
A Tutorial on Energy-Based Learning

Yann LeCun, Sumit Chopra, Raia Hadsell,
Marc’Aurelio Ranzato, and Fu Jie Huang

The Courant Institute of Mathematical Sciences,
New York University

{yann,sumit,raia,ranzato,jhuangfu}@cs.nyu.edu
http://yann.lecun.com

v1.0, October 19, 2006
To appear in “Predicting Structured Data”,

G. Bakir, T. Hofman, B. Schölkopf, A. Smola, B. Taskar (eds)

MIT Press, 2006

Abstract

Energy-Based Models (EBMs) capture dependencies between variables by as-
sociating a scalar energy to each configuration of the variables. Inference consists
in clamping the value of observed variables and finding configurations of the re-
maining variables that minimize the energy. Learning consists in finding an energy
function in which observed configurations of the variables are given lower energies
than unobserved ones. The EBM approach provides a common theoretical frame-
work for many learning models, including traditional discriminative and genera-
tive approaches, as well as graph-transformer networks, conditional random fields,
maximum margin Markov networks, and several manifold learning methods.

Probabilistic models must be properly normalized, which sometimes requires
evaluating intractable integrals over the space of all possible variable configura-
tions. Since EBMs have no requirement for proper normalization, this problem is
naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor
graphs, and they provide considerably more flexibility in the design of architec-
tures and training criteria than probabilistic approaches.

1 Introduction: Energy-Based Models

The main purpose of statistical modeling and machine learning is to encode depen-
dencies between variables. By capturing those dependencies, a model can be used to
answer questions about the values of unknown variables given the values of known
variables.

Energy-Based Models (EBMs) capture dependencies by associating a scalaren-
ergy (a measure of compatibility) to each configuration of the variables. Inference,
i.e., making a prediction or decision, consists in setting the value of observed variables

1

and finding values of the remaining variables that minimize the energy.Learningcon-
sists in finding an energy function that associates low energies to correct values of the
remaining variables, and higher energies to incorrect values. A loss functional, mini-
mized during learning, is used to measure the quality of the available energy functions.
Within this common inference/learning framework, the widechoice of energy func-
tions and loss functionals allows for the design of many types of statistical models,
both probabilistic and non-probabilistic.

Energy-based learning provides a unified framework for manyprobabilistic and
non-probabilistic approaches to learning, particularly for non-probabilistic training of
graphical models and other structured models. Energy-based learning can be seen as an
alternative to probabilistic estimation for prediction, classification, or decision-making
tasks. Because there is no requirement for proper normalization, energy-based ap-
proaches avoid the problems associated with estimating thenormalization constant in
probabilistic models. Furthermore, the absence of the normalization condition allows
for much more flexibility in the design of learning machines.Most probabilistic mod-
els can be viewed as special types of energy-based models in which the energy function
satisfies certain normalizability conditions, and in whichthe loss function, optimized
by learning, has a particular form.

This chapter presents a tutorial on energy-based models, with an emphasis on their
use for structured output problems and sequence labeling problems. Section 1 intro-
duces energy-based models and describes deterministic inference through energy min-
imization. Section 2 introduces energy-based learning andthe concept of the loss func-
tion. A number of standard and non-standard loss functions are described, including
the perceptron loss, several margin-based losses, and the negative log-likelihood loss.
The negative log-likelihood loss can be used to train a modelto produce conditional
probability estimates. Section 3 shows how simple regression and classification mod-
els can be formulated in the EBM framework. Section 4 concerns models that contain
latent variables. Section 5 analyzes the various loss functions in detail and gives suf-
ficient conditions that a loss function must satisfy so that its minimization will cause
the model to approach the desired behavior. A list of “good” and “bad” loss functions
is given. Section 6 introduces the concept of non-probabilistic factor graphs and infor-
mally discusses efficient inference algorithms. Section 7 focuses on sequence labeling
and structured output models. Linear models such as max-margin Markov networks
and conditional random fields are re-formulated in the EBM framework. The liter-
ature on discriminative learning for speech and handwriting recognition, going back
to the late 80’s and early 90’s, is reviewed. This includes globally trained systems
that integrate non-linear discriminant functions, such asneural networks, and sequence
alignment methods, such as dynamic time warping and hidden Markov models. Hier-
archical models such as the graph transformer network architecture are also reviewed.
Finally, the differences, commonalities, and relative advantages of energy-based ap-
proaches, probabilistic approaches, and sampling-based approximate methods such as
contrastive divergence are discussed in Section 8.

2

YXO b s e r v e d v a r i a b l e s(i n p u t) V a r i a b l e s t o b ep r e d i c t e d(a n s w e r)H u m a nA n i m a lA i r p l a n eC a rT r u c k

H u m a nA n i m a lA i r p l a n eC a rT r u c kE n e r g y F u n c t i o n
E(Y, X)

E(Y, X)

Figure 1:A model measures the compatibility between observed variablesX and variables to
be predictedY using anenergy functionE(Y,X). For example,X could be the pixels of an
image, andY a discrete label describing the object in the image. GivenX, the model produces
the answerY that minimizes the energyE.

1.1 Energy-Based Inference

Let us consider a model with two sets of variables,X andY , as represented in Fig-
ure 1. VariableX could be a vector containing the pixels from an image of an object.
VariableY could be a discrete variable that represents the possible category of the ob-
ject. For example,Y could take six possible values: animal, human figure, airplane,
truck, car, and “none of the above”. The model is viewed as anenergy functionwhich
measures the “goodness” (or badness) of each possible configuration ofX andY . The
output number can be interpreted as the degree ofcompatibilitybetween the values of
X andY . In the following, we use the convention that small energy values correspond
to highly compatible configurations of the variables, whilelarge energy values corre-
spond to highly incompatible configurations of the variables. Functions of this type are
given different names in different technical communities;they may be called contrast
functions, value functions, or negative log-likelihood functions. In the following, we
will use the termenergy functionand denote itE(Y, X). A distinction should be made
between the energy function, which is minimized by the inference process, and the loss
functional (introduced in Section 2), which is minimized bythe learning process.

In the most common use of a model, the inputX is given (observed from the world),
and the model produces the answerY that is most compatible with the observedX .
More precisely, the model must produce the valueY ∗, chosen from a setY, for which
E(Y, X) is the smallest:

Y ∗ = argminY ∈YE(Y, X). (1)

When the size of the setY is small, we can simply computeE(Y, X) for all possible
values ofY ∈ Y and pick the smallest.

3

E(Y, X)

X YE i n s t e i n E(Y, X)

X Y[% 0 . 9 0 4 1 . 1 1 6 8 . 5 1 3 4 . 2 5 % 0 . 1 0 0 0 . 0 5][0 . 8 4 1 0 9 . 6 2 1 0 9 . 6 2 3 4 . 2 5 0 . 3 7 0 % 0 . 0 4][0 . 7 6 6 8 . 5 1 1 6 4 . 4 4 3 4 . 2 5 % 0 . 4 2 0 0 . 1 6][0 . 1 7 2 4 6 . 6 6 1 2 3 . 3 3 3 4 . 2 5 0 . 8 5 0 % 0 . 0 4][0 . 1 6 1 7 8 . 1 4 5 4 . 8 1 3 4 . 2 5 0 . 3 8 0 % 0 . 1 4]
E(Y, X)

X Y

E(Y, X)

X Y" t h i s " E(Y, X)

X Y" T h i s i s e a s y " (p r o n o u n v e r b a d j) E(Y, X)

X Y

(a) (b) (c)

(d) (e) (f)
Figure 2:Several applications of EBMs:(a) face recognition:Y is a high-cardinality discrete
variable; (b) face detection and pose estimation:Y is a collection of vectors with location
and pose of each possible face;(c) image segmentation:Y is an image in which each pixel
is a discrete label;(d-e) handwriting recognition and sequence labeling:Y is a sequence of
symbols from a highly structured but potentially infinite set (the set of English sentences). The
situation is similar for many applications in natural language processing and computational
biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).

4

In general, however, picking the bestY may not be simple. Figure 2 depicts sev-
eral situations in whichY may be too large to make exhaustive search practical. In
Figure 2(a), the model is used to recognize a face. In this case, the setY is discrete
and finite, but its cardinality may be tens of thousands [19].In Figure 2(b), the model
is used to find the faces in an image and estimate their poses. The setY contains a
binary variable for each location indicating whether a faceis present at that location,
and a set of continuous variables representing the size and orientation of the face [54].
In Figure 2(c), the model is used to segment a biological image: each pixel must be
classified into one of five categories (cell nucleus, nuclearmembrane, cytoplasm, cell
membrane, external medium). In this case,Y contains all theconsistentlabel images,
i.e. the ones for which the nuclear membranes are encirclingthe nuclei, the nuclei and
cytoplasm are inside the cells walls, etc. The set is discrete, but intractably large. More
importantly, members of the set must satisfy complicated consistency constraints [53].
In Figure 2(d), the model is used to recognize a handwritten sentence. HereY con-
tains all possible sentences of the English language, whichis a discrete but infinite set
of sequences of symbols [43]. In Figure 2(f), the model is used to restore an image
(by cleaning the noise, enhancing the resolution, or removing scratches). The setY
contains all possible images (all possible pixel combinations). It is a continuous and
high-dimensional set.

For each of the above situations, a specific strategy, calledtheinference procedure,
must be employed to find theY that minimizesE(Y, X). In many real situations,
the inference procedure will produce an approximate result, which may or may not
be the global minimum ofE(Y, X) for a givenX . In fact, there may be situations
whereE(Y, X) has several equivalent minima. The best inference procedure to use
often depends on the internal structure of the model. For example, ifY is continuous
andE(Y, X) is smooth and well-behaved with respect toY , one may use a gradient-
based optimization algorithm. IfY is a collection of discrete variables and the energy
function can be expressed as afactor graph, i.e. a sum of energy functions (factors)
that depend on different subsets of variables, efficient inference procedures for factor
graphs can be used (see Section 6) [55, 47]. A popular exampleof such a procedure
is themin-sumalgorithm. When each element ofY can be represented as a path in
a weighted directed acyclic graph, then the energy for a particular Y is the sum of
values on the edges and nodes along a particular path. In thiscase, the bestY can be
found efficiently using dynamic programming (e.g with the Viterbi algorithm orA∗).
This situation often occurs in sequence labeling problems such as speech recognition,
handwriting recognition, natural language processing, and biological sequence analysis
(e.g. gene finding, protein folding prediction, etc). Different situations may call for
the use of other optimization procedures, including continuous optimization methods
such as linear programming, quadratic programming, non-linear optimization methods,
or discrete optimization methods such as simulated annealing, graph cuts, or graph
matching. In many cases, exact optimization is impractical, and one must resort to
approximate methods, including methods that use surrogateenergy functions (such as
variational methods).

5

1.2 What Questions Can a Model Answer?

In the preceding discussion, we have implied that the question to be answered by the
model is “What is theY that is most compatible with thisX?”, a situation that occurs
in prediction, classificationor decision-makingtasks. However, a model may be used
to answer questions of several types:

1. Prediction, classification, and decision-making: “Which value ofY is most com-
patible with thisX?’ This situation occurs when the model is used to make hard
decisions or to produce an action. For example, if the model is used to drive a
robot and avoid obstacles, it must produce a single best decision such as “steer
left”, “steer right”, or “go straight”.

2. Ranking: “Is Y1 or Y2 more compatible with thisX?” This is a more complex
task than classification because the system must be trained to produce a complete
ranking of all the answers, instead of merely producing the best one. This situ-
ation occurs in many data mining applications where the model is used to select
multiple samples that best satisfy a given criterion.

3. Detection: “Is this value ofY compatible withX?” Typically, detection tasks,
such as detecting faces in images, are performed by comparing the energy of a
facelabel with a threshold. Since the threshold is generally unknown when the
system is built, the system must be trained to produce energyvalues that increase
as the image looks less like a face.

4. Conditional density estimation: “What is the conditional probability distribution
overY givenX?” This case occurs when the output of the system is not used
directly to produce actions, but is given to a human decisionmaker or is fed to
the input of another, separately built system.

We often think ofX as a high-dimensional variable (e.g. an image) andY as a
discrete variable (e.g. a label), but the converse case is also common. This occurs
when the model is used for such applications as image restoration, computer graphics,
speech and language production, etc. The most complex case is when bothX andY
are high-dimensional.

1.3 Decision Making versus Probabilistic Modeling

For decision-making tasks, such as steering a robot, it is merely necessary that the sys-
tem give the lowest energy to the correct answer. The energies of other answers are
irrelevant, as long as they are larger. However, the output of a system must sometimes
be combined with that of another system, or fed to the input ofanother system (or to a
human decision maker). Because energies are uncalibrated (i.e. measured in arbitrary
units), combining two, separately trained energy-based models is not straightforward:
there is noa priori guarantee that their energy scales are commensurate. Calibrating
energies so as to permit such combinations can be done in a number of ways. However,
the onlyconsistentway involves turning the collection of energies for all possible out-
puts into a normalized probability distribution. The simplest and most common method

6

for turning a collection of arbitrary energies into a collection of numbers between 0 and
1 whose sum (or integral) is 1 is through theGibbs distribution:

P (Y |X) =
e−βE(Y,X)

∫

y∈Y
e−βE(y,X)

, (2)

whereβ is an arbitrary positive constant akin to an inverse temperature, and the denom-
inator is called thepartition function(by analogy with similar concepts in statistical
physics). The choice of the Gibbs distribution may seem arbitrary, but other proba-
bility distributions can be obtained (or approximated) through a suitable re-definition
of the energy function. Whether the numbers obtained this way are good probability
estimates does not depend on how energies are turned into probabilities, but on how
E(Y, X) is estimated from data.

It should be noted that the above transformation of energiesinto probabilities is
only possible if the integral

∫

y∈Y
e−βE(y,X) converges. This somewhat restricts the

energy functions and domainsY that can be used. More importantly, there are many
practical situations where computing the partition function is intractable (e.g. when
Y has high cardinality), or outright impossible (e.g. whenY is a high dimensional
variable and the integral has no analytical solution). Hence probabilistic modeling
comes with a high price, and should be avoided when the application does not require
it.

2 Energy-Based Training: Architecture and Loss Func-
tion

Training an EBM consists in finding an energy function that produces the bestY for
anyX . The search for the best energy function is performed withina family of energy
functionsE indexed by a parameterW

E = {E(W, Y, X) : W ∈ W}. (3)

Thearchitectureof the EBM is the internal structure of the parameterized energy func-
tion E(W, Y, X). At this point, we put no particular restriction on the nature of X ,
Y , W , andE . WhenX andY are real vectors,E could be as simple as a linear com-
bination of basis functions (as in the case of kernel methods), or a set of neural net
architectures and weight values. Section gives examples ofsimple architectures for
common applications to classification and regression. WhenX andY are variable-size
images, sequences of symbols or vectors, or more complex structured objects,E may
represent a considerably richer class of functions. Sections 4, 6 and 7 discuss several
examples of such architectures. One advantage of the energy-based approach is that it
puts very little restrictions on the nature ofE .

To train the model for prediction, classification, or decision-making, we are given
a set of training samplesS = {(X i, Y i) : i = 1 . . . P}, whereX i is the input for
the i-th training sample, andY i is the corresponding desired answer. In order to find
the best energy function in the familyE , we need a way to assess the quality of any

7

particular energy function, based solely on two elements: the training set, and our prior
knowledge about the task. This quality measure is called theloss functional(i.e. a
function of function) and denotedL(E,S). For simplicity, we often denote itL(W,S)
and simply call it theloss function. The learning problem is simply to find theW that
minimizes the loss:

W ∗ = min
W∈W

L(W,S). (4)

For most cases, the loss functional is defined as follows:

L(E,S) =
1

P

P
∑

i=1

L(Y i, E(W,Y, X i)) + R(W). (5)

It is an average taken over the training set of aper-sample loss functional, denoted
L(Y i, E(W,Y, X i)), which depends on the desired answerY i and on the energies
obtained by keeping the input sample fixed and varying the answer Y . Thus, for each
sample, we evaluate a “slice” of the energy surface. The termR(W) is theregularizer,
and can be used to embed our prior knowledge about which energy functions in our
family are preferable to others (in the absence of training data). With this definition,
the loss is invariant under permutations of the training samples and under multiple
repetitions of the training set.

Naturally, the ultimate purpose of learning is to produce a model that will give
good answers for new input samples that are not seen during training. We can rely
on general results from statistical learning theory which guarantee that, under simple
interchangeability conditions on the samples and general conditions on the family of
energy functions (finite VC dimension), the deviation between the value of the loss after
minimization on the training set, and the loss on a large, separate set of test samples is
bounded by a quantity that converges to zero as the size of training set increases [60].

2.1 Designing a Loss Functional

Intuitively, the per-sample loss functional should be designed in such a way that it
assigns a low loss towell-behavedenergy functions: energy functions that give the
lowest energy to the correct answer and higher energy to all other (incorrect) answers.
Conversely, energy functions that do not assign the lowest energy to the correct answers
would have a high loss. Characterizing the appropriatenessof loss functions (the ones
that select the best energy functions) is further discussedin following sections.

Considering only the task of training a model to answer questions of type 1 (pre-
diction, classification and decision-making), the main intuition of the energy-based ap-
proach is as follows. Training an EBM consists in shaping theenergy function, so that
for any givenX , the inference algorithm will produce the desired value forY . Since
the inference algorithm selects theY with the lowest energy, the learning procedure
must shape the energy surface so that the desired value ofY has lower energy than all
other (undesired) values. Figures 3 and 4 show examples of energy as a function ofY
for a given input sampleX i in cases whereY is a discrete variable and a continuous
scalar variable. We note three types of answers:

• Y i: the correct answer

8

H u m a nA n i m a lA i r p l a n eC a rT r u c k
E(Y, X)

A f t e rt r a i n i n gH u m a nA n i m a lA i r p l a n eC a rT r u c k
E(Y, X)

Figure 3: How training affects the energies of the possible answers inthe discrete case: the
energy of the correct answer is decreased, and the energies of incorrect answers are increased,
particularly if they are lower than that of the correct answer.

A n s w e r Ȳ
i

Y
i

p u l l u pp u s h d o w n
(Y)

E
(W

,
·
,
X

i
)

A n s w e r Ȳ
i

Y
i

(Y)

E
(W

,
·
,
X

i
)A f t e rt r a i n i n g

Figure 4:The effect of training on the energy surface as a function of the answerY in the con-
tinuous case. After training, the energy of the correct answer Y i is lower than that of incorrect
answers.

9

• Y ∗i: the answer produced by the model, i.e. the answer with the lowest energy.

• Ȳ i: the most offending incorrect answer, i.e. the answer that has the lowest
energy among all the incorrect answers. To define this answerin the continuous
case, we can simply view all answers within a distanceǫ of Y i as correct, and all
answers beyond that distance as incorrect.

With a properly designed loss function, the learning process should have the effect
of “pushing down” onE(W, Y i, X i), and “pulling up” on the incorrect energies, par-
ticularly onE(W, Ȳ i, X i). Different loss functions do this in different ways. Section 5
gives sufficient conditions that the loss function must satisfy in order to be guaranteed
to shape the energy surface correctly. We show that some widely used loss functions
do not satisfy the conditions, while others do.

To summarize: given a training setS, building and training an energy-based model
involves designing four components:

1. The architecture: the internal structure ofE(W, Y, X).

2. The inference algorithm: the method for finding a value ofY that minimizes
E(W, Y, X) for any givenX .

3. The loss function: L(W,S) measures the quality of an energy function using the
training set.

4. The learning algorithm: the method for finding aW that minimizes the loss
functional over the family of energy functionsE , given the training set.

Properly designing the architecture and the loss function is critical. Any prior knowl-
edge we may have about the task at hand is embedded into the architecture and into
the loss function (particularly the regularizer). Unfortunately, not all combinations of
architectures and loss functions are allowed. With some combinations, minimizing the
loss will not make the model produce the best answers. Choosing the combinations of
architecture and loss functions that can learn effectivelyand efficiently is critical to the
energy-based approach, and thus is a central theme of this tutorial.

2.2 Examples of Loss Functions

We now describe a number of standard loss functions that havebeen proposed and used
in the machine learning literature. We shall discuss them and classify them as “good”
or “bad” in an energy-based setting. For the time being, we set aside the regularization
term, and concentrate on the data-dependent part of the lossfunction.

2.2.1 Energy Loss

The simplest and the most straightforward of all the loss functions is the energy loss.
For a training sample(X i, Y i), the per-sample loss is defined simply as:

Lenergy(Y i, E(W,Y, X i)) = E(W, Y i, X i). (6)

10

−5 −4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

E
I
 − E

C

Lo
ss

: L

m

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

E
I
 − E

C

Lo
ss

: L

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

Energy:

Lo
ss

: L

E
C

E
I

/

Figure 5:The hinge loss (left) and log loss (center) penalizeE(W, Y i, Xi)−E(W, Ȳ i, Xi) lin-
early and logarithmically, respectively. The square-square loss (right) separately penalizes large
values ofE(W,Y i, Xi) (solid line) and small values ofE(W, Ȳ i, Xi) (dashed line) quadrati-
cally.

This loss function, although very popular for things like regression and neural network
training, cannot be used to train most architectures: whilethis loss will push down
on the energy of the desired answer, it will not pull up on any other energy. With
some architectures, this can lead to acollapsed solutionin which the energy is con-
stant and equal to zero. The energy loss will only work with architectures that are
designed in such a way that pushing down onE(W, Y i, X i) will automatically make
the energies of the other answers larger. A simple example ofsuch an architecture is
E(W, Y i, X i) = ||Y i − G(W, X i)||2, which corresponds to regression with mean-
squared error withG being the regression function.

2.2.2 Generalized Perceptron Loss

The generalized perceptron loss for a training sample(X i, Y i) is defined as

Lperceptron(Y i, E(W,Y, X i)) = E(W, Y i, X i)− min
Y ∈Y

E(W, Y, X i). (7)

This loss is always positive, since the second term is a lowerbound on the first term.
Minimizing this loss has the effect of pushing down onE(W, Y i, X i), while pulling
up on the energy of the answer produced by the model.

While the perceptron loss has been widely used in many settings, including for
models with structured outputs such as handwriting recognition [43] and parts of speech
tagging [21], it has a major deficiency: there is no mechanismfor creating an energy
gap between the correct answer and the incorrect ones. Hence, as with the energy loss,
the perceptron loss may produce flat (or almost flat) energy surfaces if the architecture
allows it. Consequently, a meaningful, uncollapsed resultis only guaranteed with this
loss if a model is used that cannot produce a flat energy surface. For other models, one
cannot guarantee anything.

2.2.3 Generalized Margin Losses

Several loss functions can be described asmarginlosses; the hinge loss, log loss, LVQ2
loss, minimum classification error loss, square-square loss, and square-exponential loss
all use some form of margin to create an energy gap between thecorrect answer and the

11

incorrect answers. Before discussing the generalized margin loss we give the following
definitions.

Definition 1 Let Y be a discrete variable. Then for a training sample(X i, Y i), the
most offending incorrect answer Ȳ i is the answer that has the lowest energy among
all answers that are incorrect:

Ȳ i = argminY ∈YandY 6=Y iE(W, Y, X i). (8)

If Y is a continuous variable then the definition of the most offending incorrect answer
can be defined in a number of ways. The simplest definition is asfollows.

Definition 2 LetY be a continuous variable. Then for a training sample(X i, Y i), the
most offending incorrect answer Ȳ i is the answer that has the lowest energy among
all answers that are at leastǫ away from the correct answer:

Ȳ i = argminY ∈Y,‖Y −Y i‖>ǫE(W, Y, X i). (9)

The generalized margin loss is a more robust version of the generalized perceptron
loss. It directly uses the energy of the most offending incorrect answer in the contrastive
term:

Lmargin(W, Y i, X i) = Qm

(

E(W, Y i, X i), E(W, Ȳ i, X i)
)

. (10)

Herem is a positive parameter called themarginandQm(e1, e2) is a convex function
whose gradient has a positive dot product with the vector[1,−1] in the region where
E(W, Y i, X i)+m > E(W, Ȳ i, X i). In other words, the loss surface is slanted toward
low values ofE(W, Y i, X i) and high values ofE(W, Ȳ i, X i) whereverE(W, Y i, X i)
is not smaller thanE(W, Ȳ i, X i) by at leastm. Two special cases of the generalized
margin loss are given below:

Hinge Loss: A particularly popular example of generalized margin lossis the
hinge loss, which is used in combination with linearly parameterized energies and a
quadratic regularizer in support vector machines, supportvector Markov models [1],
and maximum-margin Markov networks [58]:

Lhinge(W, Y i, X i) = max
(

0, m + E(W, Y i, X i)− E(W, Ȳ i, X i)
)

, (11)

wherem is the positive margin. The shape of this loss function is given in Figure 5. The
difference between the energies of the correct answer and the most offending incorrect
answer is penalized linearly when larger than−m. The hinge loss only depends on
energy differences, hence individual energies are not constrained to take any particular
value.

Log Loss: a common variation of the hinge loss is thelog loss, which can be seen
as a “soft” version of the hinge loss with an infinite margin (see Figure 5, center):

Llog(W, Y i, X i) = log
(

1 + eE(W,Y i,Xi)−E(W,Ȳ i,Xi)
)

. (12)

LVQ2 Loss: One of the very first proposals for discriminatively training sequence
labeling systems (particularly speech recognition systems) is a version of Kohonen’s

12

LVQ2 loss. This loss has been advocated by Driancourt and Bottou since the early
90’s [25, 28, 27, 24, 49, 50]:

Llvq2(W, Y i, X i) = min

(

1, max

(

0,
E(W, Y i, X i)− E(W, Ȳ i, X i)

δE(W, Ȳ i, X i)

))

, (13)

whereδ is a positive parameter. LVQ2 is a zero-margin loss, but it has the peculiarity of
saturating the ratio betweenE(W, Y i, X i) andE(W, Ȳ i, X i) to 1 + δ. This mitigates
the effect of outliers by making them contribute a nominal cost M to the total loss.
This loss function is a continuous approximation of the number of classification errors.
Unlike generalized margin losses, the LVQ2 loss is non-convex in E(W, Y i, X i) and
E(W, Ȳ i, X i).

MCE Loss: The Minimum Classification Error loss was originally proposed by
Juang et al. in the context of discriminative training for speech recognition sys-
tems [37]. The motivation was to build a loss function that also approximately counts
the number of classification errors, while being smooth and differentiable. The number
of classification errors can be written as:

θ
(

E(W, Y i, X i)− E(W, Ȳ i, X i)
)

, (14)

whereθ is the step function (equal to zero for negative arguments, and 1 for positive
arguments). However, this function is not differentiable,and therefore very difficult to
optimize. The MCE Loss “softens” it with a sigmoid:

Lmce(W, Y i, X i) = σ
(

E(W, Y i, X i)− E(W, Ȳ i, X i)
)

, (15)

whereσ is the logistic functionσ(x) = (1 + e−x)−1. As with the LVQ2 loss, the satu-
ration ensures that mistakes contribute a nominal cost to the overall loss. Although the
MCE loss does not have an explicit margin, it does create a gapbetweenE(W, Y i, X i)
andE(W, Ȳ i, X i). The MCE loss is non-convex.

Square-Square Loss: Unlike the hinge loss, the square-square loss treats the en-
ergy of the correct answer and the most offending answer separately [45, 30]:

Lsq−sq(W, Y i, X i) = E(W, Y i, X i)2 +
(

max(0, m− E(W, Ȳ i, X i))
)2

. (16)

Large values ofE(W, Y i, X i) and small values ofE(W, Ȳ i, X i) below the marginm
are both penalized quadratically (see Figure 5). Unlike themargin loss, the square-
square loss “pins down” the correct answer energy at zero and“pins down” the incor-
rect answer energies abovem. Therefore, it is only suitable for energy functions that
are bounded below by zero, notably in architectures whose output module measures
some sort of distance.

Square-Exponential [45, 19, 54]: Thesquare-exponentialloss is similar to the
square-squareloss. It only differs in the contrastive term: instead of a quadratic term
it has the exponential of the negative energy of the most offending incorrect answer:

Lsq−exp(W, Y i, X i) = E(W, Y i, X i)2 + γe−E(W,Ȳ i,Xi), (17)

whereγ is a positive constant. Unlike the square-square loss, thisloss has an infinite
margin and pushes the energy of the incorrect answers to infinity with exponentially
decreasing force.

13

2.2.4 Negative Log-Likelihood Loss

The motivation for the negative log-likelihood loss comes from probabilistic modeling.
It is defined as:

Lnll(W, Y i, X i) = E(W, Y i, X i) + Fβ(W,Y, X i). (18)

WhereF is thefree energyof the ensemble{E(W, y, X i), y ∈ Y}:

Fβ(W,Y, X i) =
1

β
log

(
∫

y∈Y

exp
(

−βE(W, y, X i)
)

)

. (19)

whereβ is a positive constant akin to an inverse temperature. This loss can only be
used if the exponential of the negative energy is integrableoverY, which may not be
the case for some choices of energy function orY.

The form of the negative log-likelihood loss stems from a probabilistic formulation
of the learning problem in terms of the maximum conditional probability principle.
Given the training setS, we must find the value of the parameter that maximizes the
conditional probability of all the answers given all the inputs in the training set. Assum-
ing that the samples are independent, and denoting byP (Y i|X i, W) the conditional
probability ofY i givenX i that is produced by our model with parameterW , the condi-
tional probability of the training set under the model is a simple product over samples:

P (Y 1, . . . , Y P |X1, . . . , XP , W) =

P
∏

i=1

P (Y i|X i, W). (20)

Applying the maximum likelihood estimation principle, we seek the value ofW that
maximizes the above product, or the one that minimizes the negativelog of the above
product:

− log
P
∏

i=1

P (Y i|X i, W) =
P
∑

i=1

− log P (Y i|X i, W). (21)

Using the Gibbs distribution (Equation 2), we get:

− log
P
∏

i=1

P (Y i|X i, W) =
P
∑

i=1

βE(W, Y i, X i) + log

∫

y∈Y

e−βE(W,y,Xi). (22)

The final form of the negative log-likelihood loss is obtained by dividing the above
expression byP andβ (which has no effect on the position of the minimum):

Lnll(W,S) =
1

P

P
∑

i=1

(

E(W, Y i, X i) +
1

β
log

∫

y∈Y

e−βE(W,y,Xi)

)

. (23)

While many of the previous loss functions involved onlyE(W, Ȳ i, X i) in their con-
trastive term, the negative log-likelihood loss combines all the energies for all val-
ues ofY in its contrastive termFβ(W,Y, X i). This term can be interpreted as the

14

Helmholtz free energy (log partition function) of the ensemble of systems with ener-
giesE(W, Y, X i), Y ∈ Y. This contrastive term causes the energies of all the answers
to be pulled up. The energy of the correct answer is also pulled up, but not as hard as it
is pushed down by the first term. This can be seen in the expression of the gradient for
a single sample:

∂Lnll(W, Y i, X i)

∂W
=

∂E(W, Y i, X i)

∂W
−

∫

Y ∈Y

∂E(W, Y, X i)

∂W
P (Y |X i, W), (24)

whereP (Y |X i, W) is obtained through the Gibbs distribution:

P (Y |X i, W) =
e−βE(W,Y,Xi)

∫

y∈Y
e−βE(W,y,Xi)

. (25)

Hence, the contrastive term pulls up on the energy of each answer with a force propor-
tional to the likelihood of that answer under the model. Unfortunately, there are many
interesting models for which computing the integral overY is intractable. Evaluating
this integral is a major topic of research. Considerable efforts have been devoted to ap-
proximation methods, including clever organization of thecalculations, Monte-Carlo
sampling methods, and variational methods. While these methods have been devised as
approximate ways of minimizing the NLL loss, they can be viewed in the energy-based
framework as different strategies for choosing theY ’s whose energies will be pulled
up.

Interestingly, the NLL loss reduces to the generalized perceptron loss whenβ →∞
(zero temperature), and reduces to the log loss (Eq. 12) whenY has two elements (e.g.
binary classification).

The NLL loss has been used extensively by many authors under various names. In
the neural network classification literature, it is known asthecross-entropy loss[57]. It
was also used by Bengio et al. to train an energy-based language model [9]. It has been
widely used under the namemaximum mutual information estimationfor discrimina-
tively training speech recognition systems since the late 80’s, including hidden Markov
models with mixtures of Gaussians [3], and HMM-neural net hybrids [6, 7, 31, 5].
It has also been used extensively for global discriminativetraining of handwriting
recognition systems that integrate neural nets and hidden Markov models under the
namesmaximum mutual information[11, 41, 12, 42, 14] anddiscriminative forward
training [43]. Finally, it is the loss function of choice for trainingother probabilistic
discriminative sequence labeling models such as input/output HMM [10], conditional
random fields [40], and discriminative random fields [39].

Minimum Empirical Error Loss : Some authors have argued that the negative log
likelihood loss puts too much emphasis on mistakes: Eq. 20 isa product whose value is
dominated by its smallest term. Hence, Ljolje et al. [46] proposed theminimum empir-
ical error loss, which combines the conditional probabilities of the samples additively
instead of multiplicatively:

Lmee(W, Y i, X i) = 1− P (Y i|X i, W). (26)

15

Substituting Equation 2 we get:

Lmee(W, Y i, X i) = 1−
e−βE(W,Y i,Xi)

∫

y∈Y
e−βE(W,y,Xi)

. (27)

As with the MCE loss and the LVQ2 loss, the MEE loss saturates the contribution
of any single error. This makes the system more robust to label noise and outliers,
which is of particular importance to such applications suchas speech recognition, but
it makes the loss non-convex. As with the NLL loss, MEE requires evaluating the
partition function.

3 Simple Architectures

To substantiate the ideas presented thus far, this section demonstrates how simple mod-
els of classification and regression can be formulated as energy-based models. This sets
the stage for the discussion of good and bad loss functions, as well as for the discussion
of advanced architectures for structured prediction.

D(GW (X), Y)

X Y X Y

−Y · GW (X)

X Y

g0 g1 g2

E(W,Y, X)E(W,Y, X)

GW (X) GW (X) GW (X)

E(W,Y, X) =

3∑

k=1

δ(Y − k)gk

Figure 6: Simple learning models viewed as EBMs:(a) a regressor: The energy is the dis-
crepancy between the output of the regression functionGW (X) and the answerY . The best
inference is simplyY ∗ = GW (X); (b) a simple two-class classifier:The set of possible an-
swers is{−1, +1}. The best inference isY ∗ = sign(GW (X)); (c) a multiclass classifier:The
discriminant function produces one value for each of the three categories. The answer, which
can take three values, controls the position of a “switch”, which connects one output of the dis-
criminant function to the energy function. The best inference is the index of the smallest output
component ofGW (X).

3.1 Regression

Figure 6(a) shows a simple architecture for regression or function approximation. The
energy function is the squared error between the output of a regression functionGW (X)
and the variable to be predictedY , which may be a scalar or a vector:

E(W, Y, X) =
1

2
||GW (X)− Y ||2. (28)

16

The inference problem is trivial: the value ofY that minimizesE is equal toGW (X).
The minimum energy is always equal to zero. When used with this architecture, the
energy loss, perceptron loss, and negative log-likelihoodloss are all equivalent because
the contrastive term of the perceptron loss is zero, and thatof the NLL loss is constant
(it is a Gaussian integral with a constant variance):

Lenergy(W,S) =
1

P

P
∑

i=1

E(W, Y i, X i) =
1

2P

P
∑

i=1

||GW (X i)− Y i||2. (29)

This corresponds to standard regression with mean-squarederror.
A popular form of regression occurs whenG is a linear function of the parameters:

GW (X) =

N
∑

k=1

wkφk(X) = WT Φ(X). (30)

Theφk(X) are a set ofN features, andwk are the components of anN -dimensional
parameter vectorW . For concision, we use the vector notationWT Φ(X), whereWT

denotes the transpose ofW , andΦ(X) denotes the vector formed by eachφk(X). With
this linear parameterization, training with the energy loss reduces to an easily solvable
least-squares minimization problem, which is convex:

W ∗ = argminW

[

1

2P

P
∑

i=1

||WT Φ(X i)− Y i||2

]

. (31)

In simple models, the feature functions are hand-crafted bythe designer, or separately
trained from unlabeled data. In the dual form of kernel methods, they are defined as
φk(X) = K(X, Xk), k = 1 . . . P , whereK is the kernel function. In more complex
models such as multilayer neural networks and others, theφ’s may themselves be pa-
rameterized and subject to learning, in which case the regression function is no longer
a linear function of the parameters and hence the loss function may not be convex in
the parameters.

3.2 Two-Class Classifier

Figure 6(b) shows a simple two-class classifier architecture. The variable to be pre-
dicted is binary:Y = {−1, +1}. The energy function can be defined as:

E(W, Y, X) = −Y GW (X), (32)

whereGW (X) is a scalar-valueddiscriminant functionparameterized byW . Inference
is trivial:

Y ∗ = argminY ∈{−1,1} − Y GW (X) = sign(GW (X)). (33)

Learning can be done using a number of different loss functions, which include the
perceptron loss, hinge loss, and negative log-likelihood loss. Substituting Equations 32
and 33 into the perceptron loss (Eq. 7), we get:

Lperceptron(W,S) =
1

P

P
∑

i=1

(

sign(GW (X i))− Y i
)

GW (X i). (34)

17

The stochastic gradient descent update rule to minimize this loss is:

W ←W + η
(

Y i − sign(GW (X i)
) ∂GW (X i)

∂W
, (35)

whereη is a positive step size. If we chooseGW (X) in the family of linear models,
the energy function becomesE(W, Y, X) = −Y WT Φ(X) and the perceptron loss
becomes:

Lperceptron(W,S) =
1

P

P
∑

i=1

(

sign(WT Φ(X i))− Y i
)

WT Φ(X i), (36)

and the stochastic gradient descent update rule becomes thefamiliar perceptron learn-
ing rule:W ←W + η

(

Y i − sign(WT Φ(X i))
)

Φ(X i).
The hinge loss (Eq. 11) with the two-class classifier energy (Eq. 32) yields:

Lhinge(W,S) =
1

P

P
∑

i=1

max(0, m + 2Y iGW (X i)). (37)

Using this loss withGW (X) = WT X and a regularizer of the form||W ||2 gives the
familiar linear support vector machine.

The negative log-likelihood loss (Eq. 23) with Equation 32 yields:

Lnll(W,S) =
1

P

P
∑

i=1

[

−Y iGW (X i) + log
(

eY iGW (Xi) + e−Y iGW (Xi)
)]

. (38)

Using the fact thatY = {−1, +1}, we obtain:

Lnll(W,S) =
1

P

P
∑

i=1

log
(

1 + e−2Y iGW (Xi)
)

, (39)

which is equivalent to the log loss (Eq. 12). Using a linear model as described above,
the loss function becomes:

Lnll(W,S) =
1

P

P
∑

i=1

log
(

1 + e−2Y iW T Φ(Xi)
)

. (40)

This particular combination of architecture and loss is thefamiliar logistic regression
method.

3.3 Multiclass Classifier

Figure 6(c) shows an example of architecture for multiclassclassification for 3 classes.
A discriminant functionGW (X) produces an output vector[g1, g2, . . . , gC] with one
component for each of theC categories. Each componentgj can be interpreted as
a “penalty” for assigningX to the jth category. A discrete switch module selects

18

which of the components is connected to the output energy. The position of the switch
is controlled by the discrete variableY ∈ {1, 2, . . . , C}, which is interpreted as the
category. The output energy is equal toE(W, Y, X) =

∑C

j=1 δ(Y − j)gj , where
δ(Y − j) is the Kronecker delta function:δ(u) = 1 for u = 0; δ(u) = 0 otherwise.
Inference consists in settingY to the index of the smallest component ofGW (X).

The perceptron loss, hinge loss, and negative log-likelihood loss can be directly
translated to the multiclass case.

3.4 Implicit Regression

E(W,Y, X)

X Y

GW (X)G1W1
(X) HW2

(X)

||G1W1
(X) − G2W2

(Y)||L1

G2W2
(Y)

Figure 7: The implicit regression architecture.X and Y are passed through two functions
G1W1

andG2W2
. This architecture allows multiple values ofY to have low energies for a given

X.

The architectures described in the previous section are simple functions ofY with a
single minimum within the setY. However, there are tasks for which multiple answers
are equally good. Examples include robot navigation, whereturning left or right may
get around an obstacle equally well, or a language model in which the sentence segment
“the cat ate the” can be followed equally well by “mouse” or “bird”.

More generally, the dependency betweenX andY sometimes cannot be expressed
as a function that mapsX toY (e.g., consider the constraintX2+Y 2 = 1). In this case,
which we callimplicit regression, we model the constraint thatX andY must satisfy
and design the energy function such that it measures the violation of the constraint.
Both X andY can be passed through functions, and the energy is a functionof their
outputs. A simple example is:

E(W, Y, X) =
1

2
||GX(WX , X)−GY (WY , Y)||2. (41)

For some problems, the functionGX must be different from the functionGY . In
other cases,GX andGY must be instances of the same functionG. An interesting
example is theSiamesearchitecture [18]: variablesX1 andX2 are passed through two
instances of a functionGW . A binary labelY determines the constraint onGW (X1)

19

andGW (X2): if Y = 0, GW (X1) andGW (X2) should be equal, and ifY = 1,
GW (X1) andGW (X2) should be different. In this way, the regression onX1 andX2

is implicitly learned through the constraintY rather than explicitly learned through
supervision. Siamese architectures are used to learn similarity metrics with labeled
examples. When two input samplesX1 andX2 are known to be similar (e.g. two
pictures of the same person),Y = 0; when they are different,Y = 1.

Siamese architectures were originally designed for signature verification [18].
More recently they have been used with the square-exponential loss (Eq. 17) to learn
a similarity metric with application to face recognition [19]. They have also been used
with the square-square loss (Eq. 16) for unsupervised learning of manifolds [30].

In other applications, a single non-linear function combinesX andY . An example
of such architecture is the trainable language model of Bengio et al [9]. Under this
model, the inputX is a sequence of a several successive words in a text, and the
answerY is the the next word in the text. Since many different words can follow a
particular word sequence, the architecture must allow multiple values ofY to have
low energy. The authors used a multilayer neural net as the functionG(W, X, Y), and
chose to train it with the negative log-likelihood loss. Because of the high cardinality
of Y (equal to the size of the English dictionary), they had to useapproximations
(importance sampling) and had to train the system on a cluster machine.

The current section often referred to architectures in which the energy was linear or
quadratic inW , and the loss function was convex inW , but it is important to keep in
mind that much of the discussion applies equally well to morecomplex architectures,
as we will see later.

4 Latent Variable Architectures

Energy minimization is a convenient way to represent the general process of reasoning
and inference. In the usual scenario, the energy is minimized with respect to the vari-
ables to be predictedY , given the observed variablesX . During training, the correct
value ofY is given for each training sample. However there are numerous applications
where it is convenient to use energy functions that depend ona set of hidden variables
Z whose correct value is never (or rarely) given to us, even during training. For ex-
ample, we could imagine training the face detection system depicted in Figure 2(b)
with data for which the scale and pose information of the faces is not available. For
these architectures, the inference process for a given set of variablesX andY involves
minimizing over these unseen variablesZ:

E(Y, X) = min
Z∈Z

E(Z, Y, X). (42)

Such hidden variables are calledlatent variables, by analogy with a similar concept in
probabilistic modeling. The fact that the evaluation ofE(Y, X) involves a minimiza-
tion overZ does not significantly impact the approach described so far,but the use of
latent variables is so ubiquitous that it deserves special treatment.

In particular, some insight can be gained by viewing the inference process in the

20

presence of latent variables as a simultaneous minimization overY andZ:

Y ∗ = argminY ∈Y,Z∈ZE(Z, Y, X). (43)

Latent variables can be viewed as intermediate results on the way to finding the best
outputY . At this point, one could argue that there is no conceptual difference between
theZ andY variables:Z could simply be folded intoY . The distinction arises during
training: we are given the correct value ofY for a number of training samples, but we
are never given the correct value ofZ.

Latent variables are very useful in situations where a hidden characteristic of the
process being modeled can be inferred from observations, but cannot be predicted di-
rectly. One such example is in recognition problems. For example, in face recognition
the gender of a person or the orientation of the face could be alatent variable. Knowing
these values would make the recognition task much easier. Likewise in invariant object
recognition the pose parameters of the object (location, orientation, scale) or the illumi-
nation could be latent variables. They play a crucial role inproblems where segmenta-
tion of the sequential data must be performed simultaneously with the recognition task.
A good example is speech recognition, in which the segmentation of sentences into
words and words into phonemes must take place simultaneously with recognition, yet
the correct segmentation into phonemes is rarely availableduring training. Similarly, in
handwriting recognition, the segmentation of words into characters should take place
simultaneously with the recognition. The use of latent variables in face recognition is
discussed in this section, and Section 7.3 describes a latent variable architecture for
handwriting recognition.

4.1 An Example of Latent Variable Architecture

To illustrate the concept of latent variables, we consider the task of face detection,
beginning with the simple problem of determining whether a face is present or not in
a small image. Imagine that we are provided with a face detecting functionGface(X)
which takes a small image window as input and produces a scalar output. It outputs
a small value when a human face fills the input image, and a large value if no face is
present (or if only a piece of a face or a tiny face is present).An energy-based face
detector built around this function is shown in Figure 8(a).The variableY controls the
position of a binary switch (1 = “face”, 0 = “non-face”). The output energy is equal
to Gface(X) whenY = 1, and to a fixed threshold valueT whenY = 0:

E(Y, X) = Y Gface(X) + (1− Y)T.

The value ofY that minimizes this energy function is1 (face) if Gface(X) < T and0
(non-face) otherwise.

Let us now consider the more complex task ofdetecting and locatinga single face
in a large image. We can apply ourGface(X) function to multiple windows in the large
image, compute which window produces the lowest value ofGface(X), and detect a
face at that location if the value is lower thanT . This process is implemented by
the energy-based architecture shown in Figure 8(b). The latent “location” variableZ

21

E(W,Y, X)

X Y

" f a c e " (= 1)o r" n o f a c e " (= 0)
GW (X)

T
Gface(X)

X Y

" f a c e " (= 1)o r" n o f a c e " (= 0)
GW (X)

T

Z

E(W,Z, Y, X)

p o s i t i o no ff a c eGface(X) Gface(X) Gface(X) Gface(X)

(a) (b)

Figure 8: (a): Architecture of an energy-based face detector. Given an image, it outputs a
small value when the image is filled with a human face, and a high value equal to the threshold
T when there is no face in the image.(b): Architecture of an energy-based face detector that
simultaneously locates and detects a face in an input image by using the location of the face as
a latent variable.

selects which of theK copies of theGface function is routed to the output energy. The
energy function can be written as

E(Z, Y, X) = Y

[

K
∑

k=1

δ(Z − k)Gface(Xk)

]

+ (1 − Y)T, (44)

where theXk’s are the image windows. Locating the best-scoring location in the image
consists in minimizing the energy with respect toY andZ. The resulting value ofY
will indicate whether a face was found, and the resulting value ofZ will indicate the
location.

4.2 Probabilistic Latent Variables

When the best value of the latent variable for a givenX andY is ambiguous, one may
consider combining the contributions of the various possible values by marginalizing
over the latent variables instead of minimizing with respect to those variables.

When latent variables are present, the joint conditional distribution overY andZ
given by the Gibbs distribution is:

P (Z, Y |X) =
e−βE(Z,Y,X)

∫

y∈Y, z∈Z e−βE(y,z,X)
. (45)

22

Marginalizing overZ gives:

P (Y |X) =

∫

z∈Z e−βE(Z,Y,X)

∫

y∈Y, z∈Z
e−βE(y,z,X)

. (46)

Finding the bestY after marginalizing overZ reduces to:

Y ∗ = argminY ∈Y −
1

β
log

∫

z∈Z

e−βE(z,Y,X). (47)

This is actually a conventional energy-based inference in which the energy function has
merely been redefined fromE(Z, Y, X) toF(Z) = − 1

β
log
∫

z∈Z
e−βE(z,Y,X), which

is thefree energyof the ensemble{E(z, Y, X), z ∈ Z}. The above inference formula
by marginalization reduces to the previous inference formula by minimization when
β →∞ (zero temperature).

5 Analysis of Loss Functions for Energy-Based Models

This section discusses the conditions that a loss function must satisfy so that its mini-
mization will result in a model that produces the correct answers. To give an intuition
of the problem, we first describe simple experiments in whichcertain combinations of
architectures and loss functions are used to learn a simple dataset, with varying results.
A more formal treatment follows in Section 5.2.

5.1 “Good” and “Bad” Loss Functions

Consider the problem of learning a function that computes the square of a number:
Y = f(X), wheref(X) = X2. Though this is a trivial problem for a learning
machine, it is useful for demonstrating the issues involvedin the design of an energy
function and loss function that work together. For the following experiments, we use
a training set of200 samples(X i, Y i) whereY i = X i2, randomly sampled with a
uniform distribution between−1 and+1.

First, we use the architecture shown in Figure 9(a). The input X is passed through
a parametric functionGW , which produces a scalar output. The output is compared
with the desired answer using the absolute value of the difference (L1 norm):

E(W, Y, X) = ||GW (X)− Y ||1. (48)

Any reasonable parameterized family of functions could be used forGW . For these
experiments, we chose a two-layer neural network with 1 input unit, 20 hidden units
(with sigmoids) and 1 output unit. Figure 10(a) shows the initial shape of the energy
function in the space of the variablesX andY , using a set of random initial parameters
W . The dark spheres mark the location of a few training samples.

First, the simple architecture is trained with the energy loss (Eq. 6):

Lenergy(W,S) =
1

P

P
∑

i=1

E(W, Y i, X i) =
1

P

P
∑

i=1

||GW (X)− Y ||1. (49)

23

E(W,Y, X)

X Y

GW (X)

||GW (X) − Y ||L1

GW (X)

E(W,Y, X)

X Y

GW (X)G1W1
(X) HW2

(X)

||G1W1
(X) − G2W2

(Y)||L1

G2W2
(Y)

(a) (b)

Figure 9: (a): A simple architecture that can be trained with theenergyloss. (b): An implicit
regression architecture whereX andY are passed through functionsG1W1

andG2W2
respec-

tively. Training this architecture with the energy loss causes a collapse (a flat energy surface). A
loss function with a contrastive term corrects the problem.

This corresponds to a classical form of robust regression. The learning process can be
viewed as pulling down on the energy surface at the location of the training samples (the
spheres in Figure 10), without considering the rest of the points on the energy surface.
The energy surface as a function ofY for anyX has the shape of a V with fixed slopes.
By changing the functionGW (X), the apex of that V can move around for different
X i. The loss is minimized by placing the apex of the V at the position Y = X2 for
any value ofX , and this has the effect of making the energies of all other answers
larger, because the V has a single minimum. Figure 10 shows the shape of the energy
surface at fixed intervals during training with simple stochastic gradient descent. The
energy surface takes the proper shape after a few iterationsthrough the training set.
Using more sophisticated loss functions such as the NLL lossor the perceptron loss
would produce exactly the same result as the energy loss because, with this simple
architecture, their contrastive term is constant.

Consider a slightly more complicated architecture, shown in Figure 9(b), to learn
the same dataset. In this architectureX is passed through functionG1W1

andY is
passed through functionG2W2

. For the experiment, both functions were two-layer
neural networks with 1 input unit, 10 hidden units and 10 output units. The energy is
theL1 norm of the difference between their 10-dimensional outputs:

E(W, X, Y) = ||G1W1
(X)−G2W2

(Y)||1, (50)

whereW = [W1W2]. Training this architecture with the energy loss results ina col-
lapseof the energy surface. Figure 11 shows the shape of the energysurface during
training; the energy surface becomes essentially flat. Whathas happened? The shape
of the energy as a function ofY for a givenX is no longer fixed. With the energy loss,

24

X

Y
X

Y

X

Y

X

Y

(a) (b) (c) (d)

Figure 10:The shape of the energy surface at four intervals while training the system in Fig-
ure 9(a) with stochastic gradient descent to minimize theenergy loss. TheX axis is the input,
and theY axis the output. The energy surface is shown (a) at the start of training, (b) after 10
epochs through the training set, (c) after 25 epochs, and (d)after 39 epochs. The energy surface
has attained the desired shape where the energy around training samples (dark spheres) is low
and energy at all other points is high.

there is no mechanism to preventG1 andG2 from ignoring their inputs and producing
identical output values. This results in the collapsed solution: the energy surface is flat
and equal to zero everywhere.

XY XY XY XY

(a) (b) (c) (d)

Figure 11:The shape of the energy surface at four intervals while training the system in Fig-
ure 9(b) using the energy loss. Along theX axis is the input variable and along theY axis is the
answer. The shape of the surface (a) at the start of the training, (b) after 3 epochs through the
training set, (c) after 6 epochs, and (d) after 9 epochs. Clearly the energy is collapsing to a flat
surface.

Now consider the same architecture, but trained with thesquare-squareloss:

L(W, Y i, X i) = E(W, Y i, X i)2 −
(

max(0, m− E(W, Ȳ i, X i))
)2

. (51)

Herem is a positive margin, and̄Y i is the most offending incorrect answer. The second
term in the loss explicitly prevents the collapse of the energy by pushing up on points
whose energy threatens to go below that of the desired answer. Figure 12 shows the
shape of the energy function during training; the surface successfully attains the desired
shape.

Another loss function that works well with this architecture is thenegative log-
likelihood loss:

L(W, Y i, X i) = E(W, Y i, X i) +
1

β
log

(
∫

y∈Y

e−βE(W,y,Xi)

)

. (52)

25

XY
XY

XY XY

(a) (b) (c) (d)

Figure 12:The shape of the energy surface at four intervals while training the system in Fig-
ure 9(b) usingsquare-squareloss. Along the x-axis is the variableX and along the y-axis is the
variableY . The shape of the surface at (a) the start of the training, (b)after 15 epochs over the
training set, (c) after 25 epochs, and (d) after 34 epochs. The energy surface has attained the
desired shape: the energies around the training samples arelow and energies at all other points
are high.

X
Y

X

Y

X

Y

X

Y

(a) (b) (c) (d)

Figure 13:The shape of the energy surface at four intervals while training the system in Fig-
ure 9(b) using the negative log-likelihood loss. Along theX axis is the input variable and along
theY axis is the answer. The shape of the surface at (a) the start oftraining, (b) after 3 epochs
over the training set, (c) after 6 epochs, and (d) after 11 epochs. The energy surface has quickly
attained the desired shape.

The first term pulls down on the energy of the desired answer, while the second term
pushes up on all answers, particularly those that have the lowest energy. Note that
the energy corresponding to the desired answer also appearsin the second term. The
shape of the energy function at various intervals using the negative log-likelihood loss
is shown in Figure 13. The learning is much faster than the square-square loss. The
minimum is deeper because, unlike with the square-square loss, the energies of the in-
correct answers are pushed up to infinity (although with a decreasing force). However,
each iteration of negative log-likelihood loss involves considerably more work because
pushing up every incorrect answer is computationally expensive when no analytical
expression for the derivative of the second term exists. In this experiment, a simple
sampling method was used: the integral is approximated by a sum of 20 points regu-
larly spaced between -1 and +1 in theY direction. Each learning iteration thus requires
computing the gradient of the energy at 20 locations, versus2 locations in the case
of the square-square loss. However, the cost of locating themost offending incorrect
answer must be taken into account for the square-square loss.

An important aspect of the NLL loss is that it is invariant to global shifts of energy

26

values, and only depends on differences between the energies of theY s for a givenX .
Hence, the desired answer may have different energies for differentX , and may not be
zero. This has an important consequence:the quality of an answer cannot be measured
by the energy of that answer without considering the energies of all other answers.

In this section we have seen the results of training four combinations of architec-
tures and loss functions. In the first case we used a simple architecture along with a
simple energy loss, which was satisfactory. The constraints in the architecture of the
system automatically lead to the increase in energy of undesired answers while de-
creasing the energies of the desired answers. In the second case, a more complicated
architecture was used with the simple energy loss and the machine collapsed for lack
of a contrastive term in the loss. In the third and the fourth case the same architecture
was used as in the second case but with loss functions containing explicit contrastive
terms. In these cases the machine performed as expected and did not collapse.

5.2 Sufficient Conditions for Good Loss Functions

In the previous section we offered some intuitions about which loss functions are good
and which ones are bad with the help of illustrative experiments. In this section a more
formal treatment of the topic is given. First, a set of sufficient conditions are stated.
The energy function and the loss function must satisfy theseconditions in order to be
guaranteed to work in an energy-based setting. Then we discuss the quality of the loss
functions introduced previously from the point of view of these conditions.

5.3 Conditions on the Energy

Generally in energy-based learning, the inference method chooses the answer with
minimum energy. Thus the condition for the correct inference on a sample(X i, Y i) is
as follows.

Condition 1 For sample(X i, Y i), the machine will give the correct answer forX i if

E(W, Y i, X i) < E(X, Y, X i), ∀Y ∈ Y and Y 6= Y i. (53)

In other words, the inference algorithm will give the correct answer if the energy of the
desired answerY i is less than the energies of all the other answersY .

To ensure that the correct answer is robustly stable, we may choose to impose that
its energy be lower than energies of incorrect answers by a positive marginm. If Ȳ i

denotes the most offending incorrect answer, then the condition for the answer to be
correct by a marginm is as follows.

Condition 2 For a variableY and sample(X i, Y i) and positive marginm, the infer-
ence algorithm will give the correct answer forX i if

E(W, Y i, X i) < E(W, Ȳ i, X i)−m. (54)

27

5.4 Sufficient Conditions on the Loss Functional

If the system is to produce the correct answers, the loss functional should be designed in
such a way that minimizing it will causeE(W, Y i, X i) to be lower thanE(W, Ȳ i, X i)
by some marginm. Since only the relative values of those two energies matter, we only
need to consider the shape of a slice of the loss functional inthe 2D space of those two
energies. For example, in the case whereY is the set of integers from1 to k, the loss
functional can be written as:

L(W, Y i, X i) = L(Y i, E(W, 1, X i), . . . , E(W, k, X i)). (55)

The projection of this loss in the space ofE(W, Y i, X i) andE(W, Ȳ i, X i) can be
viewed as a functionQ parameterized by the otherk − 2 energies:

L(W, Y i, X i) = Q[Ey](E(W, Y i, X i), E(W, Ȳ i, X i)), (56)

where the parameter[Ey] contains the vector of energies for all values ofY exceptY i

andȲ i.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy: E
C

E
ne

rg
y:

 E
I

HP
1

HP
2

E
C
 + m = E

I

E
C
 = E

I

m

R

Figure 14:Figure showing the various regions in the plane of the two energiesEC andEI . EC

are the (correct answer) energies associated with(Xi, Y i), andEI are the (incorrect answer)
energies associated with(Xi, Ȳ i).

We assume the existence of at least one set of parametersW for which condition 2
is satisfied for a single training sample(X i, Y i). Clearly, if such aW does not exist,
there cannot exist any loss function whose minimization would lead to condition 2. For
the purpose of notational simplicity let us denote the energy E(W, Y i, X i) associated
with the training sample(X i, Y i) by EC (as in “correct energy”) andE(W, Ȳ i, X i)
by EI (as in “incorrect energy”). Consider the plane formed byEC andEI . As an

28

illustration, Figure 17(a) shows a 3-dimensional plot of thesquare-squareloss function
in which the abscissa isEC and the ordinate isEI . The third axis gives the value of
the loss for the corresponding values ofEC and EI . In general, the loss function
is a family of 2D surfaces in this 3D space, where each surfacecorresponds to one
particular configuration of all the energies exceptEC andEI . The solid red line in the
figure corresponds to the points in the 2D plane for whichEC = EI . The dashed blue
line correspond to the margin lineEC+m = EI . Let the two half planesEC+m < EI

andEC + m ≥ EI be denoted byHP1 andHP2 respectively.
Let R be thefeasible region, defined as the set of values(EC , EI) corresponding

to all possible values ofW ∈ W . This region may be non-convex, discontinuous,
open, or one-dimensional and could lie anywhere in the plane. It is shown shaded in
Figure 14. As a consequence of our assumption that a solutionexists which satisfies
conditions 2,R must intersect the half planeHP1.

Let two points(e1, e2) and (e′1, e
′
2) belong to the feasible regionR, such that

(e1, e2) ∈ HP1 (that is,e1 + m < e2) and(e′1, e
′
2) ∈ HP2 (that is,e′1 + m ≥ e′2). We

are now ready to present the sufficient conditions on the lossfunction.

Condition 3 Let (X i, Y i) be theith training example andm be a positive margin.
Minimizing the loss functionL will satisfy conditions 1 or 2 if there exists at least one
point(e1, e2) with e1 + m < e2 such that for all points(e′1, e

′
2) with e′1 + m ≥ e′2, we

have
Q[Ey](e1, e2) < Q[Ey](e

′
1, e

′
2), (57)

whereQ[Ey] is given by

L(W, Y i, X i) = Q[Ey](E(W, Y i, X i), E(W, Ȳ i, X i)). (58)

In other words, the surface of the loss function in the space of EC andEI should be
such that there exists at least one point in the part of the feasible regionR intersecting
the half planeHP1 such that the value of the loss function at this point is less than its
value at all other points in the part ofR intersecting the half planeHP2.

Note that this is only a sufficient condition and not a necessary condition. There
may be loss functions that do not satisfy this condition but whose minimization still
satisfies condition 2.

5.5 Which Loss Functions are Good or Bad

Table 1 lists several loss functions, together with the value of the margin with which
they satisfy condition 3. The energy loss is marked “none” because it does not satisfy
condition 3 for a general architecture. The perceptron lossand the LVQ2 loss satisfy
it with a margin of zero. All others satisfy condition 3 with astrictly positive value of
the margin.

29

Table 1: A list of loss functions, together with the margin which allows them to satisfy con-
dition 3. A margin> 0 indicates that the loss satisfies the condition for any strictly positive
margin, and “none” indicates that the loss does not satisfy the condition.

Loss (equation #) Formula Margin

energy loss (6) E(W, Y i, X i) none

perceptron (7) E(W, Y i, X i)−minY ∈Y E(W, Y, X i) 0

hinge (11) max
(

0, m + E(W, Y i, X i)− E(W, Ȳ i, X i)
)

m

log (12) log
(

1 + eE(W,Y i,Xi)−E(W,Ȳ i,Xi)
)

> 0

LVQ2 (13) min
(

M, max(0, E(W, Y i, X i)− E(W, Ȳ i, X i)
)

0

MCE (15)
(

1 + e−(E(W,Y i,Xi)−E(W,Ȳ i,Xi))
)−1

> 0

square-square (16) E(W, Y i, X i)2 −
(

max(0, m− E(W, Ȳ i, X i))
)2

m

square-exp (17) E(W, Y i, X i)2 + βe−E(W,Ȳ i,Xi) > 0

NLL/MMI (23) E(W, Y i, X i) + 1
β

log
∫

y∈Y e−βE(W,y,Xi) > 0

MEE (27) 1− e−βE(W,Y i,Xi)/
∫

y∈Y e−βE(W,y,Xi) > 0

5.5.1 Energy Loss

The energy loss is a bad loss function in general, but there are certain forms of energies
for which it is a good loss function. For example consider an energy function of the
form

E(W, Y i, X i) =

K
∑

k=1

δ(Y i − k)||Uk −GW (X i)||2. (59)

This energy passes the output of the functionGW throughK radial basis functions
(one corresponding to each class) whose centers are the vectorsUk. If the centersUk

are fixed and distinct then the energy loss satisfies condition 3 and hence is a good loss
function.

To see this, consider the two-class classification case (thereasoning forK > 2
follows along the same lines). The architecture of the system is shown in Figure 15.

Letd = ||U1−U2||2, d1 = ||U1−GW (X i)||2, andd2 = ||U2−GW (X i)||2. Since
U1 andU2 are fixed and distinct, there is a strictly positive lower bound ond1 + d2

for all GW . Being only a two-class problem,EC andEI correspond directly to the
energies of the two classes. In the(EC , EI) plane no part of the loss function exists
in whereEC + EI ≤ d. The region where the loss function is defined is shaded in
Figure 16(a). The exact shape of the loss function is shown inFigure 16(b). One can
see from the figure that as long asd ≥ m, the loss function satisfies condition 3. We
conclude that this is a good loss function.

30

X Y

GW (X)
GW (X)

di = ||U i
− GW (X)||2

d1 d2

GW

E(W,Y, X) =
2∑

k=1

δ(Y − k) · ||Uk
− GW (X)||2

R B F U n i t s

Figure 15: The architecture of a system where two RBF units with centersU1 and U2 are
placed on top of the machineGW , to produce distancesd1 andd2.

(a) (b)

Figure 16:(a): When using the RBF architecture with fixed and distinct RBF centers, only the
shaded region of the(EC , EI) plane is allowed. The non-shaded region is unattainable because
the energies of the two outputs cannot be small at the same time. The minimum of the energy
loss is at the intersection of the shaded region and verticalaxis. (b): The 3-dimensional plot of
the energy loss when using the RBF architecture with fixed anddistinct centers. Lighter shades
indicate higher loss values and darker shades indicate lower values.

31

However, when the RBF centersU1 andU2 are not fixed and are allowed to be
learned, then there is no guarantee thatd1 + d2 ≥ d. Then the RBF centers could
become equal and the energy could become zero for all inputs,resulting in a collapsed
energy surface. Such a situation can be avoided by having a contrastive term in the loss
function.

5.5.2 Generalized Perceptron Loss

The generalized perceptron loss has a margin of zero. Therefore, it could lead to a
collapsed energy surface and is not generally suitable for training energy-based models.
However, the absence of a margin is not always fatal [43, 21].First, the set of collapsed
solutions is a small piece of the parameter space. Second, although nothing prevents
the system from reaching the collapsed solutions, nothing drives the system toward
them either. Thus the probability of hitting a collapsed solution is quite small.

5.5.3 Generalized Margin Loss

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

2.5

3

3.5

4

Energy: E
CEnergy: E

I

Lo
ss

: L

HP
2

E
C
 = E

IE
C
 + m = E

IHP
1

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

Energy: E
CEnergy: E

I

Lo
ss

: L

HP
2

E
C
 = E

IE
C
 + m = E

I

HP
1

(a) (b)

Figure 17: (a) The square-squareloss in the space of energiesEC and EI). The value of
the loss monotonically decreases as we move fromHP2 into HP1, indicating that it satisfies
condition 3. (b) Thesquare-exponentialloss in the space of energiesEC andEI). The value
of the loss monotonically decreases as we move fromHP2 into HP1, indicating that it satisfies
condition 3.

We now consider thesquare-squareandsquare-exponentiallosses. For the two-
class case, the shape of the surface of the losses in the spaceof EC andEI is shown in
Figure 17. One can clearly see that there exists at least one point (e1, e2) in HP1 such
that

Q[Ey](e1, e2) < Q[Ey](e
′
1, e

′
2), (60)

for all points(e′1, e
′
2) in HP2. These loss functions satisfy condition 3.

32

5.5.4 Negative Log-Likelihood Loss

It is not obvious that the negative log-likelihood loss satisfies condition 3. The proof
follows.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy: E
C

E
ne

rg
y:

 E
I

HP
1

HP
2

E
C

 + m = E
I

E
C

 = E
I

m

R

g
C

g
I

g = g
C

 + g
I

−g

A = (E*
C

, E*
C

 + m)

B = (E*
C

 − ε, E*
C

 + m + ε)

ε

Figure 18:Figure showing the direction of gradient of the negative log-likelihood loss in the
feasible regionR in the space defined by the two energiesEC andEI .

For any fixed parameterW and a sample(X i, Y i) consider the gradient of the loss
with respect to the energyEC of the correct answerY i and the energyEI of the most
offending incorrect answer̄Y i. We have

gC =
∂L(W, Y i, X i)

∂EC

= 1−
e−E(W,Y i,Xi)

∑

Y ∈Y e−E(W,Y,Xi)
, (61)

and

gI =
∂L(W, Y i, X i)

∂EI

= −
e−E(W,Ȳ i,Xi)

∑

Y ∈Y e−E(W,Y,Xi)
. (62)

Clearly, for any value of the energies,gC > 0 andgI < 0. The overall direction of
the gradient at any point in the space ofEC andEI is shown in Figure 18. One can
conclude that when going fromHP2 to HP1, the loss decreases monotonically.

Now we need to show that there exists at least one point inHP1 at which the loss
is less than at all the points inHP2. Let A = (E∗

C , E∗
C + m) be a point on the margin

line for which the loss is minimum.E∗
C is the value of the correct energy at this point.

That is,
E∗

C = argmin{Q[Ey](EC , EC + m)}. (63)

Since from the above discussion, the negative of the gradient of the lossQ[Ey] at all
points (and in particular on the margin line) is in the direction which is insideHP1, by
monotonicity of the loss we can conclude that

Q[Ey](E
∗
C , E∗

C + m) ≤ Q[Ey](EC , EI), (64)

33

whereEC + m > EI .
Consider a pointB at a distanceǫ away from the point(E∗

C , E∗
C + m), and inside

HP1 (see Figure 18). That is the point

(E∗
C − ǫ, E∗

C + m + ǫ). (65)

Using the first order Taylor’s expansion on the value of the loss at this point, we get

Q[Ey](E
∗
C − ǫ, E∗

C + m + ǫ)

= Q[Ey](E
∗
C , E∗

C + m)− ǫ
∂Q[Ey]

∂EC

+ ǫ
∂Q[Ey]

∂EI

+ O(ǫ2)

= Q[Ey](E
∗
C , E∗

C + m) + ǫ

[

∂Q[Ey]

∂EC

+
∂Q[Ey]

∂EI

]

−1

1

+ O(ǫ2). (66)

From the previous discussion the second term on the right hand side is negative. So for
sufficiently smallǫ we have

Q[Ey](E
∗
C − ǫ, E∗

C + m + ǫ) < Q[Ey](E
∗
C , E∗

C + m). (67)

Thus we conclude that there exists at least one point inHP1 at which the loss is less
than at all points inHP2.

Note that the energy of the most offending incorrect answerEI is bounded above
by the value of the energy of the next most offending incorrect answer. Thus we only
need to consider a finite range ofEI ’s and the pointB cannot be at infinity.

6 Efficient Inference: Non-Probabilistic Factor Graphs

This section addresses the important issue of efficient energy-based inference. Se-
quence labeling problems and other learning problem with structured outputs can often
be modeled using energy functions whose structure can be exploited for efficient infer-
ence algorithms.

Learning and inference with EBMs involves a minimization ofthe energy over the
set of answersY and latent variablesZ. When the cardinality ofY × Z is large, this
minimization can become intractable. One approach to the problem is to exploit the
structure of the energy function in order to perform the minimization efficiently. One
case where the structure can be exploited occurs when the energy can be expressed
as a sum of individual functions (called factors) that each depend on different subsets
of the variables inY andZ. These dependencies are best expressed in the form of a
factor graph[55, 47]. Factor graphs are a general form of graphical models, or belief
networks.

Graphical models are normally used to represent probability distributions over vari-
ables by directly encoding the dependency relationships between variables. At first
glance, it is difficult to dissociate graphical models from probabilistic modeling (wit-
ness their original name: “Bayesian networks”). However, factor graphs can be studied
outside the context of probabilistic modeling, and EBM learning applies to them.

34

Y1 Y2

+

Z2Z1X

E(Y, Z, X)

Eb(X, Z1, Z2) Ec(Z2, Y1) Ed(Y1, Y2)Ea(X, Z1)

Y1 Y2Z2Z1

0 0 0

0

1 1 1 1

2

E
a (X

, 0)

Ea

(X
, 1

)

Eb(X, 1, 1)

E
b (X

, 1, 0)

Eb(X, 0, 0)

E b
(X

, 0
, 1

)

0

0

0

Ec(1, 1)

E
c (1, 0)

E c
(0

, 1
)

Ec(0, 0) Ed(0, 0)

Ed
(0

, 1
)

Ed(1, 1)

Ed
(1, 2

)

E
d (1, 0)

E d
(0
, 2

)

Figure 19:Top: A log domain factor graph. The energy is a sum of factors that take differ-
ent subsets of variables as inputs. Bottom: Each possible configuration ofZ and Y can be
represented by a path in a trellis. HereZ1, Z2, andY1 are binary variables, whileY2 is ternary.

35

A simple example of a factor graph is shown in Figure 19 (top).The energy func-
tion is the sum of four factors:

E(Y, Z, X) = Ea(X, Z1) + Eb(X, Z1, Z2) + Ec(Z2, Y1) + Ed(Y1, Y2), (68)

whereY = [Y1, Y2] are the output variables andZ = [Z1, Z2] are the latent variables.
Each factor can be seen as representing soft constraints between the values of its input
variables. The inference problem consists in finding:

(Ȳ , Z̄) = argminy∈Y, z∈Z (Ea(X, z1) + Eb(X, z1, z2) + Ec(z2, y1) + Ed(y1, y2)) .
(69)

This factor graph represents astructured outputproblem, because the factorEd en-
codes dependencies betweenY 1 andY 2 (perhaps by forbidding certain combinations
of values).

Let’s assume thatZ1, Z2, andY1 are discrete binary variables, andY2 is a ternary
variable. The cardinality of the domain ofX is immaterial sinceX is always observed.
The number of possible configurations ofZ andY givenX is 2 × 2 × 2 × 3 = 24.
A naive minimization algorithm through exhaustive search would evaluate the entire
energy function 24 times (96 single factor evaluations). However, we notice that for a
givenX , Ea only has two possible input configurations:Z1 = 0 andZ1 = 1. Sim-
ilarly, Eb andEc only have 4 possible input configurations, andEd has 6. Hence,
there is no need for more than2 + 4 + 4 + 6 = 16 single factor evaluations. The set
of possible configurations can be represented by a graph (a trellis) as shown in Fig-
ure 19 (bottom). The nodes in each column represent the possible values of a single
variable. Each edge is weighted by the output energy of the factor for the correspond-
ing values of its input variables. With this representation, a single path from the start
node to the end node represents one possible configuration ofall the variables. The
sum of the weights along a path is equal to the total energy forthe corresponding con-
figuration. Hence, the inference problem can be reduced to searching for the shortest
path in this graph. This can be performed using a dynamic programming method such
as the Viterbi algorithm, or the A* algorithm. The cost is proportional to the number
of edges (16), which is exponentially smaller than the number of paths in general. To
computeE(Y, X) = minz∈Z E(Y, z, X), we follow the same procedure, but we re-
strict the graph to the subset of arcs that are compatible with the prescribed value of
Y .

The above procedure is sometimes called themin-sum algorithm, and it is the log
domain version of the traditional max-product for graphical models. The procedure can
easily be generalized to factor graphs where the factors take more than two variables
as inputs, and to factor graphs that have a tree structure instead of a chain structure.
However, it only applies to factor graphs that are bipartitetrees (with no loops). When
loops are present in the graph, the min-sum algorithm may give an approximate solu-
tion when iterated, or may not converge at all. In this case, adescent algorithm such as
simulated annealing could be used.

As mentioned in Section 4, variables can be handled through minimization or
through marginalization. The computation is identical to the one required for comput-
ing the contrastive term of the negative log-likelihood loss (the log partition function),

36

hence we will make no distinctions. The contrastive term in the negative log-likelihood
loss function is:

−
1

β
log

∫

Y ∈Y, z∈Z

e−βE(Z,Y,X), (70)

or simply

−
1

β
log

∫

Y ∈Y

e−βE(Y,X), (71)

when no latent variables are present.
At first, this seems intractable, but the computation can be factorized just like with

the min-sum algorithm. The result is the so-calledforward algorithmin the log domain.
Values are propagated forward, starting at the start node onthe left, and following the
arrows in the trellis. Each nodek computes a quantityαk:

αk = −
1

β
log
∑

j

e−β(Ekj+αj), (72)

whereEjk is the energy attached to the edge linking nodej to nodek. The finalα at
the end node is the quantity in Eq. 70. The procedure reduces to the min-sum algorithm
for large values ofβ.

In a more complex factor graph with factors that take more than two variables as
input, or that have a tree structure, this procedure generalizes to a non-probabilistic
form of belief propagation in the log domain. For loopy graphs, the procedure can be
iterated, and may lead to an approximate value for Eq. 70, if it converges at all [62].

The above procedures are an essential component for constructing models with
structures and/or sequential output.

6.1 EBMs versus Internally Normalized Models

It is important to note that at no point in the above discussion did we need to manip-
ulate normalized probability distributions. The only quantities that are manipulated
are energies. This is in contrast with hidden Markov models and traditional Bayesian
nets. In HMMs, the outgoing transition probabilities of a node must sum to 1, and the
emission probabilities must be properly normalized. This ensures that the overall dis-
tribution over sequences is normalized. Similarly, in directed Bayesian nets, the rows
of the conditional probability tables are normalized.

EBMs manipulate energies, so no normalization is necessary. When energies are
transformed into probabilities, the normalization overY occurs as the very last step in
the process. This idea oflate normalizationsolves several problems associated with
the internal normalization of HMMs and Bayesian nets. The first problem is the so-
calledlabel bias problem, first pointed out by Bottou [13]: transitions leaving a given
state compete with each other, but not with other transitions in the model. Hence, paths
whose states have few outgoing transitions tend to have higher probability than paths
whose states have many outgoing transitions. This seems like an artificial constraint.
To circumvent this problem, a late normalization scheme wasfirst proposed by Denker
and Burges in the context of handwriting and speech recognition [23]. Another flavor

37

of the label bias problem is themissing probability mass problemdiscussed by LeCun
et al. in [43]. They also make use of a late normalization scheme to solve this prob-
lem. Normalized models distribute the probability mass among all the answers that
are explicitly modeled by the system. To cope with “junk” or other unforeseen and
un-modeled inputs, designers must often add a so-calledbackground modelthat takes
some probability mass away from the set of explicitly-modeled answers. This could be
construed as a thinly disguised way of removing the normalization constraint. To put it
another way, sinceevery explicit normalization is another opportunity for mishandling
unforeseen events, one should strive to minimize the number of explicit normalizations
in a model. A recent demonstration of successful handling ofthe label bias problem
through normalization removal is the comparison between maximum entropy Markov
models by McCallum, Freitag and Pereira [48], and conditional random fields by Laf-
ferty, McCallum and Pereira [40].

The second problem is controlling the relative importance of probability distribu-
tions of different natures. In HMMs, emission probabilities are often Gaussian mix-
tures in high dimensional spaces (typically 10 to 100), while transition probabilities
are discrete probabilities over a few transitions. The dynamic range of the former
is considerably larger than that of the latter. Hence transition probabilities count for
almost nothing in the overall likelihood. Practitioners often raise the transition prob-
abilities to some power in order to increase their influence.This trick is difficult to
justify in a probabilistic framework because it breaks the normalization. In the energy-
based framework, there is no need to make excuses for breaking the rules. Arbitrary
coefficients can be applied to any subset of energies in the model. The normalization
can always be performed at the end.

The third problem concerns discriminative learning. Discriminative training often
uses iterative gradient-based methods to optimize the loss. It is often complicated, ex-
pensive, and inefficient to perform a normalization step after each parameter update by
the gradient method. The EBM approach eliminates the problem [43]. More impor-
tantly, the very reason for internally normalizing HMMs andBayesian nets is some-
what contradictory with the idea of training them discriminatively. The normalization
is only necessary for generative models.

7 EBMs for Sequence Labeling and Structured Out-
puts

The problem of classifying or labeling sequences of symbolsor sequences of vectors
has long been a topic of great interest in several technical communities. The earliest
and most notable example is speech recognition. Discriminative learning methods were
proposed to train HMM-based speech recognition systems in the late 1980’s [3, 46].
These methods for HMMs brought about a considerable improvement in the accuracy
of speech recognition systems, and remains an active topic of research to this day.

With the appearance of multi-layer neural network trainingprocedures, several
groups proposed combining neural networks and time alignment methods for speech
recognition. The time alignment was implemented either through elastic template

38

matching (Dynamic Time Warping) with a set of reference words, or using a hidden
Markov model. One of the main challenges was to design an integrated training method
for simultaneously training the neural network and the timealignment module. In the
early 1990’s, several authors proposed such methods for combining neural nets and
dynamic time warping [25, 26, 28, 27, 24], as well as for combining neural net and
HMM [6, 17, 13, 32, 33, 7, 34, 31, 24, 52, 38]. Extensive lists of references on the
topic are available in [49, 5]. Most approaches used one dimensional convolutional
networks (time-delay neural networks) to build robustness to variations of pitch, voice
timbre, and speed of speech. Earlier models combined discriminative classifiers with
time alignment, but without integrated sequence-level training [56, 50, 29].

Applying similar ideas to handwriting recognition proved more challenging, be-
cause the 2D nature of the signal made the segmentation problem considerably more
complicated. This task required the integration of image segmentation heuristics in or-
der to generate segmentation hypotheses. To classify the segments with robustness to
geometric distortions, 2D convolutional nets were used [11, 41, 12]. A general formu-
lation of integrated learning of segmentation and recognition with late normalization
resulted in thegraph transformer networkarchitecture [42, 43].

Detailed descriptions of several sequence labeling modelsin the framework of
energy-based models are presented in the next three sections.

7.1 Linear Structured Models: CRF, SVMM, and MMMN

E(W,Y, X)

f(X, Y1, Y2) f(X, Y2, Y3) f(X, Y3, Y4)

W1 W2 W3

Y1 Y2 Y3 Y4

X

+

Figure 20:A log domain factor graph for linear structured models, which include conditional
random fields, support vector Markov models, and maximum margin Markov networks.

Outside of the discriminative training tradition in speechand handwriting recog-
nition, graphical models have traditionally been seen as probabilistic generative mod-

39

els, and trained as such. However, in recent years, a resurgence of interest for dis-
criminative training has emerged, largely motivated by sequence labeling problems in
natural language processing, notably conditional random fields [40], perceptron-like
models [21], support vector Markov models [2], and maximum margin Markov net-
works [58].

These models can be easily described in an EBM setting. The energy function in
these models is assumed to be a linear function of the parametersW :

E(W, Y, X) = WT F (X, Y), (73)

whereF (X, Y) is a vector of feature functions that depend onX andY . The answer
Y is a sequence ofl individual labels(Y1, . . . , Yl), often interpreted as a temporal
sequence. The dependencies between individual labels in the sequence is captured by a
factor graph, such as the one represented in Figure 20. Each factor is a linear function
of the trainable parameters. It depends on the inputX and on a pair of individual labels
(Ym, Yn). In general, each factor could depend on more than two individual labels, but
we will limit the discussion to pairwise factors to simplifythe notation:

E(W, Y, X) =
∑

(m,n)∈F

WT
mnfmn(X, Ym, Yn). (74)

HereF denotes the set of factors (the set of pairs of individual labels that have a direct
inter-dependency),Wmn is the parameter vector for factor(m, n), andfmn(X, Ym, Yn)
is a (fixed) feature vector. The global parameter vectorW is the concatenation of all
theWmn. It is sometimes assumed that all the factors encode the samekind of interac-
tion between input and label pairs: the model is then called ahomogeneous field. The
factors share the same parameter vector and features, and the energy can be simplified
as:

E(W, Y, X) =
∑

(m,n)∈F

WT f(X, Ym, Yn). (75)

The linear parameterization of the energy ensures that the corresponding probability
distribution overW is in the exponential family:

P (W |Y, X) =
e−W T F (X,Y)

∫

w′∈W e−wT F (X,Y)
. (76)

This model is called thelinear structured model.
We now describe various versions of linear structured models that use different loss

functions. Sections 7.2 and 7.3 will describe non-linear and hierarchical models.

7.1.1 Perceptron Loss

The simplest way to train the linear structured model is withthe perceptron loss. Le-
Cun et al. [43] proposed its use for general, non-linear energy functions in sequence
labeling (particularly handwriting recognition), calling it discriminative Viterbi train-
ing. More recently, Collins [20, 21] has advocated its use for linear structured models

40

in the context of NLP:

Lperceptron(W) =
1

P

P
∑

i=1

E(W, Y i, X i)− E(W, Y ∗i, X i), (77)

whereY ∗i = argminy∈YE(W, y, X i) is the answer produced by the system. The
linear property gives a particularly simple expression forthe loss:

Lperceptron(W) =
1

P

P
∑

i=1

WT
(

F (X i, Y i)− F (X i, Y ∗i)
)

. (78)

Optimizing this loss with stochastic gradient descent leads to a simple form of the
perceptron learning rule:

W ←W − η
(

F (X i, Y i)− F (X i, Y ∗i)
)

. (79)

As stated before, the main problem with the perceptron loss is the absence of margin,
although this problem is not fatal when the energy is a linearfunction of the parameters,
as in Collins’ model. The lack of a margin, which theoretically may lead to stability
problems, was overlooked in [43].

7.1.2 Margin Loss: Max-Margin Markov Networks

The main idea behind margin-based Markov networks [2, 1, 58]is to use a margin loss
to train the linearly parameterized factor graph of Figure 20, with the energy function
of Equation 73. The loss function is the simple hinge loss with anL2 regularizer:

Lhinge(W) =
1

P

P
∑

i=1

max(0, m + E(W, Y i, X i)− E(W, Ȳ i, X i)) + γ||W ||2. (80)

Because the energy is linear inW , the loss becomes particularly simple:

Lhinge(W) =
1

P

P
∑

i=1

max
(

0, m + WT ∆F (X i, Y i)
)

+ γ||W ||2, (81)

where∆F (X i, Y i) = F (X i, Y i) − F (X i, Ȳ i). This loss function can be optimized
with a variety of techniques. The simplest method is stochastic gradient descent. How-
ever, the hinge loss and linear parameterization allow for the use of a dual formulation
as in the case of conventional support vector machines. The question of which op-
timization method is most suitable is not settled. As with neural net training, it is
not clear whether second order methods bring a significant speed improvement over
well tuned stochastic gradient methods. To our knowledge, no systematic experimental
study of this issue has been published.

Altun, Johnson, and Hofman [2] have studied several versions of this model that
use other loss functions, such as the exponential margin loss proposed by Collins [20]:

Lhinge(W) =
1

P

P
∑

i=1

exp(E(W, Y i, X i)− E(W, Ȳ i, X i)) + γ||W ||2. (82)

41

This loss function tends to push the energiesE(W, Y i, X i) andE(W, Ȳ i, X i) as far
apart as possible, an effect which is moderated only by regularization.

7.1.3 Negative Log-Likelihood Loss: Conditional Random Fields

Conditional random fields(CRF) [40] use the negative log-likelihood loss function to
train a linear structured model:

Lnll(W) =
1

P

P
∑

i=1

E(W, Y i, X i) +
1

β
log
∑

y∈Y

e−βE(W,y,Xi). (83)

The linear form of the energy (Eq. 75) gives the following expression:

Lnll(W) =
1

P

P
∑

i=1

WT F (X i, Y i) +
1

β
log
∑

y∈Y

e−βW T F (Xi,y). (84)

Following Equation 24, the derivative of this loss with respect toW is:

∂Lnll(W)

∂W
=

1

P

P
∑

i=1

F (X i, Y i)−
∑

y∈Y

F (X i, y)P (y|X i, W), (85)

where

P (y|X i, W) =
e−βW T F (Xi,y)

∑

y′∈Y e−βW T F (Xi,y′)
. (86)

The problem with this loss function is the need to sum over allpossible label com-
binations, as there are an exponentially large number of such combinations (2l for a
sequence ofl binary labels). However, one of the efficient inference algorithms men-
tioned in Section 6 can be used.

One of the alleged advantages of CRFs is that the loss function is convex with
respect toW . However, the convexity of the loss function, while mathematically sat-
isfying, does not seem to be a significant practical advantage. Although the original
optimization algorithm for CRF was based on iterative scaling, recent work indicates
that stochastic gradient methods may be more efficient [61].

7.2 Non-Linear Graph Based EBMs

The discriminative learning methods for graphical models developed in the speech and
handwriting communities in the 90’s allowed for non-linearparameterizations of the
factors, mainly mixtures of Gaussians and multi-layer neural nets. Non-linear fac-
tors allow the modeling of highly complex dependencies between inputs and labels
(such as mapping the pixels of a handwritten word to the corresponding character la-
bels). One particularly important aspect is the use of architectures that are invariant
(or robust) to irrelevant transformations of the inputs, such as time dilation or pitch
variation in speech, and geometric variations in handwriting. This is best handled
by hierarchical, multi-layer architectures that can learnlow level features and higher

42

level representations in an integrated fashion. Most authors have used one dimensional
convolutional nets (time-delay neural networks) for speech and pen-based handwrit-
ing [6, 13, 32, 33, 25, 26, 28, 27, 7, 34, 31, 24, 5], and 2D convolutional nets for
image-based handwriting [11, 41, 12, 42, 43].

To some observers, the recent interest in the linear structured model looks like
somewhat of a throw-back to the past, and a regression on the complexity scale. One
apparent advantage of linearly parameterized energies is that they make the perceptron
loss, hinge loss, and NLL loss convex. It is often argued thatconvex loss functions
are inherently better because they allow the use of efficientoptimization algorithms
with guaranteed convergence to the global minimum. However, several authors have
recently argued that convex loss functions are no guaranteefor good performance, and
that non-convex losses may in fact be easier to optimize thanconvex ones in practice,
even in the absence of theoretical guarantees [36, 22].

Furthermore, it has been argued that convex loss functions can be efficiently opti-
mized using sophisticated second-order optimization methods. However, it is a well-
known but often overlooked fact that a carefully tuned stochastic gradient descent
method is often considerably faster in practice than even the most sophisticated second-
order optimization methods (which appear better on paper).This is because stochastic
gradients can take advantage of the redundancy between the samples by updating the
parameters on the basis of a single sample, whereas “batch” optimization methods
waste considerable resources to compute exact descent directions, often nullifying the
theoretical speed advantage [4, 43, 44, 15, 16, 61].

X Y

w o r d i nt h e l e x i c o n
Z

E(W,Z, Y, X)

P a t h(a c o u s t i c v e c t o r s)
w o r d t e m p l a t e s

f e a t u r e v e c t o r s

Figure 21:Figure showing the architecture of a speech recognition system using latent vari-
ables. An acoustic signal is passed through a time-delay neural network (TDNN) to produce
a high level feature vector. The feature vector is then compared to the word templates. Dy-
namic time warping (DTW) aligns the feature vector with the word templates so as to reduce the
sensitivity of the matching to variations in pronunciation.

43

Figure 21 shows an example of speech recognition system thatintegrates a time-
delay neural network (TDNN) and word matching using dynamictime warping (DTW).
The raw speech signal is first transformed into a sequence of acoustic vectors (typically
10 to 50 spectral or cepstral coefficients, every 10ms). The acoustic vector sequence
is fed to a TDNN that transforms it into a sequence of high level features. Temporal
subsampling in the TDNN can be used to reduce the temporal resolution of the feature
vectors [13]. The sequence of feature vectors is then compared to word templates. In
order to reduce the sensitivity of the matching to variations in speed of pronunciation,
dynamic time warping aligns the feature sequence with the template sequences. In-
tuitively, DTW consists in finding the best “elastic” warping that maps a sequence of
vectors (or symbols) to another. The solution can be found efficiently with dynamic
programming (e.g. the Viterbi algorithm or the A* algorithm).

DTW can be reduced to a search for the shortest path in a directed acyclic graph
in which the cost of each node is the mismatch between two items in the two input
sequences. Hence, the overall system can be seen as a latent variable EBM in which
Y is the set of words in the lexicon, andZ represents the set of templates for each
word, and the set of paths for each alignment graph. The earliest proposal for inte-
grated training of neural nets and time alignment is by Driancourt and Bottou [25],
who proposed using the LVQ2 loss (Eq. 13) to train this system. It is a simple mat-
ter to back-propagate gradients through the DTW module and further back-propagate
gradients into the TDNN in order to update the weights. Similarly, gradients can be
back-propagated to the word templates in order to update them as well. Excellent re-
sults were obtained for isolated word recognition, despitethe zero margin of the LVQ2
loss. A similar scheme was later used by McDermott [49].

A slightly more general method consists in combining neuralnetworks (e.g.
TDNN) with hidden Markov models instead of DTW. Several authors proposed in-
tegrated training procedures for such combinations duringthe 90’s. The first proposals
were by Bengio et al. [8, 7, 5] who used the NLL/MMI loss optimized with stochas-
tic gradient descent, and Bottou [13] who proposed various loss functions. A sim-
ilar method was subsequently proposed by Haffner et al. in his multi-state TDNN
model [34, 31]. Similar training methods were devised for handwriting recognition.
Bengio and LeCun described a neural net/HMM hybrid with global training using the
NLL/MMI loss optimized with stochastic gradient descent [11, 41]. Shortly thereafter,
Konig et al. proposed the REMAP method, which applies the expectation maximiza-
tion algorithm to the HMM in order to produce targets outputsfor a neural net based
acoustic model [38].

The basic architecture of neural net/HMM hybrid systems is similar to the one
in Figure 21, except that the word (or language) models are probabilistic finite-state
machines instead of sequences. The emission probabilitiesat each node are generally
simple Gaussians operating on the output vector sequences produced by the neural net.
The only challenge is to compute the gradient of the loss withrespect to the neural net
outputs by backpropagating gradients through the HMM trellis. Since the procedure is
very similar to the one used in graph transformer networks, we refer to the next section
for a description.

It should be noted that many authors had previously proposedmethods that com-
bined a separately trained discriminative classifier and analignment method for speech

44

and handwriting, but they did not use integrated training methods.

7.3 Hierarchical Graph-Based EBMs: Graph Transformer Net-
works

(a)

p a t h
GW GW

P a t h S e l e c t o r
V i t e r b iT r a n s f o r m e r

" 3 4 2 "
R e c o g n i t i o nT r a n s f o r m e r

3 2 1
3 4 23 4

GW

X Y Z

E(W,Z, Y, X)

Grseg

Grint

Grsel

(b)

Figure 22:The architecture of agraph transformer networkfor handwritten word recognition.
(a) The segmentation graphGrseg is generated from the input image, (b) the hierarchical multi-
modular architecture takes a set of graphs and outputs another set of graphs.

45

Sections 7.2 and 7.1 discussed models in which inference andlearning involved
marginalizing or minimizing over all configurations of variables of a dynamic factor
graph. These operations are performed efficiently by building a trellis in which each
path corresponds to a particular configuration of those variables. Section 7.2 concen-
trated on models where the factors are non-linear functionsof the parameters, while
Section 7.1 focused on simpler models where the factors are linearly parameterized.

The present section discusses a class of models calledgraph transformer networks
(GTN) [43]. GTNs are designed for situations where the sequential structure is so
complicated that the corresponding dynamical factor graphcannot be explicitly rep-
resented, but must be representedprocedurally. For example, the factor graph that
must be built on-the-fly in order to recognize an entire handwritten sentence in English
is extremely large. The corresponding trellis contains a path for every grammatically
correct transcription of the sentence, for every possible segmentation of the sentence
into characters. Generating this trellis (or its associated factor graph) in its entirety is
impractical, hence the trellis must be represented procedurally. Instead of representing
the factor graph, the GTN approach views the trellis as the main data structure being
manipulated by the machine. A GTN can be seen as a multilayer architecture in which
the states are trellises, just as a neural net is a multilayerarchitecture in which the states
are fixed-size vectors. A GTN can be viewed as a network of modules, calledgraph
transformers, that take one or more graphs as input and produces another graph as out-
put. The operation of most modules can be expressed as the composition of the input
graph with another graph, called a transducer, associated with the module [51]. The
objects attached to the edges of the input graphs, which can be numbers, labels, images,
sequences, or any other entity, are fed to trainable functions whose outputs are attached
to edge of the output graphs. The resulting architecture canbe seen as acompositional
hierarchyin which low level features and parts are combined into higher level objects
through graph composition.

For speech recognition, acoustic vectors are assembled into phones, phones into
triphones, triphones into words, and words into sentences.Similarly in handwriting
recognition, ink segments are assembled into characters, characters into words, and
words into sentences.

Figure 22 shows an example of GTN architecture for simultaneously segmenting
and recognizing handwritten words [43]. The first step involves over-segmenting the
image and generating a segmentation graph out of it (see Figure 22(a)). The segmen-
tation graphGrseg is a directed acyclic graph (DAG) in which each path from the start
node to the end node represents a particular way of segmenting the input image into
character candidates. Each internal node is associated with a candidate cut produced
by the segmentation. Every arc between a source and a destination node is associated
with the part of the image that lies between the two cuts. Hence every piece of ink
appears once and only once along each path. The next stage passes the segmentation
graphGrseg through the recognition transformer which produces the interpretation
graphGrint with the same number of nodes asGrseg . The recognition transformer
contains as many identical copies of the discriminant functionsGW (X) as there are
arcs in the interpretation graph (this number changes for every new input). Each copy
of GW takes the image associated with one arc in the segmentation graph and pro-
duces several arcs between the corresponding nodes in the interpretation graph. Each

46

output arc is labeled by a character category, and weighted by the energy of assigning
the image to that category. Hence, each path in the interpretation graph represents one
possible interpretation of the input for one possible segmentation, with the sum of the
weights along the path representing the combined energy of that interpretation. The in-
terpretation graph is then passed through a path selector module that selects only those
paths from the interpretation graph that have the same sequence of labels as given by
Y (the answer). The output of this module is another graph calledGrsel . Finally a so-
called Viterbi transformer selects a single path inGrsel indexed by the latent variable
Z. Each value ofZ corresponds to a different path inGrsel, and can be interpreted as a
particular segmentation of the input. The output energy is obtained either by minimiz-
ing or by marginalizing overZ. Minimizing overZ is achieved by running a shortest
path algorithm on theGrsel (e.g., the Viterbi algorithm, hence the name Viterbi trans-
former). The output energy is then the sum of the arc energiesalong the shortest path.
Marginalizing overZ is achieved by running the forward algorithm onGrsel, as indi-
cated in Section 6, equation 72. The path selector and Viterbi transformer can be seen
as particular types of “switch” modules that select paths intheir input graph.

In the handwriting recognition systems described in [43], the discriminant func-
tion GW (X) was a 2D convolutional network. This class of function is designed to
learn low level features and high level representations in an integrated manner, and is
therefore highly non-linear inW . Hence the loss function is not convex inW . The
optimization method proposed is a refined version of stochastic gradient descent.

In [43], two primary methods for training GTNs are proposed:discriminative
Viterbi training, which is equivalent to using the generalized perceptron loss (Eq. 7),
and discriminative forward training, which is equivalent to using the negative log-
likelihood loss (Eq. 23). Any of the good losses in Table 1 could also be used.

Training by minimizing the perceptron loss with stochasticgradient descent is per-
formed by applying the following update rule:

W ←W − η

(

∂E(W, Y i, X i)

∂W
−

∂E(W, Y ∗i, X i)

∂W

)

. (87)

How can the gradients ofE(W, Y i, X i) andE(W, Y i, X i) be computed? The answer
is simply to back-propagate gradients through the entire structure, all the way back to
the discriminant functionsGW (X). The overall energy can be written in the following
form:

E(W, Y, X) =
∑

kl

δkl(Y)Gkl(W, X), (88)

where the sum runs over all arcs inGrint, Gkl(W, X) is the l-th component of the
k copy of the discriminant function, andδkl(Y) is a binary value equal to 1 if the
arc containingGkl(W, X) is present in the final graph, and 0 otherwise. Hence, the
gradient is simply:

∂E(W, Y, X)

∂W
=
∑

kl

δkl(Y)
∂Gkl(W, X)

∂W
. (89)

One must simply keep track of theδkl(Y).

47

In Section 5 we concluded that the generalized perceptron loss is not a good loss
function. While the zero margin may limit the robustness of the solution, the perceptron
loss seems appropriate as a way to refine a system that was pre-trained on segmented
characters as suggested in [43]. Nevertheless, the GTN-based bank check reading sys-
tem described in [43] that was deployed commercially was trained with the negative
log-likelihood loss.

The second method for training GTNs uses the NLL loss function, with a marginal-
ization overZ using the forward algorithm of Equation 72 overGrsel , instead of a
minimization.

Training by minimizing the NLL loss with stochastic gradient descent is performed
by applying the following update rule:

W ←W − η

(

∂FZ(W, Y i, X i)

∂W
−

∂FY,Z(W, X i)

∂W

)

, (90)

where

FZ(W, Y i, X i) = −
1

β
log
∑

z∈Z

e−βE(W,Y i,z,Xi), (91)

is the free energy obtained by marginalizing overZ, keepingX i andY i fixed, and

FY,Z(W, X i) = −
1

β
log

∑

y∈Y, z∈Z

e−βE(W,y,z,Xi), (92)

is the free energy obtained by marginalizing overY andZ, keepingX i fixed. Com-
puting those gradients is slightly more complicated than inthe minimization case. By
chain rule the gradients can be expressed as:

∂FY,Z(W, X i)

∂W
=
∑

kl

∂FY,Z(W, X i)

∂Gkl

∂Gkl(W, X)

∂W
, (93)

where the sum runs over all edges in the interpretation graph. The first factor is the
derivative of the quantity obtained through the forward algorithm (Eq. 72) with respect
to one particular edge in the interpretation graph. These quantities can be computed by
back-propagating gradients through the trellis, viewed asa feed-forward network with
node functions given by Equation 72. We refer to [43] for details.

Contrary to the claim in [40], the GTN system trained with theNLL loss as de-
scribed in [43] does assign a well-defined probability distribution over possible label
sequences. The probability of a particular interpretationis given by Equation 46:

P (Y |X) =

∫

z∈Z
e−βE(Z,Y,X)

∫

y∈Y, z∈Z
e−βE(y,z,X)

. (94)

It would seem natural to train GTNs with one of the generalized margin losses. To
our knowledge, this has never been done.

48

8 Discussion

There are still outstanding questions to be answered about energy-based and probabilis-
tic models. This section offers a relatively philosophicaldiscussion of these questions,
including an energy-based discussion of approximate methods for inference and learn-
ing. Finally, a summary of the main ideas of this chapter is given.

8.1 EBMs and Probabilistic Models

In Section 1.3, the transformation of energies to probabilities through the Gibbs distri-
bution was introduced:

P (Y |X, W) =
e−βE(W,Y,X)

∫

y∈Y
e−βE(W,y,X)

. (95)

Any probability distribution overY can be approximated arbitrarily closely by a dis-
tribution of that form. With finite energy values, distributions where the probability
of someY is exactly zero can only be approximated. Estimating the parameters of a
probabilistic model can be performed in a number of different ways, including max-
imum likelihood estimation with Bayes inversion, maximum conditional likelihood
estimation, and (when possible) Bayesian averaging (possibly with variational approx-
imations). Maximizing the conditional likelihood of the training samples is equivalent
to minimizing what we called the negative log-likelihood loss.

Hence, at a high level, discriminative probabilistic models can be seen as a special
case of EBMs in which:

• The energy is such that the integral
∫

y∈Y e−βE(W,y,X) (partition function) con-
verges.

• The model is trained by minimizing the negative log-likelihood loss.

An important question concerns the relative advantages anddisadvantages of prob-
abilistic models versus energy-based models. Probabilistic models have two major
disadvantages. First, the normalization requirement limits the choice of energy func-
tions we can use. For example, there is no reason to believe that the model in Figure 7
is normalizable overY . In fact, if the functionGW2

(Y) is upper bounded, the integral
∫ +∞

−∞ e−βE(W,y,X)dy does not converge. A common fix is to include an additive term
Ry(Y) to the energy, interpreted as a log prior onY , whose negative exponential is
integrable. Second, computing the contrastive term in the negative log-likelihood loss
function (or its gradient with respect toW) may be very complicated, expensive, or
even intractable. The various types of models can be dividedinto five rough categories
of increasing complexity:

• Trivial : WhenY is discrete with a small cardinality, the partition function is
a sum with a small number of terms that can be computed simply.Another
trivial case is when the partition function does not depend on W , and hence can
be ignored for the purpose of learning. For example, this is the case when the
energy is a quadratic form inY with a fixed matrix. These are cases were the
energy loss can be used without fear of collapse.

49

• Analytical : When the partition function and its derivative can be computed an-
alytically. For example, when the energy is a quadratic formin Y in which the
matrix depends on trainable parameters, the partition function is a Gaussian in-
tegral (with variable covariance matrix) and its derivative is an expectation under
a Gaussian distribution, both of which have closed-form expressions.

• Computable: When the partition function is a sum over an exponential num-
ber of terms, but the computation can be factorized in such a way as to make it
tractable. The most notable case of this is when the partition function is a sum
over configurations of output variables and latent variables of a tree-type graph-
ical model. In this case, belief propagation can be used to compute the partition
function. When the graphical model is a simple chain graph (as in the case of
HMMs), the set of configurations can be represented by the paths of a weighted
trellis. Running the forward algorithm through this trellis yields the partition
function. A simple backpropagation-like procedure can be used to compute its
gradient (e.g., see [43] and reference therein).

• Approachable: When the partition function cannot be computed exactly, but can
be approximated reasonably well using various methods. Onenotable example
is when the partition function is a sum over configurations ofa loopy graphi-
cal model. The sum cannot be computed exactly, but loopy belief propagation
or other variational methods may yield a suitable approximation. With those ap-
proximations, the energies of the various answers will still be pulled up, although
not as systematically and with the same force as if using the full partition func-
tion. In a sense, variational methods could be interpreted in the context of EBM
as a way to choose a subset of energies to pull up.

• Intractable : When the partition function is truly intractable with no satisfactory
variational approximation. In this case, one is reduced to usingsampling meth-
ods. A sampling method is a policy for choosing suitable candidate answers
whose energy will be pulled up. The probabilistic approach to this is to sam-
ple answers according to their probability under the model,and to pull up their
energy. On average, each answer will be pulled up by the appropriate amount
according to the partition function.

In this context, using an energy-based loss function other than the negative log-likelihood
can be seen as a sampling method with a particular policy for picking the answers
whose energy will be pulled up. For example, the hinge loss systematically chooses
the most offending incorrect answer as the one whose energy should be pulled up. In
the end, using such strategies will produce energy surfaceswith which differences of
energies cannot be interpreted as likelihood ratios (the same is true with variational
methods). We should emphasize again that this is inconsequential if the model is to be
used for prediction, classification, or decision-making.

Variational approximation methods can be interpreted in the EBM framework as
a particular choice of contrastive term for the loss function. A common approach is
to view variational methods and energy-based loss functions as approximations to the
probabilistic method. What we propose here is to view the probabilistic approach as

50

a special case of a much larger family of energy-based methods. Energy-based meth-
ods are equally well justified as probabilistic methods. They are merely designed for
training models to answer a different kind of question than probabilistic models.

An important open question is whether the variational methods that are commonly
used (e.g., mean field approximations with popular architectures) actually satisfy con-
dition 3 (see Section 5.2).

8.2 Efficiency in Learning

The most important question that affects the efficiency of learning is: “How many en-
ergies of incorrect answers must be explicitly pulled up before the energy surface takes
the right shape?”. Energy-based loss functions that pull upthe most offending incor-
rect answer only pull up on a single energy at each learning iteration. By contrast, the
negative log-likelihood loss pulls up on all incorrect answers at each iteration, includ-
ing those that are unlikely to produce a lower energy than thecorrect answer. Hence,
unless the NLL computation can be done at very low cost (as in the case of “trivial”
and “analytical” models), the energy-based approach is bound to be more efficient.

An important open question is whether alternative loss functions exist whose con-
trastive term and its derivative are considerably simpler to compute than that of the
negative log-likelihood loss, while preserving the nice property that they pull up a large
volume of incorrect answers whose energies are “threateningly low”. Perhaps, a figure
of merit for architectures and loss functions could be defined which would compare
the amount of computation required to evaluate the loss and its derivative relative to
the volume of incorrect answers whose energy is pulled up as aresult.

For models in the “intractable” category, each individual energy that needs to be
pulled up or pushed down requires an evaluation of the energyand of its gradient
(if a gradient-based optimization method is used). Hence, finding parameterizations
of the energy surface that will cause the energy surface to take the right shape with
the minimum amount of pushing of pulling is of crucial importance. IfY is high-
dimensional, and the energy surface is infinitely malleable, then the energy surface
will have to be pulled up in many places to make it take a suitable shape. Conversely,
more “rigid” energy surfaces may take a suitable shape with less pulling, but are less
likely to approach the correct shape. There seems to be a bias-variance dilemma similar
to the one that influences the generalization performance.

8.3 Learning with Approximate Inference

Very often, the inference algorithm can only give us an approximate answer, or is not
guaranteed to give us the global minimum of the energy. Can energy-based learning
work in this case? The theory for this does not yet exist, but afew intuitions may shed
light on the issue.

There may be certain answers inY that our inference algorithm never finds, per-
haps because they reside in far-away regions of the space that the algorithm can never
reach. Our model may give low energy to wrong answers in theseregions, but since the
inference algorithm cannot find them, they will never appearin the contrastive term,

51

and their energies will never be pulled up. Fortunately, since those answers are not
found by the inference algorithm, we do not need to worry about their energies.

It is an interesting advantage of energy-based learning that only the incorrect an-
swers whose energies are pulled up actually matter. This is in contrast with probabilis-
tic loss functions (e.g. NLL) in which the contrastive term must pull up the energy of
every single answer, including the ones that our inference algorithm will never find,
which can be wasteful.

8.4 Approximate Contrastive Samples, Contrastive Divergence

Loss functions differ in how the contrastive sample is selected, and how hard its energy
is pulled up. One interesting suggestion is to pull up on answers that are always near the
correct answer, so as to make the correct answer a local minimum, but not necessarily
a global one. This idea is the basis of thecontrastive divergence algorithmproposed by
Hinton [35, 59]. Contrastive divergence learning can be seen as an approximation of
NLL learning with two shortcuts. First, the contrastive term in Equation 24 is approx-
imated by drawing samples from the distributionP (Y |X i, W) using a Markov chain
Monte Carlo method. Second, the samples are picked by starting the Markov chain at
the desired answer, and by running only a few steps of the chain. This produces a sam-
ple Ỹ i that is near the desired answer. Then, a simple gradient update of the parameters
is performed:

W ←W − η

(

∂E(W, Y i, X i)

∂W
−

∂E(W, Ỹ i, X i)

∂W

)

. (96)

Since the contrastive sample is always near the desired answer, one can hope that the
desired answer will become a local minimum of the energy. Running MCMC for just a
few steps limits computational expense. However, there is no guarantee that all incor-
rect answers with low energy will be pulled up.

8.5 Conclusion

This tutorial was written to introduce and explicate the following major ideas:

• Many existing learning models can be be expressed simply in the framework of
energy-based learning.

• Among the many loss functions proposed in the literature, some are good (with
a non-zero margin), and some can be bad.

• Probabilistic learning is a special case of energy-based learning where the loss
function is the negative log-likelihood, a.k.a. the maximum mutual information
criterion.

• Optimizing the loss function with stochastic gradient methods is often more ef-
ficient than black box convex optimization methods.

52

• Stochastic gradient methods can be applied to any loss function including non-
convex ones. Local minima are rarely a problem in practice because of the high
dimensionality of the space.

• Support vector Markov models, max-margin Markov networks,and conditional
random fields are all sequence modeling systems that use linearly parameterized
energy factors. Sequence modeling systems with non-linearparameterization for
speech and handwriting recognition have been a very active research area since
the early 1990’s. since the early 90’s.

• Graph transformer networks are hierarchical sequence modeling systems in which
the objects that are manipulated are trellises containing all the alternative inter-
pretations at a given level. Global training can be performed using stochastic
gradient by using a form of back-propagation algorithm to compute the gradi-
ents of the loss with respect to all the parameters in the system.

Acknowledgments

The authors wish to thank Geoffrey Hinton, Leon Bottou, Yoshua Bengio, Sebastian
Seung, and Brendan Frey for helpful discussions.

This work was supported in part by NSF ITR grant 0325463 “New directions in
predictive learning”.

References

[1] Y. Altun and T. Hofmann. Large margin methods for label sequence learning.
In Proc. of 8th European Conference on Speech Communication and Technology
(EuroSpeech), 2003.

[2] Yasemin Altun, Mark Johnson, and Thomas Hofmann. Loss functions and op-
timization methods for discriminative learning of label sequences. InProc.
EMNLP, 2003.

[3] L. Bahl, P. Brown, P. de Souza, and R. Mercer. Maximum mutual information
estimation of hidden markov model parameters for speech recognition. InPro-
ceedings of Acoustics, Speech, and Signal Processing Conference, pages 49–52,
1986.

[4] S. Becker and Y. LeCun. Improving the convergence of back-propagation learn-
ing with second-order methods. In D. Touretzky, G. Hinton, and T. Sejnowski,
editors,Proc. of the 1988 Connectionist Models Summer School, pages 29–37,
San Mateo, 1989. Morgan Kaufman.

[5] Y. Bengio. Neural Networks for Speech and Sequence Recognition. International
Thompson Computer Press, London, UK, 1996.

53

[6] Y. Bengio, R. Cardin, R. De Mori, and Y. Normandin. A hybrid coder for hidden
markov models using a recurrent network. InProceeding of ICASSP, pages 537–
540, 1990.

[7] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe. Global optimization of
a neural network-hidden Markov model hybrid.IEEE Transaction on Neural
Networks, 3(2):252–259, 1992.

[8] Y. Bengio, R. DeMori, G. Flammia, and R. Kompe. Global optimization of a
neural network - hidden markov model hybrid. InProceedings of EuroSpeech’91,
1991.

[9] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic lan-
guage model.Journal of Machine Learning Research, 3:1137–1155, February
2003.

[10] Y. Bengio and P. Frasconi. An input/output HMM architecture. In G. Tesauro,
D. Touretzky, and T. Leen, editors,Advances in Neural Information Processing
Systems, volume 7, pages 427–434. MIT Press, Cambridge, MA, 1996.

[11] Y. Bengio, Y. LeCun, and D. Henderson. Globally trainedhandwritten word
recognizer using spatial representation, space displacement neural networks and
hidden markov models. In J. Cowan and G. Tesauro, editors,Advances in Neural
Information Processing Systems, volume 6. Morgan Kaufmann, 1993.

[12] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. Lerec: A nn/hmm hybrid for on-
line handwriting recognition.Neural Computation, 7(6):1289–1303, November
1995.

[13] L. Bottou.Une Approche th́eorique de l’Apprentissage Connexionniste: Applica-
tionsà la Reconnaissance de la Parole. PhD thesis, Université de Paris XI, 91405
Orsay cedex, France, 1991.

[14] L. Bottou, Y. LeCun, and Y. Bengio. Global training of document processing
systems using graph transformer networks. InProc. of Computer Vision and
Pattern Recognition, pages 490–494, Puerto-Rico, 1997. IEEE.

[15] Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg,
editors,Advanced Lectures on Machine Learning, number LNAI 3176 in Lecture
Notes in Artificial Intelligence, pages 146–168. Springer Verlag, Berlin, 2004.

[16] Leon Bottou and Yann LeCun. Large-scale on-line learning. In Advances in
Neural Information Processing Systems 15. MIT Press, 2004.

[17] H. Bourlard and N. Morgan. A continuous speech recognition system embed-
ding mlp into hmm. In D.S. Touretzky, editor,Advances in Neural Information
Processing Systems 2, pages 186–193. Morgan Kaufmann, 1990.

54

[18] J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verifi-
cation using a siamese time delay neural network. In J. Cowanand G. Tesauro,
editors,Advances in Neural Information Processing Systems, volume 6. Morgan
Kaufmann, 1993.

[19] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-
criminatively, with application to face verification. InProc. of Computer Vision
and Pattern Recognition Conference. IEEE Press, 2005.

[20] M. Collins. Discriminative reranking for natural language parsing. InProceed-
ings of ICML 2000, 2000.

[21] Michael Collins. Discriminative training methods forhidden markov models:
Theory and experiments with perceptron algorithms. InProc. EMNLP, 2002.

[22] Ronan Collobert, Jason Weston, and Léon Bottou. Trading convexity for scala-
bility. In Proceedings of the Twenty-third International Conferenceon Machine
Learning (ICML 2006). IMLS/ICML, 2006. ACM Digital Library.

[23] J. S. Denker and C. J. Burges. Image segmentation and recognition. In The
Mathematics of Induction. Addison Wesley, 1995.

[24] X. Driancourt. Optimisation par descente de gradient stochastique de systèmes
modulaires combinant réseaux de neurones et programmation dynamique. Appli-
cationà la reconnaissance de la parole. (optimization through stochastic gradient
of modular systems that combine neural networks and dynamicprogramming,
with applications to speech recognition). PhD thesis, Université de Paris XI,
91405 Orsay cedex, France, 1994.

[25] X. Driancourt, L. Bottou, and P. Gallinari. MLP, LVQ andDP: Comparison &
cooperation. InProceedings of the International Joint Conference on Neural
Networks, volume 2, pages 815–819, Seattle, 1991.

[26] X. Driancourt, L. Bottou, and Gallinari P. Comparison and cooperation of several
classifiers. InProceedings of the International Conference on Artificial Neural
Networks (ICANN), 1991.

[27] X. Driancourt and P. Gallinari. Empirical risk optimisation: neural networks and
dynamic programming. InProceedings of Neural Networks for Signal Processing
(NNSP), 1992.

[28] X. Driancourt and P. Gallinari. A speech recognizer optimaly combining learn-
ing vector quantization, dynamic programming and multi-layer perceptron. In
Proceedings of ICASSP, 1992.

[29] M. Franzini, K. F. Lee, and A. Waibel. Connectionnist viterbi training: A new
hybrid method for continuous speech recognition. InProceedings of ICASSP,
page 245, 1990.

55

[30] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. InProc. Computer Vision and Pattern Recognition
Conference (CVPR’06). IEEE Press, 2006.

[31] P. Haffner. Connectionist speech recognition with a global MMI algorithm. In
EUROSPEECH’93, 3rd European Conference on Speech Communication and
Technology, Berlin, September 1993.

[32] P. Haffner, M. Franzini, and A. H. Waibel. Integrating time-alignment and neural
networks for high performance continuous speech recognition. InProceeding of
ICASSP, pages 105–108. IEEE, 1991.

[33] P. Haffner and A. H. Waibel. Time-delay neural networksembedding time align-
ment: a performance analysis. InEUROSPEECH’91, 2nd European Conference
on Speech Communication and Technology, Genova, Italy, September 1991.

[34] P. Haffner and A. H. Waibel. Multi-state time-delay neural networks for continu-
ous speech recognition. InAdvances in Neural Information Processing Systems,
volume 4, pages 579–588. Morgan Kaufmann, San Mateo, 1992.

[35] G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

[36] Fu-Jie Huang and Yann LeCun. Large-scale learning withsvm and convolutional
nets for generic object categorization. InProc. Computer Vision and Pattern
Recognition Conference (CVPR’06). IEEE Press, 2006.

[37] Biing-Hwang Juang, Wu Chou, and Chin-Hui Lee. Minimum classification error
rate methods for speech recognition.IEEE Transactions on Speech and Audio
Processing, 5(3):257–265, May 1997.

[38] Y. Konig, H Bourlard, and N. Morgan. REMAP: Recursive estimation and max-
imization of A posteriori probabilities — application to transition-based con-
nectionist speech recognition. In David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, editors,Advances in Neural Information Processing Sys-
tems, volume 8, pages 388–394. The MIT Press, 1996.

[39] Sanjiv Kumar and Martial Hebert. Discriminative fieldsfor modeling spatial de-
pendencies in natural images. In Sebastian Thrun, LawrenceSaul, and Bernhard
Schölkopf, editors,Advances in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA, 2004.

[40] John Lafferty, Andrew McCallum, and Fernando Pereira.Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. InProc.
International Conference on Machine Learning (ICML), 2001.

[41] Y. LeCun and Y. Bengio. word-level training of a handwritten word recognizer
based on convolutional neural networks. In IAPR, editor,Proc. of the Interna-
tional Conference on Pattern Recognition, volume II, pages 88–92, Jerusalem,
October 1994. IEEE.

56

[42] Y. LeCun, L. Bottou, and Y. Bengio. Reading checks with graph transformer net-
works. InInternational Conference on Acoustics, Speech, and SignalProcessing,
volume 1, pages 151–154, Munich, 1997. IEEE.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition.Proceedings of the IEEE, 86(11):2278–2324, Novem-
ber 1998.

[44] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and
Muller K., editors,Neural Networks: Tricks of the trade. Springer, 1998.

[45] Yann LeCun and Fu Jie Huang. Loss functions for discriminative training of
energy-based models. InProc. of the 10-th International Workshop on Artificial
Intelligence and Statistics (AIStats’05), 2005.

[46] A. Ljolje, Y. Ephraim, and L. R. Rabiner. Estimation of hidden markov model pa-
rameters by minimizing empirical error rate. InProc. of International Conference
on Acoustics, Speech, and Signal Processing, pages 709–712, April 1990.

[47] David J. C. MacKay. Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, 2003. Available from
http://www.inference.phy.cam.ac.uk/mackay/itila/.

[48] Andrew McCallum, D. Freitag, and Fernando Pereira. Maximum entropy markov
models for information extraction and segmetnation. InProc. International Con-
ference on Machine Learning (ICML), pages 591–598, 2000.

[49] E. McDermott. Discriminative Training for Speech Recognition. PhD thesis,
Waseda University, 1997.

[50] E. McDermott and S. Katagiri. Prototype-based discriminative training for vari-
ous speech units. InProceedings of ICASSP-92, San Francisco, CA, USA, pages
417–420, 1992.

[51] M. Mohri. Finite-state transducers in language and speech processing.Computa-
tional Linguistics, 23(2):269–311, 1997.

[52] N. Morgan and H. Bourlard. Continuous speech recognition: An introduction
to the hybrid hmm/connectionist approach.IEEE Signal Processing Magazine,
12(3):25–42, May 1995.

[53] Feng Ning, Damien Delhomme, Yann LeCun, Fabio Piano, Leon Bottou, and
Paolo Barbano. Toward automatic phenotyping of developingembryos from
videos. IEEE Transactions on Image Processing, 14(9):1360–1371, September
2005. Special issue on Molecular and Cellular Bioimaging, to appear.

[54] R. Osadchy, M. Miller, and Y. LeCun. Synergistic face detection and pose esti-
mation with energy-based model. InAdvances in Neural Information Processing
Systems (NIPS 2004). MIT Press, 2005.

57

[55] Kschischang F. R., B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Trans. Information Theory, 47(2):498–519, February
2001.

[56] H. Sakoe, R. Isotani, K. Yoshida, K. Iso, and T. Watanabe. Speaker-independant
word recognition using dynamic programming neural networks. In Proceedings
of ICASSP-88, New York, pages 107–110, 1988.

[57] S. Solla, E. Levin, and M. Fleisher. Accelerated learning in layered neural net-
works. Complex Systems, 2(6):625–639, 1988.

[58] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks.
In Proc. NIPS, 2003.

[59] Y. W. Teh, M. Welling, S. Osindero, and Hinton G. E. Energy-based models
for sparse overcomplete representations.Journal of Machine Learning Research,
4:1235–1260, 2003.

[60] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

[61] S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P.
Murphy. Accelerated training of conditional random fields with stochastic gra-
dient methods. InProceedings of the Twenty-third International Conferenceon
Machine Learning (ICML 2006). IMLS/ICML, 2006.

[62] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructingfree-energy approxi-
mations and generalized belief propagation algorithms.IEEE Transactions on
Information Theory, 51(7):2282–2312, July 2005.

58

