Ti of path π. A trace τ of a program P is a tuple (ψ, π, φ) where
π is a path of P and ψ and φ are state formulas. We say that τ has length n if π has
length n. An execution of a trace (ψ, π, φ) is a sequence of states σ = s0 . . . sn such
that (1) s0 |= ψ, (2) sn |= φ, and (3) for all 0 ≤ i < n, si, si+1 |= π[i]. The trace
formula TF(τ) of a trace τ = (ψ, π, φ) of length n is the formula ψ ∧ (π[0])〈0〉 ∧
. . . ∧ (π[n − 1])〈n−1〉 ∧ φ〈n〉. Thus, there is a one-to-one correspondence between the
executions of τ and the models of TF(τ). For a path π we write TF(π) as a shorthand
for the trace formula TF((>, π,>)). A trace τ is called feasible, if its trace formula
TF(τ) is satisfiable. A trace is called error trace if it is infeasible.

4 Error Invariants

An error trace provides sufficient information to repeat the program’s behavior that
violates the correctness assertion. There are many ways to obtain error traces, e.g.,
from a failing test case, from a counterexample returned by a static analysis tool [15], or
when debugging, by manually marking a particular state as violation of the correctness
assertion. By limiting the scope to only one control-flow path, error traces can help the
programmer to detect the cause of the unexpected behavior. However, the error trace
itself does not give any insight into which transitions on the path of the trace are actually
responsible for the incorrect behavior. Further, the trace does not say which variables
on this path should be tracked to identify the cause of the error. This is particularly
challenging for error traces of large programs, where the number of transitions and
variables might become intractable for the programmer.

In this paper, we propose the concept of error invariants as a means to rule out
irrelevant transitions from an error trace, to identify the program variables that should
be tracked along the path in order to understand the error, and to obtain a compact
representation of the actual cause of an error.

6 Evren Ermis, Martin Schäf, and Thomas Wies

Definition 1 (Error Invariant). Let τ = (ψ, π, φ) be an error trace of length n and
let i ≤ n be a position in π. A state formula I is an error invariant for position i of τ , if
the following two formulas are valid:

1. ψ ∧TF(π[0, i])⇒ I 〈i〉
2. I ∧TF(π[i, n]) ∧ φ〈n−i〉 ⇒ ⊥

An error invariant for a position in an error trace can be understood as an abstract
representation of the reason why the execution will fail if it is continued from that
position. We next explain how error invariants can be used to identify transitions and
program variables that are relevant for the fault in the error trace.
Using Error Invariants for Fault Localization. In the following, let τ be an error
trace. We say that a state formula I is an inductive error invariant for positions i ≤ j, if
I is an error invariant for both i and j. Given such an inductive error invariant, we can
argue that the execution of the path of the error trace will still fail for the same reason,
even if the transitions between positions i and j are not executed. Thus, we can use
inductive error invariants to identify irrelevant transitions in error traces. Inductive error
invariants further help to identify the relevant program variables that should be tracked
while debugging an error trace. Namely, if I is an inductive invariant for positions i < j,
then only the program variables appearing in I should be tracked for the trace segment
between the positions i and j. We can make these observations formal.
Abstract Error Traces. We say that a trace τ# abstracts a trace τ if for every n-
step execution σ of τ there exists an m-step execution σ# of τ# such that σ#[0] =
σ[0], σ#[m] = σ[n], and σ# � σ. Here, � denotes the subsequence ordering, i.e.,
a0 . . . am � b0 . . . bn iff a0 = bi0 , . . . , am = bim

for some indices 0 ≤ i0 < . . . <
im ≤ n. The problem we are attempting to solve in this paper, is to find for a given
error trace τ = (ψ, π, φ) an error trace τ# = (ψ, π#, φ) such that τ# abstracts τ and
π# concisely explains why π is failing for (ψ, φ). We use inductive error invariants to
define such abstract error traces.

Let π# = I ′0, T1, I
′
1, . . . , Tk, I

′
k be an alternating sequence of primed state formulas

I ′j and transition formulas Tj . Note that a primed state formula I ′ can be interpreted as
a transition formula that models transitions in which all program variables are first non-
deterministically updated and then assumed to satisfy the formula I . Thus, π# is also
a path. We call (ψ, π#, φ) an abstract error trace for (ψ, π, φ) if there exist positions
i0 < . . . < ik+1 such that i0 = 0, ik+1 = n+ 1, for all j with 1 ≤ j ≤ k, Tj = π[ij],
and for all j with 0 ≤ j ≤ k, Ij is an inductive error invariant for ij and ij+1 − 1.

Theorem 2. If τ# is an abstract error trace for an error trace τ , then τ# abstracts τ .

In the next section, we show how abstract error traces can be computed using Craig
interpolants, which we obtain automatically from the unsatisfiability proof of the ex-
tended path formula.

5 Error Invariants from Craig Interpolants

There are different ways to obtain error invariants for error traces. For instance, given
an error trace τ = (ψ, π, φ) of length n, the weakest error invariant for position i in

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 7

π is given by the weakest (liberal) precondition of the negated post-condition and the
suffix of the path starting from i: wlp(π[i, n],¬φ). However, weakest error invariants
are typically not inductive, nor do they provide compact explanations for the cause of
an error. What we are really interested in are inductive error invariants.

Error invariants are closely related to the concept of Craig interpolants [5]. Let
A and B be formulas whose conjunction is unsatisfiable. A formula I is a Craig in-
terpolant for A and B, if the following three conditions hold: (a) A ⇒ I is valid,
(b) I ∧ B is unsatisfiable, and (c) all free variables occurring in I occur free in both
A and B. Thus, given a position i in an error trace, we can split the unsatisfiable
path formula ψ ∧ TF(π) ∧ φ〈n〉 into two conjuncts A = ψ ∧ TF(π[0, i]) and B =
TF(π[i, n])〈i〉 ∧ φ〈n〉, for which we can then obtain interpolants4.

Proposition 3. Let (ψ, π, φ) be an error trace of length n, let i be a position in π, and
let A = ψ ∧TF(π[0, i]) and B = TF(π[i, n])〈i〉 ∧ φ〈n〉. Then for every interpolant I
of A,B, the formula I 〈−i〉 is an error invariant for i.

Interpolants are always guaranteed to exist for first-order logical formulas A and
B whose conjunction is unsatisfiable [5]. In fact, for many first-order theories there
always exist quantifier-free interpolants that can be directly constructed from the proof
of unsatisfiability of the conjunction A∧B [2,16]. Interpolants constructed in this way
often give concise explanations for the infeasibility of a trace. For this reason, they
have shown to be useful for finding inductive invariants in program verification [12].
We argue that the same is true for error traces and show how to find interpolants that
are, both, inductive error invariants and useful for fault localization.

Computing Abstract Error Traces. In the following, let (ψ, π, φ) be an error trace
with π = (Ti)0≤i<n. The problem we want to solve is to compute an abstract error trace
for (ψ, π, φ), i.e., an alternating sequence of inductive error invariants and transitions
I0, Ti1 , I1, . . . , Tik

, Ik where the Tij are the relevant transition formulas in π and each
Ij abstracts the intermediate sequences of irrelevant transition formulas between the
Tij

. Given the unsatisfiable trace formulaψ∧T0∧. . .∧T 〈n−1〉
n−1 ∧φ〈n〉, we can use a single

call to an interpolating theorem prover to obtain a sequence of interpolants I0, . . . , In

such that each Ii is an error invariant for position i in the error trace. The basic idea
underlying our algorithm is to use these interpolants as candidates for the inductive error
invariants that occur in the computed abstract error trace. A naive algorithm to obtain the
abstract error trace from the computed interpolants is to compute an (n+ 1)× (n+ 1)
matrix I where an entry Iij indicates whether interpolant Ii is an error invariant for
position j of the error trace. The matrix I can then be used to obtain an abstract error
trace by replacing maximal sequences of transition formulas Ti1 , . . . , Ti2 in the error
trace by interpolant Ij , if Ij was found to be inductive for i1 < i2.

We have applied this naive algorithm to a number of example error traces and have
found that it produces abstract error traces that concisely explain the cause of the error.
The only problem with this naive algorithm is that it can be expensive: the number of
theorem prover calls that is needed to compute the matrix I is quadratic in the length of
the error trace. We have therefore developed an algorithm that obtains a better running

4 Note that whenever we say interpolant we always mean Craig interpolant.

8 Evren Ermis, Martin Schäf, and Thomas Wies

time. This improved algorithm is based on an observation that we made during the
evaluation of the naive algorithm: if an interpolant I is an inductive error invariant
for positions i < j of an error trace, then it is also often an error invariant for all
intermediate positions between i and j. Thus, instead of checking for each position i
and interpolant Ij , whether Ij is an error invariant for i, we instead compute for each
Ij the end positions of the interval of π on which Ij holds. Using a binary search, this
can be done with fewer theorem prover calls than required by the naive algorithm.

Algorithm 1: Algorithm for computing abstract error traces.
Input: error trace τ = (ψ, π, φ) of length n
Output: abstract error trace for τ
def search(low : Int, high : Int, incLow : Int→ Boolean) : Int = {

if (high < low) return low
val mid = (low + high)/2
if (incLow(mid)) search(mid + 1, high, incLow)
else search(low ,mid − 1, incLow) }

def isErrInv(I : Formula, i : Int) : Boolean =

valid(ψ ∧TF(π[0, i])⇒ I 〈i〉) ∧ valid(I ∧TF(π[i, n] ∧ φ〈n−i〉 ⇒ ⊥)
var interpolants = interpolate(TF(τ))
var intervals = interpolants map (λIj . { start = search(0, j, (λi.¬isErrInv(Ij , i)))

end = search(j, n, (λi. isErrInv(Ij , i)))− 1
inv = Ij })

var sortedIntervals = intervals sortWith (λ(a, b). a.start ≤ b.start)
var maxInterval = sortedIntervals[0]
var prevEnd = 0
for (currInterval ← sortedIntervals) {

if (currInterval .start > prevEnd) {
yield maxInterval .inv
if (maxInterval .end < n) yield π[maxInterval .end]
prevEnd = maxInterval .end
maxInterval = currInterval
} else if (currInterval .end > maxInterval .end) maxInterval = currInterval
}

Algorithm 1 shows the pseudo code for our improved algorithm in a syntax akin
to the Scala programming language. The algorithm takes an error trace τ as input and
returns an abstract error trace for τ . It first computes a sequence of candidate error
invariants interpolants by calling the interpolating theorem prover. It then computes
for each interpolant Ij in interpolants a maximal interval on which Ij is inductive.
Each interval is represented as a record with fields start and end storing the start and
end position of the interval, and field inv storing the actual interpolant Ij . The interval
boundaries are computed using a binary search that is implemented by the function
search . The binary search is parameterized by a function incLow , which guides the
search depending on which of the two interval bounds is to be computed. In either
case, the function incLow is implemented using the function isErrInv , which checks

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 9

whether the given formula I is an error invariant for the given position i. The algorithm
then computes a minimal subset of the intervals that cover all positions of the error trace.
This is done by first sorting the computed intervals according to their start time and
then selecting maximal intervals to cover all positions. The latter step is implemented
in the final for-comprehension, which directly yields the error invariants and relevant
transition formulas of the resulting abstract error trace.

Note that each binary search requires at most O(log n) theorem prover calls, which
gives O(n log n) theorem prover calls in total (as opposed to O(n2) for the naive al-
gorithm). Also the sorting of the intervals can be done in time O(n log n), which gives
total running time O(n log n), if we factor out the actual running time of the theorem
prover calls.

6 Evaluation

We have implemented a prototype of Algorithm 1 on top of the interpolating theorem
prover SMTInterpol [2] and applied it to compute abstractions of several error traces
that we obtained from real-world programs. In the following, we present two of these
examples in detail.

6.1 Faulty Sorting

Our first example is a faulty implementation of a sorting algorithm that sorts a sequence
of integer numbers. This program is taken from [3] and shown in Figure 2. The program
takes an array of numbers as input and is supposed to return a sorted sequence of these
numbers. An error is observed when the program is called on the sequence 11, 14.
Instead of the expected output 11, 14, the program returns 0, 11. The corresponding
error trace consists of the precondition ψ ≡ (a[0] = 11∧a[1] = 14), the post-condition
φ ≡ (a′[0] = 11∧ a′[1] = 14) and the path π containing the sequence of 27 statements
shown in Figure 3.

We translated each statement in path π into a corresponding transition formula.
While there exist interpolation procedures for reasoning about arrays, SMTInterpol
does not yet provide an implementation of such a procedure. We therefore encoded ar-
rays using uninterpreted function symbols and added appropriate axioms for the array
updates. Before calling the theorem prover, we instantiated all axioms with the ground
terms occurring in the path formula. This resulted in an unsatisfiable quantifier-free
formula which we used as input for our algorithm.

The theorem prover computed 28 interpolants, one for each position in the error
trace. Table 1 shows the error invariant matrix for these interpolants. The matrix indi-
cates for each computed interpolant Ii at which positions Ii is a valid error invariant.
Note that the matrix is not actually computed by our algorithm. Instead, Algorithm 1
only computes for each Ii the boundaries of the interval of positions for which Ii is a
valid error invariant. The marked interpolants I1, I10, I12, I19, I22, and I26 are the ones
that our algorithm selects for the computation of the abstract error trace. Thus, the only
relevant statements for the error are the statements at positions 6, 11, 13, 20, 23, as well
as the post-condition.

10 Evren Ermis, Martin Schäf, and Thomas Wies

static void shell_sort(int a[], int size) {
int i, j;
int h = 1;
do {
h = h * 3 + 1;

} while (h <= size);
do {
h /= 3;
for (i = h; i < size; i++) {

int v = a[i];
for (j = i; j >= h &&
a[j - h] > v; j -= h)
a[j] = a[j-h];

if (i != j) a[j] = v;
}

} while (h != 1);
}

int main(int argc, char *argv[]) {
int i = 0;
int *a = NULL;

a = (int*)malloc((argc-1) *
sizeof(int));

for (i = 0; i < argc - 1; i++)
a[i] = atoi(argv[i + 1]);

shell_sort(a, argc);

for (i = 0; i < argc - 1; i++)
printf("%d", a[i]);

printf("\n");

free(a);
return 0;

}

Fig. 2. Faulty implementation of a sort algorithm taken from [3]. The faulty behavior
can be observed, e.g., for the input value sequence 11, 14

0 int i,j, a[];
1 int size=3;
2 int h=1;
3 h = h*3+1;
4 assume !(h<=size);
5 h/=3;
6 i=h;
7 assume (i<size);
8 v=a[i];
9 j=i;

10 assume !(j>=h && a[j-h]>v);
11 i++;
12 assume (i<size);
13 v=a[i];

14 j=i;
15 assume (j>=h && a[j-h]>v);
16 a[j]=a[j-h];
17 j-=h;
18 assume (j>=h && a[j-h]>v);
19 a[j]=a[j-h];
20 j-=h;
21 assume !(j>=h && a[j-h]>v);
22 assume (i!=j);
23 a[j]=v;
24 i++;
25 assume !(i<size);
26 assume (h==1);

Fig. 3. Error path π of the program in Figure 2 for the input sequence 11, 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
I0 ” ” ” ” ” ” ” -
I1 ” ” ” ” ” ” ” -
I2 ” ” ” ” ” ” ” -
I3 - - - ” - - ” -
I4 - - - - ” ” -
I5 - - - - ” ” -
I6 - - - ” - - ” -
I7 - - - - - - - ” ” ” ” ” - - - - - - - - - - - - - - - -
I8 - - - - - - - ” ” ” ” ” - - - - - - - - - - - - - - - -
I9 - - - - - - - ” ” ” ” ” - - - - - - - - - - - - - - - -
I10 - - - - - - - - - - ” ” - - - - - - - - - - - - - - - -
I11 - - - - - - - ” ” ” ” ” - - - - - - - - - - - - - - - -
I12 - - - - - - - - - - - - ” ” - - - - - - - - - - - - - -
I13 - - - - - - - - - - - - ” ” - - - - - - - - - - - - - -
I14 - - - - - - - - - - - - - - ” - - - - - - - - - - - - -
I15 - - - - - - - - - - - - - - - ” ” - - - - - - - - - - -
I16 - - - - - - - - - - - - - - - ” ” - - - - - - - - - - -
I17 - - - - - - - - - - - - - - - ” ” ” - - - - - - - - - -
I18 - - - - - - - - - - - - - - ” - - - ” - - - - - - - - -
I19 - - - - - - - - - - - - - - ” - - - ” ” ” - - - - - - -
I20 - - - - - - - - - - - - - - ” - - - ” ” ” - - - - - - -
I21 - ” ” ” - - - -
I22 - ” ” ” - - - -
I23 - ” ” ” - - - -
I24 - ” - - -
I25 - ” ” ” -
I26 - ” ” ” -
I27 - ” ” ” ”

Table 1. Error invariant matrix for the error trace of the program in Figure 2

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 11

a[2]=0

6:i=h;

a[2]=0 ∧ h=1 ∧ i=h

11:i = i + 1;

a[2]=0 ∧ h=1 ∧ i=2

13:v = a[i];

h=1 ∧ i=2 ∧ v=0 ∧ h≤j ∧ j≤1
20:j = j - h;

h=1 ∧ i=2 ∧ v=0 ∧ j=0

23:a[j] = v;

a[0]=0

27:assert (a[0]=11 ∧ a[1]=14);

Fig. 4. Abstract error trace for the error path in Figure 3

The resulting abstract error trace is shown in Figure 4. We use boxed code such as
a[2]=0 to highlight the error invariants. From the first error invariant a[2]=0 we

can see that the only information we need to track until position 6 of our error trace is the
value at index 2 of the array a. This error invariant is also the summary of the relevant
part of the failing initial state ψ. Hence, we do not need to mention ψ explicitly in our
abstract error trace. At position 6, the variable i is initialized. The error invariant no
longer holds after this statement. The new error invariant now also states that h=1 and
i=h hold up to position 11. The next statement, which cannot be rendered irrelevant, is
i = i + 1 and sets i to 2. This statement already indicates the problem, as i should
always be strictly smaller than the array bounds of a. The next error invariant now
states that i=2. This error invariant holds up to position 13, where the value a[2] is
stored in the local variable v. The new error invariant I20 keeps track of v=0, while the
current content of the array a is completely irrelevant for the following parts of the error
trace. The error invariant I20 also states that j=1. This property is temporarily violated
from positions 14 to 17 but reestablished at position 18. The context of the variable j is
abstracted away as all necessary information about j is provided by the error invariants.
One could also think of a different algorithm that does not allow error invariants to be
temporarily violated. Such an algorithm would further add the statements `14 :j=i and
`17 :j=j-h to the error trace because we cannot find an invariant that holds at the
enclosing positions of these statements. However, the relevant information about the
variable j is provided by the error invariant. Hence, these statements can be omitted.
The new error invariant holds up to position 20, when j is set to 0. This is recorded in
the new error invariant, which holds up to position 23, when a[0] is finally set to 0.
This is the only information we need to keep track of for the remainder of the error trace,
as it contradicts the post-condition. Hence, Algorithm 1 is able to reduce the error trace
from its original 27 statements to only six statements. The computed error invariants
further highlight the information about the state that is crucial for the error at each point
of the error trace.

12 Evren Ermis, Martin Schäf, and Thomas Wies

0 int OLEV = 600;
1 int MAXALTDIFF = 600;
2 int MINSEP = 300;
3 int NOZCROSS = 300;
4 int NO_INTENT = 0;
5 int DO_NOT_CLIMB = 1;
6 int DO_NOT_DESCEND = 2;
7 int TCAS_TA = 1;
8 int OTHER = 2;
9 int UNRESOLVED = 0;

10 int UPWARD_RA = 1;
11 int DOWNWARD_RA = 2;
12 int Positive_RA_Alt_Thresh = 740;
13 bool enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&

(Cur_Vertical_Sep > MAXALTDIFF);
14 bool tcas_equipped = (Other_Capability == TCAS_TA);
15 bool intent_not_known = (Two_of_Three_Reports_Valid&&(Other_RAC==NO_INTENT));
16 int alt_sep = UNRESOLVED;
17 assume(enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped));
18 assume(Climb_Inhibit);
19 inhibitBiasedClimb = Up_Separation + NOZCROSS;
20 ownBelowThreat = (Own_Tracked_Alt < Other_Tracked_Alt);
21 ownAboveThreat = (Other_Tracked_Alt < Own_Tracked_Alt);
22 upward_preferred = (inhibitBiasedClimb > Down_Separation);
23 assume(upward_preferred);
24 nonCrossingBiasedClimb = !(ownBelowThreat) || ((ownBelowThreat) &&

(!(Down_Separation > Positive_RA_Alt_Thresh)));
25 need_upward_RA = nonCrossingBiasedClimb && ownBelowThreat;
26 upward_preferred = inhibitBiasedClimb > Down_Separation;
27 assume(upward_preferred);
28 nonCrossingBiasedDescend = ownBelowThreat && (Cur_Vertical_Sep >= MINSEP) &&

(Down_Separation >= Positive_RA_Alt_Thresh);
29 need_downward_RA = nonCrossingBiasedDescend && ownAboveThreat;
30 assume !(need_upward_RA && need_downward_RA);

Fig. 5. Error path π for faulty TCAS produced by the model checker ULTIMATE

For comparison with the state of the art, we have also applied the tool Bug-Assist [13,
14] to the error trace in Figure 3. Bug-Assist returns a set of potential bugs, each of
which is a statement in the input error trace. If ordered by their location, these state-
ments form a reduced error trace. For our example, this reduced error trace still contains
18 statements.

6.2 Faulty TCAS

Our second example is a faulty implementation of the Traffic Alert and Collision Avoid-
ance System (TCAS). TCAS is an aircraft collision detection system used by all US
commercial aircraft. The TCAS example can be found in [8] and has been used in
many papers to test algorithms that explain error traces (e.g., [10, 11, 13, 17, 19]). The
error in this TCAS implementation is inflicted by a wrong inequality in the function
Non_Crossing_Biased_Climb(). On some inputs, the error causes the Boolean
variable need_upward_RA to become true. The effect is that the controlled aircraft
will eventually rise even though its altitude is lower than the other aircraft’s altitude.
This may potentially lead to a collision.

To obtain an appropriate error trace for this error we applied the software model
checker ULTIMATE [7] to the faulty TCAS implementation. The correctness condition

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 13

that exposes the error in the implementation has been taken from [4] and is as follows:

need upward RA⇒(¬(Up Separation < Positive RA Alt Thresh)∧
(Down Separation ≥ Positive RA Alt Thresh))

This property is also the post-condition φ of our error trace (ψ, π, φ). When we checked
this property with ULTIMATE, the model checker produced the error path π shown in
Figure 5.

Note that the statement at position 24 is the problematic statement from function
Non_Crossing_Biased_Climb() that causes the error. The strict inequality >
should be replaced by >= for the implementation to be correct.

In order to obtain a suitable precondition ψ for our error trace, we used the SMT
solver Z3 [6] to produce a model for the formula TF(π) ∧ ¬φ. We then encoded this
model in a corresponding formula ψ. Applying our algorithm to the resulting error trace
produces the abstract error trace shown in Figure 6. The error invariant matrix in Table 2
highlights the five interpolants that are selected for the abstract error trace.

0 1 . . . 11 12 13 14 . . . 19 20 21 22 23 24 25 26 27 . . . 30 31
I0 ” ” . . . ” ” - - - - - - - - - - - - -
.
I12 ” ” . . . ” ” - - - - - - - - - - - - -
I13 - - - - ” ” . . . ” ” - - - - - - - - -
.
I20 - - - - ” ” . . . ” ” - - - - - - - - -
I21 - - - - - - - - ” ” ” ” - - - - -
.
I24 - - - - - - - - ” ” ” ” - - - - -
I25 - - - - - - - - - - - - ” - - - -
I26 - - - - - - - - - - - - - ” ” . . . ” ”
.
I31 - - - - - - - - - - - - - ” ” . . . ” ”

Table 2. Error invariant matrix for the error trace of the TCAS example

The abstract error trace shows how the infliction at position 24 affects the value
assigned to need_upward_RA at position 25 and eventually leads to the error. The
last error invariant forces the execution to take the then branch of the conditional,
which is encoded as an implication in the post condition φ. The algorithm reduces the
error trace from 31 to 4 statements. These statements are sufficient to understand the
causality between the erroneous line and the error. The abstract error trace depends
only on 7 instead of 37 variables. The number of input variables is reduced from 12
to 5. The abstract error trace thus significantly simplifies the search for the erroneous
statement at position 24. For the purpose of comparison, we also ran Bug-Assist on the
TCAS example. The reduced error trace thus obtained still contained 14 statements. We
therefore believe that error invariants provide a valuable instrument that improves upon
the state of the art.

7 Conclusion

We have introduced the concept of error invariants for reasoning about the relevancy
of portions of an error trace. Error invariants provide a semantic argument why certain

14 Evren Ermis, Martin Schäf, and Thomas Wies

Up Separation = 441 ∧ Down Separation = 740 ∧ Own Tracked Alt = -1 ∧
Other Tracked Alt = 0

12:Positive_RA_Alt_Thresh = 740;

Positive RA Alt Thresh = 740∧ Up Separation = 441 ∧Down Separation = 740 ∧
Own Tracked Alt = -1 ∧ Other Tracked Alt = 0

20:ownBelowThreat = Own_Tracked_Alt < Other_Tracked_Alt;

ownBelowThreat ∧Positive RA Alt Thresh = 740 ∧Up Separation = 441 ∧
Down Separation = 740 ∧ Own Tracked Alt = -1 ∧ Other Tracked Alt = 0

24:nonCrossingBiasedClimb = !ownBelowThreat ||
(ownBelowThreat && (!(Down_Separation > Positive_RA_Alt_Thresh))));

nonCrossingBiasedClimb ∧ownBelowThreat ∧ Positive RA Alt Thresh =740 ∧
Up Separation = 441 ∧ Down Separation = 740

25:need_upward_RA = nonCrossingBiasedClimb && ownBelowThreat;

need upward RA ∧ Positive RA Alt Thresh = 740 ∧ Up Separation = 441 ∧
Down Separation = 740

31:assert (need_upward_RA ==> !(Up_Separation < Positive_RA_Alt_Thresh) &&
(Down_Separation >= Positive_RA_Alt_Thresh));

Fig. 6. Abstract error trace of the TCAS example

portions of an error trace are irrelevant to the search for the cause of an error. Removing
those irrelevant portions from the error trace will not alter the observable error. This is in
contrast to related static approaches for slicing error traces that are based on computing
unsatisfiable cores of extended path formulas. We have presented an algorithm that
synthesizes error invariants from Craig interpolants and uses them to obtain compact
abstractions of error traces. Our evaluation has shown that our algorithm can indeed
help programmers understand the cause of an error more easily. We therefore believe
that our algorithm will be a useful component in future debugging tools.

We see many opportunities to further improve the performance of the presented
algorithm, which will be subject to our future work. For instance, our approach can be
used on already reduced error traces, to further compress them. Also, many theorem
prover calls during the binary search can be avoided by first syntactically checking
whether a candidate invariant speaks about variables that do not occur in both the prefix
and suffix of the trace. In this case, it is not necessary to invoke the theorem prover
because the candidate invariant cannot be a Craig interpolant. Further optimizations are
possible if the theorem prover is not treated as a black box. In particular, we will explore
different approaches to compute Craig interpolants from unsatisfiable path formulas. If
we have more control over the structure of the computed interpolants, this will allow us
to build more efficient algorithms for computing inductive error invariants.

References

1. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors in coun-
terexample traces. SIGPLAN Not., pages 97–105, 2003.

2. J. Christ and J. Hoenicke. Instantiation-based interpolation for quantified formulae. In SMT
Workshop Proceedings, 2010.

http://www.informatik.uni-freiburg.de/~ermis
https://iist.unu.edu/people/schaef
http://http://cs.nyu.edu/wies/

Error Invariants 15

3. H. Cleve and A. Zeller. Locating causes of program failures. In ICSE’05, pages 342–351,
2005.

4. A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution for veri-
fying safety-critical systems, 2001.

5. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. The Journal of Symbolic Logic, pages 269–285, 1957.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS’08, pages 337–340.
Springer, 2008.

7. E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In VMCAI’12, pages
186–201. Springer, 2012.

8. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical study
of regression test selection techniques. ACM Trans. Softw. Eng. Methodol., pages 184–208,
2001.

9. A. Groce. Error explanation with distance metrics. In TACAS’04, pages 108–122, 2004.
10. A. Groce and D. Kroening. Making the Most of BMC Counterexamples. ENTCS, pages

67–81, 2005.
11. A. Groce, D. Kroening, and F. Lerda. Understanding counterexamples with explain. In

CAV’04, pages 453–456, 2004.
12. R. Jhala and K. L. Mcmillan. Interpolant-based transition relation approximation. In CAV’05,

pages 39–51. Springer, 2005.
13. M. Jose and R. Majumdar. Bug-Assist: Assisting Fault Localization in ANSI-C Programs.

In CAV’11, pages 504–509, 2011.
14. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum satisfiabil-

ity. In PLDI ’11, pages 437–446. ACM, 2011.
15. K. R. M. Leino, T. Millstein, and J. B. Saxe. Generating error traces from verification-

condition counterexamples. Sci. Comput. Program., pages 209–226, 2005.
16. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., pages 101–121,

2005.
17. D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin: an approach for debugging

evolving programs. In ESEC/SIGSOFT FSE, pages 33–42, 2009.
18. M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In ASE, pages

30–39, 2003.
19. C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Whodunit? causal analysis for counterexamples.

In ATVA’06, pages 82–95, 2006.
20. A. Zeller. Isolating cause-effect chains from computer programs. In SIGSOFT FSE, pages

1–10, 2002.
21. X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental evaluation of using dynamic slices

for fault location. In AADEBUG’05, pages 33–42. ACM, 2005.

	Error Invariants
	Evren Ermis, Martin Schäf, and Thomas Wies

