HTTP

Robert Grimm
New York University
Administrivia

- Web cams
 - http://orwell1.cs.nyu.edu
 - http://orwell2.cs.nyu.edu
 - http://66.93.85.13/
- Linux servers running JDK 1.4.1
 - class[20-25].scs.cs.nyu.edu
- Reading summaries
 - Subscribe to list, no HTML, with linebreaks, for all readings, by 10 am
- Assignment 1, HTTP, is due 2/11/03 before class!
- What we don’t cover
What We Don’t Cover
...well, let’s add one more topic

- Content delivery networks (think Akamai)
- Peer-to-peer systems
- Data management systems
- Security
- Economics and Law
 - Micro-payments
 - FatWallet.com sued by Wal*Mart, Target, Best Buy, Staples, OfficeMax, Jo-Ann Stores, KMart
Main message: Performance is suboptimal
 - Interaction latency
 - Server scalability

Side message: tcpdump’s output is not illustrative
Interaction between HTTP and TCP

- Three-way handshake
 - SYN, SYN+ACK, ACK

- Slow start
 - Open congestion window for each successfully transmitted packet
 - Then send successive packets without waiting for acknowledgements

- Nagle’s algorithm
 - Delay transmission to collect additional data
 - telnet, rlogin

- TIME_WAIT state
HTTP/1.1 to the Rescue!

- Extensibility
- Caching
- Bandwidth optimization
- **Network connection management**
- Message transmission
- Internet address conservation
- Error notification
- Security, integrity, and authentication
- Content negotiation
HTTP/1.1 to the Rescue!

- Extensibility
- Caching
- Bandwidth optimization
- Network connection management
- Message transmission
- Internet address conservation
- Error notification
- Security, integrity, and authentication
- Content negotiation
HTTP/1.1 Extensibility

- Goal: full backwards compatibility
 - HTTP/0.9
 - HTTP/1.0
 - HTTP/1.1 draft implementations
- Via header
 - Collect end-to-end path information
- OPTIONS method
 - Query for supported features
- Upgrade header
 - Switch to different protocol
HTTP/1.1 Caching

- Reduces latency for cached resources
- Reduces bandwidth consumption
- Indirectly reduces latency for uncached resources
- Indirectly reduces load on origin servers
HTTP/1.1 Caching

- **Goal**: semantic transparency

HTTP/1.0
- Based on timestamps
 - Limited resolution (1 second)
 - Unsynchronized clocks

HTTP/1.1
- Based on relative times
 - `max-age` in Cache-Control header
- Based on opaque tokens
 - ETag
 - If-None-Match, If-Match
HTTP/1.1 Bandwidth Optimizations

- Goal: conserve bandwidth
- Range requests
 - Only transmit necessary data
- Expect and 100 (Continue)
 - Ask for permission before transmitting large resources
- Compression
 - Use more compact on-the-wire representation
 - Content-Encoding: end-to-end
 - Transfer-Encoding: hop-by-hop
HTTP/1.1 Network Connection Management

- Goal: be more friendly to TCP
- Connection header
 - Declare what headers are hop-by-hop
- Persistent connections
 - Send many request/response interactions over the same TCP connection
- Pipelining
 - Do not wait for response before sending next request
HTTP/1.1 Message Transmission

- Goal: reduce buffering requirements
 - Content-Length header requires resource size
- Chunked transfer-coding
 - Break resource into many pieces
- Trailers
 - Send headers after resources
 - Content-MD5
HTTP/1.1 Internet Address Conservation

- Goal: turn one server into many servers
 - Treat DNS-to-IP mapping as many-to-one
 - IPv4 addresses are scarce, aren’t they?
- Host header
 - Declare DNS name of targeted host
 - Though, HTTP/1.0 allows for absolute URLs
 - Interact with proxies
- Unintended benefit (?)
 - Amortize management effort over many sites
HTTP/1.1 Error Notification

- **Goal:** support advisory information in addition to status code
- **Warning header**
 - Expose status of caches
 -Disconnected cache
- **New status codes**
 - 24 in all, including 100 (Continue), 206 (Partial content), 300 (Multiple choices)
HTTP/1.1 Authentication

- Goal: authorize users
- Based on WWW-Authenticate, Authorization headers
- HTTP/1.0: Basic authentication
 - User name, password in the clear
- HTTP/1.1: Digest authentication
 - Based on shared secret (user name, password pair)
 - Sends cryptographically secure checksum (MD5)
 - Username, password, nonce, HTTP method, URL
- HTTP/1.1: Proxy authentication
HTTP/1.1 Privacy

- Goal: respect privacy of users
- Rules for when to use Referer [sic] header
- Rules for how to use cookies (RFC 2965)
 - HTTP is stateless, yet we want state
 - Cookies to the rescue
 - Collections of name/value pairs
 - Issued by server on first access
 - Returned by client on subsequent accesses
HTTP/1.1 Content Negotiation

- Goal: support different variant of same resource
- Server-driven negotiation
 - Client declares preferences, server chooses
 - Different headers to distinguish properties
 - Media types, character sets, content encodings, human languages
 - Quality values (0.000-1.000) to weigh alternatives
 - Wildcards to express indifference
 - Accept: audio/*; q=0.2, audio/basic
HTTP/1.1 – Some Issues

- How to name a resource?
 - HTTP/1.0: URL
 - HTTP/1.1: URL + headers
 - Vary header to list relevant headers

- End-to-end or hop-by-hop?
 - Caches should be semantically transparent
 - Yet, they may require user interaction
 - Proxy authentication
 - Advisory information

- Stateless or stateful?
 - Cookies are a separate RFC, yet widely used
HTTP/1.1 to the Rescue

- What do you think?
HTTP/1.1 Performance

- Main message
 - Pipelined persistent connections work
Main message
- Pipelined persistent connections work … but only if you are careful
HTTP/1.1 Performance Experimental Methodology

- Synthesized web site ("Microscape")
 - One HTML page (42 KB)
 - 42 inlined GIF images (total of 125 KB)
- Three connections
 - LAN – 10 MBit Ethernet
 - WAN – MIT LCS to LBL
 - PPP – 28.8k modem to MIT LCS
- Software
 - Server: Jigsaw and Apache
 - Client: libwww
HTTP/1.1 Performance
Experimental Methodology

- Hardware
 - Sun SPARC Ultra-1 server running Solaris
 - Digital AlphaStation and Windows NT clients
HTTP/1.1 Performance Tuning

- Initial test results
 - HTTP/1.1 reduces number of sockets and packets
 - But significantly increases latency

- Buffer management is key
 - Flush after initial request
 - Send as quickly as possible to receive HTML
 - But buffer requests for inline images
 - Pipeline as much as possible to utilize available bandwidth

- Also need to manage connections carefully
 - Only half-close connection
 - Close server sending side, but still accept client data
HTTP/1.1 Performance Results

- HTTP/1.0 with concurrent connections is slow
- HTTP/1.1 without pipelining is even slower
- HTTP/1.1 with pipelining is faster
- HTTP/1.1 with pipelining and compression is even faster, especially on low bandwidth links

- It’s hard to read results presented in (8) tables
HTTP/1.1 Performance
The Need for Compression

- Goal: fully utilize TCP connection
 - Complete first request quickly to create more work
 - Pipeline additional requests to exploit bandwidth
- Compression can help fit more HTML into a single packet
 - Tag case matters
 - Alternative: content model that declares used resources
Advantages of CSS
- Reuse over many resources
- Elimination of image abuse
 - Symbols, spacers

PNG vs. GIF
- More compact representation
Questions, Discussion
PS: Groups

- Ziyang Wang, Zhihua Wang, Zhaowei Yang, Yuan Tapde
- Jia-Suen Lin, Tung-Lin Yang, Kung-Yen Chang, Hsu-Heng Weng
- Pratod Ahdhate, Feng-Ju Yen, Yu-Hsueh Tai, Yen-Ting Kuo