GREEDY DRAWINGS OF PLANAR TRIANGULATIONS

Raghavan S. Dhandapani

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NYU

20 Jan, 2008
We have a network of wireless sensors that need to send data to one another.

The network is *ad-hoc*.

Simple Idea: Use **Geographic Routing**.

- Each sensor knows its own location and the location of its neighbors.
- Source knows address of destination and encodes it in the packet.
- Each packet is sent to the neighbor closest to the destination. This is known as **Greedy Routing**.

But what if precise location of sensors is not known?
We have a network of wireless sensors that need to send data to one another.

The network is *ad-hoc*.

Simple Idea: Use **Geographic Routing**.
- Each sensor knows its own location and the location of its neighbors.
- Source knows address of destination and encodes it in the packet.
- Each packet is sent to the neighbor closest to the destination. This is known as **Greedy Routing**.

But what if precise location of sensors is not known?

Solution: [Rao et. al]

Use *Virtual Coordinates*.
Think of the wireless network as a graph, G.

Draw G in the plane and pretend that the coordinates of the nodes in the drawing is the actual geographic location.

What property of the drawing is needed to ensure that greedy routing works?

Greedy Routing works iff:

For every pair of nodes u and v, there exists a neighbor u' of u such that in the drawing, $\text{distance}(u, v) > \text{distance}(u', v)$.

Such a drawing is called a **Greedy Drawing**.

Is such a drawing always possible?
Think of the wireless network as a graph, G.

Draw G in the plane and pretend that the coordinates of the nodes in the drawing is the actual geographic location.

What property of the drawing is needed to ensure that greedy routing works?

Greedy Routing works iff:

For every pair of nodes u and v, there exists a neighbor u' of u such that in the drawing, $\text{distance}(u, v) > \text{distance}(u', v)$.

Such a drawing is called a **Greedy Drawing**.

Is such a drawing always possible?

NO!
$K_{1,6}$ has no greedy embedding. More generally, $K_{n,5n+1}$ has no greedy embedding [PR05].
Any graph with a Hamiltonian path.
* Any Complete Graph.
* Any four connected planar graph.
* Any Delaunay Triangulation.

What about:
* Three connected planar graphs?
Examples of Graphs with Greedy Drawings

- Any graph with a Hamiltonian path.
- Any Complete Graph.
- Any four connected planar graph.
- Any Delaunay Triangulation.

What about:
- Three connected planar graphs?

Conjectured by Papadimitriou-Ratajczak
Any 3-connected planar graph has a greedy drawing.
Examples of Graphs with Greedy Drawings

- Any graph with a Hamiltonian path.
- Any Complete Graph.
- Any four connected planar graph.
- Any Delaunay Triangulation.

What about:
- Three connected planar graphs?

Conjectured by Papadimitriou-Ratajczak
Any 3-connected planar graph has a greedy drawing.

Our Result
Any planar triangulation has a greedy drawing.
Partitioning the edges of a triangulation: Schnyder’s Realizers.
What are Schnyder drawings of a triangulation?
Nice geometric properties of Schnyder drawings.
Connection between Schnyder drawings and Greedy drawings.
The Knaster-Kuratowski-Mazurkiewicz theorem.
Putting all this together, we can show that triangulations have greedy drawings.
Schneider’s Realizers of a Triangulation

Given a triangulation G,

- Fix some face f_0 and call it the **external** face.
- All edges not belonging to this face are called the **internal** edges.
- Schnyder developed a method for partitioning the internal edges of G into three directed trees rooted at the vertices of f_0.
- He also developed a way of obtaining a planar drawing of G using this partitioning.
- A rather elegant result!
Schnyder’s Realizers: An Example

The Triangulation.
SCHNYDER’S REALIZERS: AN EXAMPLE

The Red Tree.
SCHNYDER’S REALIZERS: AN EXAMPLE

The Green Tree.
SCHNYDER’S REALIZERS: AN EXAMPLE

The Blue Tree.
Schnyder’s Realizers: An Example

All Together.
Properties of Schnyder Realizers
Order of edges at a vertex.
Properties of Schnyder Realizers

Order of edges at a vertex.
Properties of Schnyder Realizers

Order of edges at a vertex.

3 directed paths exist from each vertex.
OBTAINING A SCHNYDER DRAWING
Obtaining a Schnyder Drawing

Raghavan Dhandapani (NYU)
Assign a non-negative weight w_i, to each internal face such that
\[\sum_i w_i = 1 \]
Let sum of weights in each of the three regions be w_{red}, w_{green} and w_{blue}.

\[w_{\text{red}}, w_{\text{green}}, w_{\text{blue}} \]
The position of the vertex is given by \((w_{\text{blue}}, w_{\text{green}}, w_{\text{red}})\). This is a point on the \(x + y + z = 1\) plane.
The position of the vertex is given by \((w_{\text{blue}}, w_{\text{green}}, w_{\text{red}})\). This is a point on the \(x + y + z = 1\) plane.

We can find such positions for every internal vertex.
The position of the vertex is given by $(w_{\text{blue}}, w_{\text{green}}, w_{\text{red}})$. This is a point on the $x + y + z = 1$ plane.

What about external vertices?
The position of the vertex is given by \((w_{\text{blue}}, w_{\text{green}}, w_{\text{red}})\). This is a point on the \(x + y + z = 1\) plane.

SCHNYDER 91

We obtain a planar drawing of \(G\) on the \(x + y + z = 1\) plane.
Any set of non-negative face weights that sum to 1 can be used to obtain a Schnyder Drawing.

Total number of internal faces = \(2n - 5\).

Any solution to the equation:

\[
 w_1 + w_2 + \ldots + w_{2n-5} = 1, \quad w_i \geq 0
\]

gives a Schnyder Drawing.

The set of all solutions to the above equation is the \(2n - 6\) dimensional unit simplex \(S_{2n-6}\).

For each point \(p \in S_{2n-6}\), we obtain a Schnyder Drawing of \(G\).
Three Wedges Property

Edge slopes always fall in a pre-determined 60°-wedge.
THREE WEDGES PROPERTY

Edge slopes always fall in a pre-determined 60°-wedge.
Schnyder Drawings: Geometric Properties

Three Wedges Property

Edge slopes always fall in a pre-determined 60°-wedge.

Enclosing Triangle Property

Outer triangle is the external face.
Three Wedges Property

Edge slopes always fall in a pre-determined 60°-wedge.

Enclosing Triangle Property

The Yellow Triangle is free of other nodes.
A half solution

Given any two vertices u and v, in every Schnyder Drawing of G, either u has a neighbor closer to v or v has a neighbor closer to u.
A half solution

Given any two vertices u and v, in every Schnyder Drawing of G, either u has a neighbor closer to v or v has a neighbor closer to u.
A *half* solution

Given any two vertices u and v, in every Schnyder Drawing of G, either u has a neighbor closer to v or v has a neighbor closer to u.
Finding Greedy Paths
Finding Greedy Paths
Finding Greedy Paths

Raghavan Dhandapani (NYU)
Finding Greedy Paths
Finding Greedy Paths

Jumping from u to one of u_1 or u_2 gets you closer to v in every Schnyder Drawing.

More Complicated!
Good & Bad Faces

Diagram showing a triangle with vertices labeled u_1, u, and u_2. The edges are colored blue and green, with arrows indicating direction.
Good & Bad Faces

Raghavan Dhandapani (NYU)
Good & Bad Faces

- Type I
- Type II
Let $\epsilon > 0$ be some constant. The face (u, u_1, u_2) is said to be good if:

- Length of every edge of the face is at least ϵ.
- Jumping from u to u_1 gets you ϵ-closer to all vertices of Type I.
- Jumping from u to u_2 gets you ϵ-closer to all vertices of Type II.

and bad otherwise.
Recall: For each point $p \in S_{2n-6}$, there exists a Schnyder Drawing of G.

For each internal face f_i, we define **Good Set**, $\mathcal{G}_{f_i} \subseteq S_{2n-6}$ in the following way:

- Let $p \in S_{2n-6}$. Then $p \in \mathcal{G}_{f_i}$ iff the face f_i is good in the Schnyder Drawing corresponding to p.

When does a greedy drawing exist?

Triangulation G has a greedy drawing iff $\cap_{1 \leq i \leq 2n-5} \mathcal{G}_{f_i} \neq \emptyset$.

Raghavan Dhandapani (NYU)
Recall: For each point $p \in S_{2n-6}$, there exists a Schnyder Drawing of G.

For each internal face f_i, we define Good Set, $G_{f_i} \subseteq S_{2n-6}$ in the following way:

Let $p \in S_{2n-6}$. Then $p \in G_{f_i}$ iff the face f_i is good in the Schnyder Drawing corresponding to p.

When does a greedy drawing exist?

Triangulation G has a greedy drawing iff $\cap_{1 \leq i \leq 2n-5} G_{f_i} \neq \emptyset$.
Suppose we can show the following two properties:

- The good sets G_{f_i} are closed.
- In the drawing corresponding to any $p \in S_{2n-6}$, the sum of the weights of all the bad faces is strictly less than 1.

What can these two properties buy us?
Suppose we can show the following two properties:

- The good sets G_{f_i} are closed.
- In the drawing corresponding to any $p \in S_{2n-6}$, the sum of the weights of all the bad faces is strictly less than 1.

What can these two properties buy us?

Surprise!
These two properties are sufficient to show that a greedy drawing exists!
The KKM Theorem

Theorem

Given a simplex S in d dimensions, with vertices $v_0, v_1, \ldots, v_{d+1}$ and closed sets $G_1, G_2, \ldots, G_{d+1}$ such that the following condition is satisfied:

Any face of the simplex spanned by vertices $v_{j_1}, v_{j_2}, \ldots, v_{j_k}$ is covered by the sets $G_{j_1}, G_{j_2}, \ldots, G_{j_k}$,

Then: $\bigcap_{1 \leq i \leq d+1} G_i \neq \emptyset$.

- This can be used to show that greedy drawings exist.
- Crucial to show that the sum of weights of all bad faces is always strictly less than 1.
- This can be done using *Canonical Ordering* [dFPP90].
- We try to find a set of face weights such that the sum of weights of bad faces is 1 and arrive at a contradiction.
Recall definition of Good Face

If shaded region is free of vertices, then only way the face can be bad is if the sides of the face are too short.
The only way this face can be bad is if the sides of the face are too short. If ϵ is small enough, the weight of this face must be small if it is to be bad.
Canonical Ordering of Vertices

Raghavan Dhandapani (NYU)
Canonically ordered vertices
CANONICAL ORDERING OF VERTICES
CANONICAL ORDERING OF VERTICES
Canonical Ordering of Vertices

Raghavan Dhandapani (NYU)

Greedy Drawings

20 Jan, 2008
Canonical Ordering of Vertices
Canonically Ordered Vertices
THE END
Any Questions?