Distributed CQL Made Easy

Robert Soulé, Martin Hirzel, Robert Grimm, Buğra Gedik

New York University and IBM Research
Streaming SQL Must Scale

- Stream computing is everywhere
- Crucial to finance, government, science
- Streaming SQL is popular because it has a familiar syntax
- CQL is a streaming SQL with a formally defined semantics
- More and more data means streaming SQL needs to scale
 - Either across large NUMA machines or clusters
Distributed CQL the Hard Way

- Build syntactic and semantic analyzers, code generator, etc.
- Implement core optimizations, such as re-ordering and parallelization
- Develop runtime for process management, data-transport, etc.
- This is painful!
The Big Con: A PL Talk at a DB Summit
Distributed CQL the Easy Way

- Translate source language to an intermediate language (IL)
- Optimize at the IL level directly
- Map IL to an existing distributed runtime

CQL

Front End

IL

Optimizer

Runtime
Design Tension For IL

Many languages, but a few core ones

A few high-quality runtimes
output hits;
input logs;
(window, $win) <- Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <- Aggregate(window, $count) @{parallel, commutes, keys=[origin]};
(hits) <- IStream(result) @{parallel};
output hits;
input logs;
(window, $win) <- Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <- Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
(hits) <- IStream(result) @{parallel};
River, a Streaming IL: Make Everything Explicit

output hits;
input logs;
(window, $win) <- Range(logs, $win) @{parallel, commutes, keys=[]};
(result, $count) <- Aggregate(window, $count) @{parallel, commutes, keys=[origin]};
(hits) <- IStream(result) @{parallel};
output hits;
input logs;
(window, $win) <- Range(logs, $win) @{parallel, commutes, keys=[]};
(result, $count) <- Aggregate(window, $count) @{parallel, commutes, keys=[origin]};
(hits) <- IStream(result) @{parallel};
output hits;
input logs;
(wINDOW, $win) <- Range(logs, $win) @{parallel, commutes, keys=[]};
(result, $count) <- Aggregate(window, $count) @{parallel, commutes, keys=[origin]};
(hits) <- IStream(result) @{parallel};
An IL vs. a Query Plan

- Serves as a target for many languages
- Allows arbitrary operator graph, not restricted to a tree
- Allows arbitrary operators, not restricted to relational operators
- Makes all uses of state explicit
- Adds explicit properties for optimization
Translation

logs : {origin : string; target : string} stream;
hits : {origin : string; count : int} stream =
 select istream(origin, count(origin))
 from logs [range 300]
 where origin != target

Bag.filter (fun x -> #expr)

Bag.filter (fun x -> origin != target)
Changes for Distribution

<table>
<thead>
<tr>
<th>Original CQL</th>
<th>River CQL</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared memory for operators and queues</td>
<td>Operator local memory</td>
<td>Don’t need distributed shared memory</td>
</tr>
<tr>
<td>Centralized scheduler</td>
<td>Each operator has its own thread and synchronization logic</td>
<td>Increased parallelism</td>
</tr>
</tbody>
</table>
Using Properties For Parallelization

Range → Aggr → IStream
Using Properties For Parallelization

Diagram:

- Range → Merge → Split → Aggr → Merge → Split → IStream
- Range → Aggr → IStream
Using Properties For Parallelization

Diagram showing the processes Range, Aggr, Merge, Split, and IStream connected in a parallelization flow. Two distinct paths (i and ii) are illustrated.
Using Properties For Parallelization

Diagram:
1. Range -> Aggr -> IStream
2. Range -> Merge -> Split -> Aggr -> Merge -> Split -> IStream
3. Range -> Split -> Merge -> Aggr -> IStream
4. Range -> Split -> Merge -> Aggr -> IStream
5. Range -> Split -> Merge -> Aggr -> IStream
6. Range -> Split -> Merge -> Aggr -> IStream
Start With an Existing Runtime

- Map from River to an existing streaming runtime
 - IBM’s streaming platform, System S
- Shared-nothing cluster of commodity machines
- Main abstractions: graph of streams and operators
It Works!

- Prototype runs on IBM’s System S
- Two benchmark applications
 - Linear Road on 1, 2, and 4 machines shows distribution
 - Web log query analyzer on 1-16 machines shows parallelism
- Results are promising, but our synchronization is a bottleneck
CQL Parallelization Has Limited Effect

- **Linear Road Speedup**: 2.12x speedup on 4 machines
- **CQL Log Analyzer Speedup**: 2.15x speedup on 16 machines
- **Limited task and pipeline parallelism**
- **Synchronization is bottleneck**
It Works For Other Languages

StreamIt

Sawzall

Front End

CQL

Front End

Front End

River IL

Optimizer

Runtime

Thursday, January 27, 2011
MapReduce on River Scales (Almost) Linearly

Our Sawzall uses the same data-parallelism optimizer as CQL

- 10.77x speedup on 16 machines, 18.93x speedup on 64 cores
Conclusion

- Streaming is everywhere and it needs language support
- A streaming IL makes it easier to implement a distributed CQL
 - Provides a lingua franca for mapping streaming languages to existing distributed runtimes
 - Provides a common substrate for optimizations
http://cs.nyu.edu/brooklet