Submission Title: [A mmW WPAN Concept]
Date Submitted: [10 November 2003]
Source: [S. David Silk]
Company [Motorola]
Address [1301 E. Algonquin Road, Schaumburg, IL 60196, USA]
Voice:[(847) 576-0410], FAX: [(847) 538-4593], E-Mail:[Dave.Silk@motorola.com]
Re: [mmW IG Call For Papers and Participation, IEEE P802.15-03/397r2]
Abstract: [Description of document contents.]
Purpose: [mmW IG November 2003 meeting contribution]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for
discussion and is not binding on the contributing individual(s) or organization(s). The material
in this document is subject to change in form and content after further study. The contributor(s)
reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE
and may be made publicly available by P802.15.
Evolution of WLAN/WPAN towards higher frequencies and higher throughput: bridging 5 and 60GHz?

Motorola Labs – USA and France
France Telecom R&D
Motivation

• **Observation:**
 – Current WLAN/PAN technologies is an initial necessary step stone towards massive multimedia content wireless access in very dense urban environments

• **One of the short range WLAN/WPAN goals:**
 – Provide high multimedia reliable data links in the home but also complement and enhance 3G network capabilities in order to provide public download hot spot services

• **Challenge:**
 – face large deployments of short range services and avoid spectrum congestion

• **A solution worth considering:**
 – need for higher capacity motivates the investigation of new bands providing a larger amount of spectrum available

• **Purpose of this presentation:**
 – study possible extensions of existing short range solutions in the 60GHz band in order to provide a solution to dense urban deployment granting nomadic terminal mobility in combination with higher throughput (300Mbps)
Short range technologies roadmap and evolutions: what is the next bold move?

- Max data rate (Mbps)
- Product date
- Application space
- Video data rate
- Still Imaging
- Video Streaming
- Text Messaging
- Voice

- Local Area WLAN Nomadic
- Wide Area Cellular Vehicular
- PAN
60GHz Spectrum panorama

- Spectrum opportunity: 3GHz (59-62GHz) of bandwidth available worldwide

<table>
<thead>
<tr>
<th>Frequency GHz</th>
<th>TX power / Ant.Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 55 56 57 58 59 60 61 62 63 64 65 66</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Licensed Band</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>Unlicensed Band</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Japan**
 - Licensed Band
 - Unlicensed Band
 - TX power: 100mW / 20dBi (licensed)
 - TX power: 10mW / 47dBi (unlicensed) (57dBm-eirp)

- **Europe**
 - TX power: 15dBW-eirp (45dBm-eirp)

- **US**
 - TX power: $500mW \times BW(MHz) / 100MHz$
 - Density (ave.): $9 \mu W/cm^2@3m$
 - Density (peak): $18 \mu W/cm^2@3m$
 - TX power: (40dBm-eirp)
60GHz initiatives

- Some relevant collaborative projects tackling with 60GHz...
 - The early ACTS MEDIAN
 - The completed RNRT COMINDOR (Thomson, FTR&D)
 - The on-going IST BROADWAY: bridging the 5GHz and the 60GHz bands
 - The FP6 Magnet/Winner projects: specific PHY evaluation dedicated to short range systems will be focused on mm-radio transmission

- Standardization groups
 - Japan: ARIB MMAC has considered the 60GHz band since the very beginning of WLANs standardization
 - Europe: ETSI BRAN is discussing creation of working group on 60GHz
 - USA: IEEE 802.15 has created a 60GHz Interest Group at the July 2003 meeting!
A possible solution for migrating towards higher frequencies: the BROADWAY project

• **The vision:**
 – extend and complement 5GHz broadband wireless LAN systems in the 60GHz range for providing a new solution to very dense urban deployments and hot spot coverage without sacrificing the user throughput expectations
 – guarantee nomadic terminal mobility in combination with higher throughput

• **The key objectives:**
 – bridge the 5GHz band and 59-65GHz bands by conceiving a dual frequency hybrid WLAN
 • granting smooth evolution from existing 5GHz OFDM to 60GHz
 • allowing backward compatibility to 5GHz systems
 • providing total system throughput >350Mbps through bandwidth expansion
 – **philosophy:** restrict proliferation of heterogeneous technologies, 60GHz HIPERSpot based on extensions of current 5GHz OFDM hardware
 – leverage existing 5GHz products for a low cost 60GHz product
System considerations for 5/60GHz operation

- Dual mode 5/60 GHz access point (AP) covering both bands full time
- Mobile terminals (MT) utilize one band at a time
- At 60 GHz exploit P2P to achieve high data rate
- Ad-hoc clustered architecture limited to 1-2 hops to alleviate shadowing effects
- Manage ad-hoc networking using TDD friendly frame structure to preserve QoS
- Address applications for vendor hot spots, public internet access, home, enterprise, and campus environments
Broadway System

- **Possible architecture for dual-mode operation:**
 - Leverage centralized architecture, a clustered structure has been defined for peer-to-peer communications in the 60 GHz band
 - The AP is responsible for the management of the system in both bands
 - Using a discovery and routing algorithm at 60 GHz the AP specifies clusters, cluster heads, and forward nodes
 - DLC/CL protocol stack has also been specified for AP and MT
PHY layer evolutions

• Higher throughput solutions will definitively be ultra wide band for coping with link budget and granting enough range.

• **Build on current technologies: muticarrier based solution?**
 – maintain compatibility without sacrificing innovation
 • research is constantly renewing OFDM: OFDM-CDMA, ZP-OFDM, PRP-OFDM, SC-OFDM…
 • frequency hopping over small number of bands: multiband OFDM?
 – achieve full coverage through Single Frequency Networks with remote antennas solving the shadowing issues
 – be robust in presence of multipath avoiding the system to collapse in extreme situations

• **Alternate candidates**
 – MIMO: IEEE802.11n (HTSG) spectrum efficient
 – UWB: IEEE802.15.3a

• **Relevance for 60GHz:**
 – Amount of spectrum available doesn’t require to strive for spectrum efficiency
 – UWB is still regulatory challenged in some regions
Path Loss and Range Analysis for an OFDM solution compatible with 5GHz technologies

- **Goal: maintain 5 GHz system carrier spacing**
 - Limit channel bandwidth to multiples of 20 MHz (40 to 240 MHz)
 - Limit number of subcarriers from 64 to 768 for the various bandwidths
 - Limit sub-carrier spacing from 312.5 kHz to 625 kHz
 - Enable range of 2-4m using 240 MHz and 26 m using 20 MHz

- **System parameters for preliminary range analysis**
 - OFDM parameters:
 - Carrier spacing: 625 kHz
 - Guard interval size: 800 ns
 - Oversampling rate 0.75
 - Transmit power: 10 dBm
 - Antenna gain: $G_{Tx} = 3$ dBi, $G_{Rx} = 3$ dBi
 - Rx noise figure: 8 dB
 - Hardware impairment margin: 2 dB
Path Loss and Range Analysis
Continued

- **Conclusions:**
 - For the enumerated system parameters 5m is achievable at 360 Mbps
 - For a given bit rate an increase in bandwidth is preferable over an increase in constellation size to realize more range, i.e.
 - 180 Mbps with 64QAM, R=3/4, 80 MHz with 128 carriers → 3.3 m range
 - 180 Mbps with 16QAM, R=9/16, 160 MHz with 256 carriers → 6.6 m range
 - 160 Mbps with QPSK, R=1/2, 320 MHz with 512 carriers → 10.3 m range
A dual band mobile terminal concept and technology trends

- 60 GHz MMIC realization has begun
- Link budget at 5 and 60 GHz has been completed
Conclusions

• Motorola is interesting in contributing to the 60GHz mm wave interest group
• This contribution proposes an instanciation of a solution for migrating to 60GHz while maintaining backward links with current 5GHz technologies
• 60GHz will likely be UWB because of the spectrum available: we need to define a rationale for picking the right modulation scheme.