Game Design: I-SCREAM ZOMBIES

“One of the most difficult tasks people can perform is the invention of good games.”
— C.G. Jung

This week, groups should iterate their projects and present their progress. Show us what you made and talk about your next steps. You have to convince us that your game is awesome.

Presentation Format / Requirements:

1- Description of the game
2- The basic core mechanic(s) and rules of play
3- “Look and Feel” of your game: visual design treatments, including character, level and world design
4- Play Scenario (user experience)
5- Play testing documentation
6- Ideas for the next iteration

The questions you need to answer when describing the game:

- What is the concept of your game?
- What is the premise or known circumstances you are addressing?
- Why and to whom does this game matter?
- What is the previous work or model(s) are you building upon?
- How is your game different?
- Is it fun to play your game? Why?

Good luck!
Iteration

By “iteration” we simply mean that you design, test, and evaluate the results over and over again throughout the development of your game, each time improving upon the gameplay or features, until the player experience meets your criteria. Iteration is deeply important to the playcentric process. Figure 1.8 shows a detailed flow of the iterative process that you should go through when designing a game:

- Player experience goals are set.
- An idea or system is conceived.
- An idea or system is formalized (i.e., written down or prototyped).
- An idea or system is tested against player experience goals (i.e., playtested or exhibited for feedback).
- Results are evaluated and prioritized.
- If results are negative and the idea or system appears to be fundamentally flawed, go back to the first step.
- If results point to improvements, modify and test again.
- If results are positive and the idea or system appears to be successful, the iterative process has been completed.

As you will see, we will apply this process during almost every aspect of game design, from the initial conception through the final quality assurance testing.

![Iterative process diagram](image)

1.8 Iterative process diagram

Step 1: Brainstorming

- Set player experience goals.
- Come up with game concepts or mechanics that you think might achieve your player experience goals.
- Narrow down the list to the top three.
- Write up a short, one-page description each of these ideas, sometimes called a treatment or concept document.
- Test your written concepts with potential players (you might also want to create rough visual mock-ups of your ideas at this stage to help communicate the ideas).

Step 2: Physical Prototype

- Create a playable prototype using pen and paper or other craft materials.
- Playtest the physical prototype using the process described in Chapters 7 and 9.
- When the physical prototype demonstrates working gameplay that achieves your player experience goals, write a three- to six-page gameplay treatment describing how the game functions.

Step 3: Presentation (Optional)

- A presentation is often made to secure funds to hire the prototyping team. Even if you do not require funding, going through the exercise of creating a full presentation is a good way to think through your game and introduce it to the team members and upper management for feedback.
- Your presentation should include demo artwork and a solid gameplay treatment.
- If you do not secure funding, you can either return to Step 1 and start over again on a new concept or gain feedback from your funding sources and work on modifying the game to fit their needs. Because you have not yet invested in extensive artwork or programming, your costs so far should be pretty reasonable, and you should have a great deal of flexibility to make any changes.

Step 4: Software Prototype(s)

- When you have your prototyping team in place, you can begin creating rough computer models of the core gameplay. Often there are several software prototypes made, each focusing on different aspects of the system. Digital prototyping is discussed in Chapter 8 beginning on page 213. (If possible, try to do this entirely with temporary graphics that cost very little to make. This will save time and money and make the process go faster.)
- Playtest the software prototype(s) using the process described in Chapter 9.
- When the software prototype(s) demonstrate working gameplay that achieves your player experience goals, move on to the documentation step.

Step 5: Design Documentation

- While you have been prototyping and working on your gameplay, you have probably been compiling notes and ideas for the “real” game. Use the knowledge you’ve gained during this prototyping stage to write the first draft of a document that outlines every aspect of the game and how it functions.
• This document is usually called the design document, but recently, many designers have moved away from static documents toward online design wikis because of their flexible, collaborative nature. A design wiki is a great collaboration tool and living document that changes and grows with the production.

Step 6: Production

• Work with all of the team members to make sure each aspect of the design is achievable and correctly described in the design document.

• When an initial draft of the design document is completed, move on to production.

• Production is the time to staff up and begin the creation of the real artwork and programming.

• Don’t lose sight of the playcentric process during production—test your artwork, gameplay, characters, etc., as you move along. As you continue to perform iterative cycles throughout the production phase, the problems you find and the changes you make should get smaller and smaller. This is because you solved your major issues during the prototyping phases.

• Unfortunately, this is the time when most game designers actually wind up designing their games, and this can lead to numerous problems of time, money, and frustration.

Step 7: Quality Assurance

• By the time the project is ready for quality assurance testing, you should be very sure that your gameplay is solid. There can still be some issues, so continue playtesting with an eye to usability. Now is the time to make sure your game is accessible to your entire target audience.

As you can see, the playcentric approach involves player feedback throughout the production process, which means you’ll be doing lots of prototyping and playtesting at every stage of your game’s development. You can’t be the advocate for the player if you don’t know what the player is thinking, and playtesting is the best mechanism by which you can elicit feedback and gain insight into your game. We cannot emphasize this fact enough, and we encourage any designer to rigorously build into any production schedule the means to continually isolate and playtest all aspects of their game as thoroughly as possible.

Designing for Innovation

As we mentioned above, it’s clear that the next generation of game designers is going to have to be able to produce breakthroughs in player experience just as certainly as the next generation of programmers is going to have to produce breakthroughs in technology. They will have to do this without taking too many risks in terms of time and money. By innovation we mean:

• Designing games with unique play mechanics—thinking beyond existing genres of play

• Appealing to new players—people who have different tastes and skills than hard-core gamers

• Trying to solve difficult problems in game design such as:
 ◊ The integration of story and gameplay
 ◊ Deeper empathy for characters in games
 ◊ Creating emotionally rich gameplay
 ◊ Discovering the relationships between games and learning

• Asking difficult questions about what games are, what they can be, and what their impact is on us individually and culturally

The playcentric approach can help foster innovation and give you a solid process within which to explore these provocative, unusual questions about gameplay possibilities, to try ideas that might seem fundamentally unsound but could have within them the seed of a breakthrough game and to craft them until they are playable. Real innovation seldom comes from the first spark of an idea—it tends to come from long-term development and experimentation. By interacting with players throughout the design process, experimental ideas have time to develop and mature.