The Final Assignment...

- Your own application
 - Discussion board
 - Think: Paper summaries
 - Web cam proxy
 - Think: George Orwell or JenCam
 - Visitor announcement and tracking
 - Look at 7th floor lobbies at 715 Broadway
The Final Assignment... (cont.)

- Ground rules
 - Implemented as a web proxy or SOAP service
 - For SOAP services you need to implement a client as well
 - Built on top of Munin, uses HTTP/1.1
 - A continuation of the semester-long group effort
 - One paragraph summary due 11/18
The Final Assignment... (cont.)

- Due 12/2 before class
 - In-class talk and live demo
 - 20 minutes per group
 - 3 introductory slides
 - Application overview (what does it do?)
 - Implementation overview (how does it work?)
 - Lessons learned (what did you get out of it?)
The overall challenge: Provide metadata
 - How to find services?
 - How to access services?
 - How to compose services?

Today’s journey
 - WSDL as the IDL for web services
 - RDF as a general description language
 - OWL as a way to reason about descriptions
WSDL Overview

- WSDL provides a contract between clients and services
 - Functions
 - Data types
 - Wire protocol
 - Address
- Naturally, this contract is expressed in XML
WSDL Elements

- The five main elements (children of definitions)
 - types
 - Complex types
 - message
 - Definition of messages
 - portType
 - Combination of messages into operations (think request/response)
 - binding
 - Description of wire protocol (think SOAP)
 - service
 - Address of service (think URL)
WSDL Elements (cont.)

- Two utility elements
 - documentation
 - Human-readable information
 - import
 - Inclusion of other WSDL documents
A WSDL Example

- `<xml version="1.0" encoding="UTF-8"?>
 <definitions name="HelloService"
 targetNamespace="http://www.ecerami.com/wsd/HelloService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsd/HelloService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">`
<message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
</message>

<message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
</message>

<portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
</portType>
<binding name="Hello_Binding" type="tns:Hello_PortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="sayHello"/>
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice" use="encoded"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice" use="encoded"/>
 </output>
 </operation></binding>
A WSDL Example (cont.)

- `<service name="Hello_Service">
 <documentation>WSDL File for HelloService</documentation>
 <port binding="tns:Hello_Binding" name="Hello_Port">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
</service></definitions>`
WSDL Discussion

- Who generates WSDL?
- Who generates corresponding code?
- Why do we need inclusions?
- What is missing?
 - What service is provided?
 - Think discovery
 - When should I use this service?
 - Geographic limitations, quality, cost
 - How does the service work?
RDF

- A language for representing meta-data
 - Is more structured than plain XML
 - Includes its own schema language (RDF-Schema)
- Based on a simple (but powerful) model
 - *Statements* consist of `<subject, predicate, object>` or `<resource, property, value>`
 - To express ontologies
 - Powerful combinations
 - Predicates, objects, and statements can become subjects themselves
 - Formal semantics
“There is someone, whose name is Eric Miller, whose email is em@w3.org, and whose title is Dr.”
The Corresponding XML Representation

- `<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
 <contact:fullName>Eric Miller</contact:fullName>
 <contact:mailbox rdf:resource="mailto:em@w3.org"/>
 <contact:personalTitle>Dr.</contact:personalTitle>
 </contact:Person>
</rdf:RDF>`
But RDF Is Not Enough

- Several successive extensions
 - DAML (DARPA Agent Markup Language)
 - OIL (Ontology Inference Layer)
 - DAML+OIL
 - OWL (Web Ontology Language)
 - W3C!!!
- Common push
 - Richer way of restricting and relating classifications
Three sublanguages
- Lite, DL, Full
 - Simple classification hierarchy
 - Maximum expressiveness while also providing computational completeness and decidability
 - “It is unlikely that any reasoning software will be able to support complete reasoning for every feature of OWL Full.”

Features
- Basic definitions
 - Class, property, subclass, subproperty, domain, range
 - (In)Equality, property characteristics, type restrictions, cardinality restrictions, intersection, versioning,…
The Three Faces of XML

- Documents
 - Plain XML, DTDs
- Serialized data
 - Structured data, XML-Schema
- Metadata
 - RDF, OWL
Discussion

- Who writes descriptions?
- Who manages evolution of descriptions?
- Is there one ontology or many ontologies?
 - If there are many, how do we map between them?
- How do we use descriptions?