Grapevine

Robert Grimm
New York University
Altogether Now: The Three Questions

- What is the problem?
- What is new or different?
- What are the contributions and limitations?

- One meta-question
 - Do the three questions apply for this paper?
Grapevine Environment

- Xerox research internet
 - Local Ethernet networks
 - Gateways
 - Long distance links
- Dedicated servers
 - Alto with 128 KB RAM and 5 MB disk
 - Programmed in Mesa
 - Roughly, a cross between Pascal and C
Grapevine Messaging

- **Messages**
 - Sent to individuals and distribution lists
 - Buffered in inboxes
 - On two different servers per user for fault tolerance
 - Though, messages are *not* replicated
 - Treated as opaque objects
 - Message content not interpreted by service
 - Retrieved onto client machines
Grapevine Registration

- Provides naming, authentication, access control, and location function
- Based on database of RNames
 - Group entries contain RNames of members
 - User entries specify password, ordered list of inbox sites, connect site, additional information
- Bootstrapped on itself
 - Configuration information stored in Grapevine as well
 - GV registry (*.gv) replicated across all Grapevine servers
 - Each server represented as an individual (connect site is location)
 - Each registry represented as a group (members are servers)
 - gv.gv lists all servers
Replication of registries
- Unit of replication is a registry
- No server hosts all registries
- Any server hosting a registry accepts operations

Applications rely on user-level library
- Makes multiple servers look like a single service

Growth
- 1981: 5 servers, 1500 individuals, 500 groups, 2500 messages/day (1.7 messages/day/user)
- 1983: 17 servers, 4400 individuals, 1500 groups, 8500 messages/day (1.9 messages/day/user)
Some Historical Context

- POP2 RFCs: October 1984, February 1985
- IMAP
 - Conceived in 1986
 - First RFC in 1988
 - First and second meetings at UW in 1996
 - Sun, Netscape declare support for IMAP4
Experiences

- Effects of scale
- Configuration decisions
- Transparency
- Adjusting to load
- Operational concerns
- Reliability
Effects of Scale

- Global state might become a limiting factor
 - Space: 15 KB for the GV registry, ~1% of disk space
 - Time: Locating closest server out of 17 is acceptable
- Manual partitioning has only been partially effective
 - Distribution lists grow with population
 - E.g., Tax^pa has 500 members, which need to be resolved by accepting server
 - Suggested solution: Distribute load by using layer of indirection
 - Tax^All, which breaks down into per-registry lists
Effects of Scale (cont.)

- Overall message volume is a concern
 - Physical world: there’s only so much paper that can be pushed around
 - Electronic world: need a better filtering mechanism
- Large number of unreliable links is a concern
 - Store and forward architecture instead of direct delivery
- How have these concerns played out for email?
 - Think spam, SMTP’s store-and-forward architecture
Configuration Decisions

- Organizational structure for email
 - Encourages sharing of data
 - Same email stored only once (4.7 inboxes on average)
 - Has natural scalability limits
 - There’s only so many people that can effectively collaborate

- Geographical structure for registries
 - Relatively stable within commercial organization
 - But can be an arbitrary criterion when compared to real-world usage
 - One group split evenly between El Segundo and Palo Alto
Location of registry replicas
- Close to inboxes for that registry
- Close to servers accepting messages to distribution lists
- On both sides of unreliable links
- On enough machines to avoid catastrophic losses
- Not on busy servers

There seems to be an awful lot to consider by an administrator
Transparency

- Works well in the common case but also leads to surprising results in some uncommon cases
 - Propagation delay in registry updates
 - Library may pick different server for next operation
 - Expensive consequences of simple operations
 - Changing inbox list causes remailing of entire inbox
 - No notion of distance of server
 - Long delays when using nonlocal server
 - Little information on state of the system
 - Unused distribution lists, inaccessible servers, duplicate messages
Adjusting to Load

- Simplistic algorithms kill your performance
 - Sending complete updates instead of deltas
 - Adding/removing one member to/from list is frequent
 - Not distinguishing between users and groups
 - Need to look up every single name for access control
 - What about flattened groups?
 - Assuming that all mailbox access is sequential
 - Users move about and leave their mail on the server
Operational Concerns

- Silent implication: Operators are not very qualified
- SSH is your friend
 - Well, at the time, remote disk editor, viticulturist’s entrance
 - “a cultivator of grape vine”
- Logs are your friend
 - Need to combine logs from different servers
 - Unique identifiers help
 - But have more than a week of history
 - Can be viewed dynamically
 - Check fixes, notice oddities (“must see logs”)
- Dead letter facility is …?
Reliability

- System requires spare capacity to work
 - Detecting resource depletion early is crucial to prevent failures
 - But system still needs to work without resources
- Functional homogeneity can sometimes be a burden
 - Circuit manufacturing facility builds on Grapevine
 - But can become backup when rest of system overloaded
- Message server depends on email archive
 - Obviously, that’s a bad idea
 - Also, archiving depends on static period not actual load
“This reluctance is partly due to the potential disruption that introduced bugs would have on the large user community that depends on Grapevine services to get its work done.”

What happened here?
What Do You Think?