Wireless Communications Forum: A glimpse of the future of wireless

IEEE Globecom 2010
December 8, 2010

Prof. Ted Rappaport
William and Bettye Nowlin Chair
Wireless Networking and Communications Group (WNCG)
The University of Texas at Austin
wireless@mail.utexas.edu
mm-Wave and sub-mm-Wave offers Orders of Magnitude more Spectrum

United States Frequency Allocations

AM Radio
FM Radio
TV Broadcast
Cellular
Wi-Fi
60GHz Spectrum
77GHz Vehicular Radar
Active mm-Wave CMOS IC Research

Shaded Areas = Equivalent Spectrum!
mm-Wave and sub-mm-Wave THz Propagation

- 60 GHz, 120 GHz, 183 GHz, 325 GHz, and 380 GHz for shorter-range applications
- World-wide governmental agreement on 60 GHz!
- 100 GHz and 240 GHz for longer-range applications

mm-Wave & sub-mm-Wave Short Range Applications

- 60 GHz band products ready for release: TV set top boxes available soon

- Applications: Information Showers, Wireless Interconnects, magnetic media & hard-drive replacement

Information Showers

Inexpensive Ubiquitous Integrated Transceivers
Probe Station for mmWave RFICs and On-Chip Antennas

- mmWave Anechoic Chamber to measure 3D on-chip antenna patterns

mm-Wave Long Range Applications

- Tremendous data rate growth for cellular systems
 - 10% of 2.85 Billion users w/data in 2007 → Growing Exponentially
- Wireless mm-Wave and sub-mm-wave backhaul Required!
- 60 GHz backhaul already in limited use
- Highly directional antennas

60 GHz Current mm-Wave Standards

<table>
<thead>
<tr>
<th>Name</th>
<th>Forum Type</th>
<th>Status</th>
<th>Maximum Data Rate (Gbps)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>WirelessHD</td>
<td>Industry Consortium</td>
<td>Spec. 1.0, Jan 2008</td>
<td>4</td>
<td>Uncompressed HD video</td>
</tr>
<tr>
<td>ECMA-387</td>
<td>International Standard</td>
<td>Draft 1.0, Dec 2008</td>
<td>4.032, 6.35</td>
<td>Bulk data transfer and HD streaming</td>
</tr>
<tr>
<td>802.15.3c (TG3c)</td>
<td>International Standard</td>
<td>Released October 2009*</td>
<td>5.7, 5.2</td>
<td>Portable point-to-point file transfer and streaming</td>
</tr>
<tr>
<td>802.11ad (TGad)</td>
<td>International Standard</td>
<td>Target completion Dec 2012</td>
<td>>1</td>
<td>Rapid upload/download, wireless display, networking distribution of HDTV</td>
</tr>
<tr>
<td>WiGig</td>
<td>Industry Consortium</td>
<td>Released May 2010*</td>
<td>7 Gpbs*</td>
<td>File transfers, wireless display and docking, and streaming high definition</td>
</tr>
</tbody>
</table>

Properties at THz

Frequency Range
Terahertz region – 0.3-10THz
But loosely – 100GHz and upwards
Wavelengths
3 mm to 30 μm

Properties

- Behaves partly as light - Can be focused with a lens
- Behaves partly as Radio Frequency waves for propagation – we can use antennas and metal structures for radiation and guidance at these frequencies
- Thought to be Non-ionizing (health wise safer)

Material Properties

- Good penetration cloth, wood, concrete, plastics, paper
- Absorbed heavily by water in various frequency bands within the THz range
- Reflected by metals
- A lot of naturally occurring compounds have resonances and interactions in this regime
For more information on this topic

- “Broadband Wireless Personal Area Networks – 60 GHz and Beyond”
- 10 – 11am Thursday Dec 9, 2010 in Riverfront South Hall
- Business and Tech Forum
- Speakers:
 - Ted Rappaport, University of Texas WNCG
 - Marco Corsi, Texas Instruments
 - Robert Heath, University of Texas WNCG