
An Experimental Study of k-Splittable Scheduling for
DNS-Based Traffic Allocation

Amit Agarwal
�
, Tarun Agarwal

�
, Sumit Chopra

���
, Anja Feldmann

�����
,

Nils Kammenhuber
�����

, Piotr Krysta†, and Berthold Vöcking‡

Topic 3: Scheduling and Load Balancing

Abstract. The Internet domain name system (DNS) uses rotation of address lists
to perform load distribution among replicated servers. We model this kind of load
balancing mechanism in form of a set of request streams with different rates that
should be mapped to a set of servers. Rotating a list of length k corresponds to
breaking streams into k equally sized pieces. We compare this and other strategies
of how to break the streams into a bounded number of pieces and how to map
these pieces to the servers.
One of the strategies that we study computes an optimal k-splittable allocation
using a scheduling algorithm that breaks streams into at most k

�
2 pieces of

possibly different size and maps these pieces to the servers in such a way that
the maximum load over all servers is minimized. Our experimental study is done
using the network simulator SSFNet. We study the average and maximum delay
experienced by HTTP requests for various traffic allocation policies and traffic
patterns. Our simulations show that splitting data streams can reduce the max-
imum as well as the average latency of HTTP requests significantly. This im-
provement can be observed even if streams are simply broken into k equally sized
pieces that are mapped randomly to the servers. Using allocations computed by
machine scheduling algorithms, we observe further significant improvements.

1 Introduction

The Internet’s Domain Name System (DNS) is responsible for resolving host
names like “ �����
	���
���	���� ” into IP addresses. This service is also being used to
perform load distribution among distributed Web servers. Busy sites are repli-
cated over multiple servers, with each server running on a different end sys-
tem having its own IP address. Thus a set of IP addresses is associated with
one canonical hostname contained in the DNS database. When clients make a
DNS query for such a host name, the server returns the entire set of addresses,
�

IIT Delhi, India. This work was done while the author was visiting the MPI in Saarbrücken.���
Department of Computer Science, Hansraj College, University of Delhi, India. This work was
done while this author was visiting the MPI in Saarbrücken.�����
Department of Computer Science, Technische Universität München, Germany.

† Max-Planck-Institut für Informatik, Saarbrücken, Germany.
‡ Department of Computer Science, Universität Dortmund, Germany.

thereby rotating the order of addresses within each reply. Because a client typ-
ically sends its HTTP request to the server listed first, the traffic is distributed
among all replicated servers (cf. [7]).

One can view the requests that are directed to the same URL as traffic
streams. The rotation of address lists basically splits these streams into equally
sized pieces. Suppose the request streams are formed by a sufficiently large
number of clients. Then the arrivals of requests can be described by a stochastic
process. In the scenario that we consider there are n streams and m identical
servers. Let λ j denote the rate of stream j � � n � , i. e., the expected number of
requests in some specified time interval. Under this assumption, rotating a list
of k servers corresponds to splitting stream j into k substreams each of which
having rate λ j � k. The following slightly more sophisticated stochastic splitting
policy would possibly achieve a better load balancing. Suppose, the DNS at-
taches a vector p j

1 ��������� p j
k with ∑i p j

i � 1 to the list of each stream j. In this way,
every individual request in stream j can be directed to the ith server on this list
with probability p j

i . This policy breaks Poisson stream j into k Poisson streams
of rates p j

1λ j ��������� p j
kλ j, respectively.

The focus of this paper is not on how exactly to implement such strategies
within the DNS implementation. Instead, our goal is to study the impacts of
different allocation strategies a few steps ahead of current DNS implementa-
tions, including calculating an optimal k-split allocation. The optimal k-split
allocation is computed using a variant of a recently presented algorithm for the
k-splittable machine scheduling problem. Suppose a set of jobs (data streams)�
n � �
	 1 ��������� n � of sizes λ1 ��������� λn need to be scheduled on a set of identical

machines (web servers)
�
m � �
	 1 ��������� m � . Every job can be broken into at most

k pieces. The goal is to map job pieces to machines so that the makespan, i. e.
the maximum load over all machines, is minimized.

Scheduling with bounded splittability was introduced by Shachnai and Tamir
[9]. They prove that the problem is ��� -hard and present approximation algo-
rithms. Krysta et al. [6] presented an exact algorithm for the k-splittable machine
scheduling problem with running time O � mm � m � k � n � . Thus the problem can be
solved in polynomial time for any fixed number of machines. It is well known
that the classical unsplittable scheduling problem is ��� -hard for 2 machines,
so the result from [6] proves that bounded splittability reduces the problem’s
complexity for a fixed number of machines.

We remark that the algorithms in [6, 9] not only work for identical but also
for machines of different speeds. In this paper, we focus on the special case of
identical machines. Note that the above and all following bounds on the running
time refer to algorithms that compute feasible allocations for any given upper

2

bound on the makespan. These algorithms, in turn, can be used to compute the
optimal makespan by applying binary search techniques.

When implementing the algorithm from [6], we learned that the exponential
term in the running time let us only compute optimal assignments for relatively
small numbers of machines. For some randomly generated instances with less
than 40 machines the algorithm did not terminate in reasonable time. It was ob-
vious, however, that, in the case of identical machines, one could exploit sym-
metries to speed up the algorithm. Clearly, because of the ��� -hardness of the
problem, the best one can hope for is to soften the exponential influence of the
number of the machines. The theoretical contribution of this paper is an upper
bound of O ��� 2m � m ��� k � 1 � � 1 � m � k � � n � on the running time of an exact algorithm
for the k-splittable scheduling problem on identical machines. Observe that this
result yields the first complete tradeoff on the influence of different degrees of
splittability on the running time ranging from polynomial time in the case of
k � Ω � m � to exponential time when k � O � 1 � .

In Section 2, we present this improved algorithm. Furthermore, we give
some experimental results for different input distributions showing that the im-
proved algorithm can be used to compute optimal solutions for several hundred
machines very efficiently. In Section 3, we present our comparative study of
different traffic allocation strategies applied to a simple network topology in
which we measure average and maximum delays of HTTP requests. For a brief
summary of these results, we refer the reader to the Conclusions presented in
Section 4.

2 An improved algorithm for k-splittable scheduling

In this section, we present an improved algorithm for k-splittable scheduling on
identical machines. We refer the reader to [6] for the original algorithm.

Let xi � j denote the fraction of job j that goes to machine i, let k j be the
current splittability of j. Of course, at the beginning we have � j : k j � k. The
bulkiness of a job j is defined as λj � � k j � 1 � . Assuming that a value z for the
makespan (maximum load) is given, we look for an algorithm that either com-
putes an assignment satisfying maxi 	�
m � ∑ j 	

 n � λ jxi j � z or returns that there is
no z. Given such an algorithm, the original optimization problem can be solved
in a polynomial number of iterations by applying binary search techniques over
the rational numbers [5, 8]. The binary search works despite the possibility of
irrational splits because the value of the optimal solution can be proved to be
rational [6].

3

2.1 The improvement

We change the algorithm only in a small aspect: we reduce search space size by
exploiting symmetries. Considering all machines with the same remaining ca-
pacity as belonging to one equivalence class, there is no need to backtrack over
machines in the same class. In the case of identical machines, all empty ma-
chines (remaining capacity � z) fall into the same equivalence class. In contrast,
partially filled machines (remaining capacity in � 0 � z �) typically build equiva-
lence classes of size one. For simplicity of the implementation, we thus only
exploit the symmetry among empty machines. When picking the jobs in the
order of their bulkiness, we distinguish three cases (j denotes the job’s index):

1) If k j � 2 then we saturate one of the machines, selecting a machine from the
class of the empty machines first and then trying all machines with reduced
capacity.

2) If k j � 1 then we put the remaining piece job j to a machine i with ci � λ j,
first trying all partially filled machines and then one of the empty machines.

3) If λ j

k j � 1 � mini 	�
m � � ci � then the McNaughton phase is initiated.

Obviously, our modification does not affect the algorithm’s correctness. How-
ever, one might object that exploiting symmetries cannot help too much as the
assignment of jobs destroys these symmetries rapidly. Nevertheless, the follow-
ing theorem states that the running time is improved dramatically.

Theorem 1. The running time of the improved algorithm for the k-splittable
traffic allocation problem is O ��� 2m � m � � k � 1 � � 1 � m � k � � n � , for every k � 	 2 ��������� m � .

The proof of this theorem is provided in [11]. Observe that the theorem
yields a complete tradeoff on the influence of the different degrees of splitta-
bility on the running time. In particular, the following result was not known
before.

Corollary 1. For any constant c � 0 and k � max 	 2 � m
c � , k-splittable schedul-

ing on identical machines is solvable in polynomial time.

We implemented both the original algorithm and its modification to compare
their running times. An evaluation showed that also in practice, the modified
algorithm performs significantly better than the original one. For details, we
refer the reader to [11].

3 Evaluation of server load balancing simulations

To check how well our algorithms performs in the server farm load balancing
scenario, we compared their results against three heuristics, i. e., random allo-
cation (assign each job to a random machine), random k-split allocation (split

4

server

2Gbps

1G
bps

10Mbps

100Mbps

router
farm

8000 clients in 100 groups,
connected to 100 group routers

8 servers

������ ���
�

������ ��

	�		�	

��

�
� ��

������������ ��

���� ��

���� ��
������ �

!�!"�" ##$
$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%

&�&�&&�&�&&�&�&&�&�&

'�'�'�''�'�'�'(�(�(�((�(�(�(
)�)�)*�*�*

+�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,

-�-�-�--�-�-�-.�.�..�.�.
/�/�/0�0�0

1�1�1�11�1�1�11�1�1�11�1�1�1

2�2�2�22�2�2�22�2�2�22�2�2�2

3�3�3�33�3�3�34�4�44�4�4
5�5�56�6�6

7�7�77�7�77�7�77�7�7

8�8�88�8�88�8�88�8�8

9�9�9�99�9�9�9:�:�:�::�:�:�:
;�;�;<�<�<

==
==
==
==
==

>>
>>
>>
>>
>>

??
??
??
??
??

@@
@@
@@
@@
@@

AA
AA
AA
AA
AA

BB
BB
BB
BB
BB

CC
CC
CC
CC
CC

DD
DD
DD
DD
DD

EE
EE
EE
EE
EE

FF
FF
FF
FF
FF

Fig. 1. Topology of simulated network.

min max average median

our algorithm
random
split−random
least load

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 2. Experienced response delays

each job into k equal parts, assign each part to a random machine) and least-load
(“LL” — sort the jobs by their rates, split each job into k equal parts, assign each
part to the machine with the smallest load at the time of scheduling).

For various k values, we created 10 random job assignment problems with
uniform machine capacities. This was done for uniform, equally-distributed, ex-
ponentially distributed and Pareto-distributed job sizes, the latter for various α
values. From the solutions gained by the algorithm (or the heuristics, respec-
tively), we created network setups where each machine is represented by a web
server and each job is represented by a group of uniform clients. The number of
clients in a group reflects the workload of that job. Job assignment is modelled
in a probabilistic way: Each group is given a probability vector that defines the
probabilities under which the clients will issue their requests to what server. The
network setups then were simulated using SSFNet [10].

We started using relatively simple network setups and experimented with
various parameters, e. g. the link delays and random distributions of the object
sizes, and slowly moved on to complex scenarios. We refer the reader to [11]
for further details.

Among other evaluations, we calculated the delays between a request being
issued and the first byte of the response arriving at the client. Finally, we used
a realistic web workload model for the client’s inter-request times, sizes of the
objects being served, etc., which was derived from [1] and [3]. The network
topology used is shown in Fig. 1.

An evaluation of some simulation runs with this setup is depicted in Fig. 2.
We see that our algorithm clearly wins over the randomized schemes. It also
wins over the simple LL heuristics, however the gain is rather narrow. Although
Fig. 2 being an example, we note that these are tendencies also present in other
simulation runs [11].

5

4 Conclusions

We studied delay and bandwidths experienced by HTTP requests for various
traffic allocation policies and traffic patterns. Our simulation results show that
splitting data streams into a small number of pieces can reduce the maximum as
well as the average latency of HTTP requests significantly.

Besides to random allocations, we devised and studied allocation strategies
that allocate pieces of jobs to machines with the objective to minimize the max-
imum load over all servers. These strategies lead to a clear improvement in the
maximum as well as the average latency of HTTP requests. It turned out, how-
ever, that the differences between the latencies obtained by the simple LL heuris-
tic and the latencies obtained by an optimal k-splittable allocation are small.

There are several questions left open by our analysis. Certainly, some more
test runs with the very large network setup would be interesting. It also could
make sense to make the simulation environment even more realistic by studying
even more complex network topologies. A second interesting topic are dynamic
allocation schemes that use splittability to realize a smooth rather than an abrupt
adaptation to dynamically changing traffic patterns. These are topics that we
plan to investigate in future work.

References

1. P. Barford, M. Crovella. Web Server Workload Characterization: The Search for Invariants.
Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of Com-
puter Systems 1996, pp. 126–137

2. M. Crovella, A. Bestavros. Self-Similarity in World Wide Web Traffic: Evidence and Possible
Causes. IEEE/ACM Transactions on Networking’96.

3. A. Feldmann, A. Gilbert, P. Huang and W. Willinger. Dynamics of IP traffic: a study of the
role of variability and the impact of control. Proceedings of SIGCOMM’99.

4. M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-
completeness. Freeman, 1979.

5. St. Kwek and K. Mehlhorn. Optimal search for rationals. Information Processing Letters,
86:23–26, 2003.

6. P. Krysta, P. Sanders and B. Vöcking. Scheduling and Traffic Allocation for Tasks with
Bounded Splittability. Proc. of the 28th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), to appear, 2003.

7. J. F. Kurose, K. W. Ross. Computer Networking: a top-down approach featuring the Internet.
Addison-Wesley, 2001.

8. C. H. Papadimitriou. Efficient search for rationals. Information Processing Letters, 8:1–4,
1979.

9. H. Shachnai and T. Tamir. Multiprocessor Scheduling with Machine Allotment and Paral-
lelism Constraints. Algorithmica, 32(4): 651–678, 2002.

10. Scalable Simulation Framework Research Network (SSFNet). http://www.ssfnet.org/
11. A. Agarwal, T. Agarwal, S. Chopra, A. Feldmann, N. Kammenhuber, P. Krysta, B. Vöcking.

An Experimental Study of k-Splittable Scheduling for DNS-Based Traffic Allocation. Techni-
cal Report TUM-I0304, Technische Universität München, 2003.

6

