The Software Reliability Problem

- The evolution of hardware by a factor of 10^6 over the past 25 years has lead to the explosion of the program sizes;
- The scope of application of very large software is likely to widen rapidly in the next decade;
- These big programs will have to be modified and maintained during their lifetime (often over 20 years);
- The size and efficiency of the programming and maintenance teams in charge of their design and follow-up cannot grow up in similar proportions;

The Software Reliability Problem (Cont’d)

- At a not so uncommon (and often optimistic) rate of one bug per thousand lines such huge programs might rapidly become hardly manageable in particular for safety critical systems;
- Therefore in the next 10 years, the software reliability problem is likely to become a major concern and challenge to modern highly computer-dependent societies.
What Can We Do About It?

- Use our intelligence (thinking/intellectual tools: abstract interpretation);
- Use our computer (mechanical tools: static program analysis/checking/testing, the early idea of using computers to reason about computer).

The Verification/Validation Problem

![Diagram of the verification/validation problem]

- **Computer program**
- **Formal specification**

Saturation

- Program semantics = model of actual program executions in all environments
- Specification semantics = model of required program executions in allowed environments

Example: Model Checking

![Diagram of model checking]

- **Computer program**
- **Formal specification**

Model checking

- Program model
- Temporal specification

Saturation

- Program semantics = model of actual program executions in all environments
- Specification semantics = model of required program executions in allowed environments
Other Examples of Software Verification/Validation Techniques

- Software testing;
- Simulation and prototyping;
- Technical reviews;
- Requirements tracing;
- Formal correctness proofs;
- Etc.

Fundamental Theoretical Limitations

- Undecidability: full automation of software verification/validation is impossible;
- Examples of undecidable questions:
 - Is my program bug-free? (i.e. correct with respect to a given specification);
 - Can a program variable take two different values during execution?

Practical Limitations

- Testing:
 - Testing all data on all paths is impossible;
- Formal methods:
 - No formal specification perfectly reflects informal human expectations;
 - Proofs grow exponentially in the size of programs/specifications which is incompatible with friendly user interaction and full automation;
- etc.

Undecidability and Approximation

- Since program verification is undecidable, computer aided program verification methods are all partial/incomplete;
- They all involve some form of approximation:
 - restricted specifications or programs (e.g. finiteness),
 - decidable questions or semi-algorithms,
 - practical time/memory complexity limitations,
 - require user interaction;
- Most of these approximations are formalized by Abstract Interpretation.
Examples of approximations

- **Testing**: coverage is partial (so errors are frequently found until the end of the software lifetime);
- **Proofs**: specifications are often partial, debugging proofs is often harder than testing programs (so only parts of very large software can be formally proved correct);
- **Model checking**: the model must fit machine limitations (so some facets of program execution must be left out) and be redesigned after program modifications;
- **Typing**: types are weak program properties (so type verification cannot be generalized to complex specifications).
Example: trace semantics

- **Initial states**
- **Intermediate states**
- **Final states of the finite traces**
- **Infinite traces**

Examples of computation traces

- **Finite** (C+1=)

- **Erroneous** (C+1+1+1...)

- **Infinite** (C+0+0+0...)

Least Fixpoints: intuition

\[
\text{Behaviors} = \{ \bullet | \bullet \text{ is a final state} \} \\
\cup \{ \quad \quad \quad \quad \quad | \quad \bullet \text{ is an elementary step } \& \quad \quad \in \text{Behaviors}^+ \} \\
\cup \{ \quad \quad \quad \quad \quad | \quad \bullet \text{ is an elementary step } \& \quad \quad \in \text{Behaviors}^\infty \}
\]

- In general, the equation has multiple solutions.
- Choose the least one for the partial ordering:

\[\text{more finite traces } \& \text{ less infinite traces}\]

Abstract Interpretation
Abstract Interpretation [1]

- Formalizes the idea of approximation of sets and set operations as considered in set (or category) theory;
- A theory of approximation of the semantics of programming languages;
- Main application: formal method for inferring general runtime properties of programs.

Reference

The Theory of Abstract Interpretation

- Abstract interpretation is a theory of conservative approximation of the semantics of computer systems.

Approximation: observation of the behavior of a computer system at some level of abstraction, ignoring irrelevant details;
Conservative: the approximation cannot lead to any erroneous conclusion.

Usefulness of Abstract Interpretation

- Thinking tools: the idea of abstraction is central to reasoning (in particular on computer systems);
- Mechanical tools: the idea of effective approximation leads to automatic semantics-based program manipulation tools.

Abstraction
Abstraction: intuition

- **Abstract interpretation** formalizes the intuitive idea that a semantics is more or less precise according to the considered observation level of the program executions;

- **Abstract interpretation theory** formalizes this notion of approximation/abstraction in a mathematical setting which is independent of particular applications.

Intuition behind abstraction

Approximations of an [in]finite set of points:

From Below

\[
\{(19, 78), \ldots, (20, 01)\}
\]

\[
\{(\ldots, (19, 78), \ldots, (20, 01))\}
\]
Approximations of an [in]finite set of points: From Above

\{ \ldots, (19, 78), \ldots, \\
(20, 01), (?, ?), \ldots \}

Effective computable approximations of an [in]finite set of points; Signs [2]

\{ x \geq 0 \\
y \geq 0 \}

Reference

Intuition Behind Effective Computable Abstraction

Effective computable approximations of an [in]finite set of points; Intervals [3]

\{ x \in [19, 78] \\
y \in [20, 01] \}

Reference
Effective computable approximations of an \([\text{in}]\)finite set of points; Octagons [4]

\[
\begin{align*}
1 \leq x & \leq 9 \\
x + y & \leq 78 \\
1 \leq y & \leq 9 \\
x - y & \leq 99
\end{align*}
\]

Reference

Effective computable approximations of an \([\text{in}]\)finite set of points; Polyhedra [5]

\[
\begin{align*}
19x + 78y & \leq 2000 \\
20x + 01y & \geq 0
\end{align*}
\]

Reference

Effective computable approximations of an \([\text{in}]\)finite set of points; Simple congruences [6]

\[
\begin{align*}
x & = 19 \text{ mod } 78 \\
y & = 20 \text{ mod } 99
\end{align*}
\]

Reference

Effective computable approximations of an \([\text{in}]\)finite set of points; Linear congruences [7]

\[
\begin{align*}
1x + 9y & = 7 \text{ mod } 8 \\
2x - 1y & = 9 \text{ mod } 9
\end{align*}
\]

Reference

Effective computable approximations of an [in]finite set of points; Trapezoidal linear congruences [8]

\[
\begin{aligned}
1x + 9y &\in [0, 78] \pmod{10} \\
2x - 1y &\in [0, 99] \pmod{11}
\end{aligned}
\]

Reference

Conservative Approximation and Information Loss

Conservative Approximation
- Is the operation \(1/(x+1-y)\) well defined at run-time?
- Concrete semantics: yes
Conservative Approximation

- Is the operation $1/(x+1-y)$ well defined at run-time?
- Testing: You *never* know!

Conservative Approximation

- Is the operation $1/(x+1-y)$ well defined at run-time?
- Abstract semantics 1: I don’t know

Intuition Behind Information Loss
Information Loss

- All answers given by the abstract semantics are always correct with respect to the concrete semantics;
- Because of the information loss, not all questions can be definitely answered with the abstract semantics;
- The more concrete semantics can answer more questions;
- The more abstract semantics are more simple.

Basic Elements of Abstract Interpretation Theory
The Abstraction α is Monotone

\[X \subseteq Y \Rightarrow \alpha(X) \subseteq \alpha(Y) \]

The Concretization γ is Monotone

\[X \subseteq Y \Rightarrow \gamma(X) \subseteq \gamma(Y) \]

The $\gamma \circ \alpha$ Composition

\[\alpha \circ \gamma(Y) = Y \]

The $\alpha \circ \gamma$ Composition

\[X \subseteq \gamma \circ \alpha(X) \]
Galois Connection

\[\langle P, \subseteq \rangle \overset{\gamma}{\underset{\alpha}{\rightleftharpoons}} \langle Q, \sqsubseteq \rangle \]

iff

- \(\alpha \) is monotone
- \(\gamma \) is monotone
- \(X \subseteq \gamma \circ \alpha(X) \)
- \(\alpha \circ \gamma(Y) \subseteq Y \)

\[^1 \text{formalizations using closure operators, ideals, etc. are equivalent.} \]

Fixpoint Abstraction

\[F^\sharp = \alpha \circ F \circ \gamma \]

\[\text{lfp } F \sqsubseteq \gamma(\text{lfp } F^\sharp) \]

Function Abstraction

\[\langle P, \subseteq \rangle \overset{\gamma}{\underset{\alpha}{\rightleftharpoons}} \langle Q, \sqsubseteq \rangle \]

\[\langle P, \mon \rangle \overset{\gamma}{\underset{\alpha}{\rightleftharpoons}} \langle Q, \mon \rangle \]

\[\lambda F^\sharp \cdot \gamma \circ F^\sharp \circ \alpha \overset{\lambda F \cdot \alpha \circ \gamma}{\rightleftharpoons} \lambda F \cdot \alpha \circ F \circ \gamma \]

\[\text{lfp } F \sqsubseteq \gamma(\text{lfp } F^\sharp) \]
Exact/Approximate Fixpoint Abstraction

Exact Abstraction:
\[\alpha(lfp F) = lfp F^{\#} \]

Approximate Abstraction:
\[\alpha(lfp F) \sqsubseteq^\# lfp F^{\#} \]

A Few References on Foundations

(1) Exact Abstractions

Abstractions of Semantics [12]

Reference

Example 2 of Semantics Abstraction

(Small-Step) Operational Semantics

Example 3 of Semantics Abstraction

Partial Correctness / Invariance Semantics

(2) Effective Approximate Abstractions

Reference

Effective Abstractions of Semantics

- If the approximation is rough enough, the abstraction of a semantics can lead to a version which is less precise but is effectively computable by a computer;
- The computation of this abstract semantics amounts to the effective iterative resolution of fixpoint equations;
- By effective computation of the abstract semantics, the computer is able to analyze the behavior of programs and of software before and without executing them.

Objective of Static Program Analysis

- Program analysis is the automatic static determination of dynamic run-time properties of programs;
- The principle is to compute an approximate semantics of the program to check a given specification;
- Abstract interpretation is used to derive, from a standard semantics, the approximate and computable abstract semantics;
- This derivation is itself not (fully) mechanizable.

Static Program Analysis

- Basic idea: use effective computable approximations of the program semantics;
 - Advantage: fully automatic, no need for error-prone user designed model or costly user interaction;
 - Drawback: can only handle properties captured by the approximation;
 - Remedy: ask the user to choose among a variety of possible approximations (abstract algebras) at various cost/precision ratio.
Principle of a Static Program Analyzer

- Program
- Specification
- Generator
- System of fixpoint equations/constraints
- Solver
 (Approximate) solution
- Diagnoser
- Diagnosis

Design of a Static Program Analyzer by Abstract Interpretation

- Computer program
- Abstract program semantics
- Information about actual program executions in all environments
- Programming language semantics
- Program semantics = model of actual program executions in all environments

Generic Static Program Analyzer

- Abstract algebra
- Generator
- System of fixpoint equations/constraints
- Solver
 (Approximate) solution
- Interface
- Information on program executions

Effective Symbolic Abstractions
Effective Abstractions of Symbolic Structures

- Most structures manipulated by programs are *symbolic structures* such as control structures (call graphs), data structures (search trees), communication structures (distributed & mobile programs), etc;
- It is very difficult to find compact and expressive abstractions of such sets of objects (languages, automata, trees, graphs, etc.).

Example of Abstractions of Infinite Sets of Infinite Trees

Binary Decision Graphs: [15]

Example of Abstractions of Infinite Sets of Infinite Trees (Cont’d)

Tree Schemata: [16, 17]

Reference

Example: interval analysis (1975)

Equations (abstract interpretation of the semantics):

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

Constraints (abstract interpretation of the semantics):

\[
\begin{align*}
X_1 &\supseteq [1, 1] \\
X_2 &\supseteq (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &\supseteq X_2 \oplus [1, 1] \\
X_4 &\supseteq (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]
Example: interval analysis (1975)

Increasing chaotic iteration, initialization:

\[
\begin{cases}
 X_1 = [1, 1] \\
 X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\
 X_3 = X_2 \oplus [1, 1] \\
 X_4 = (X_1 \cup X_3) \cap [10000, +\infty]
\end{cases}
\]

\[
\begin{align*}
X_1 & = 1; \\
1: & \text{ while } x < 10000 \text{ do } \\
2: & \quad x := x + 1 \\
3: & \quad \text{ od; } \\
4: & \end{align*}
\]

\[\begin{cases}
 X_1 = [1, 1] \\
 X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\
 X_3 = X_2 \oplus [1, 1] \\
 X_4 = (X_1 \cup X_3) \cap [10000, +\infty]
\end{cases}\]
Example: interval analysis (1975)

Increasing chaotic iteration:

\[
\begin{align*}
\text{x} &:= 1; \\
1: &\quad \text{while } \text{x} < 10000 \text{ do} \\
2: &\quad \text{x} := \text{x} + 1 \\
3: &\quad \text{od}; \\
4: &
\end{align*}
\]

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

Example: interval analysis (1975)

Increasing chaotic iteration: convergence?

\[
\begin{align*}
\text{x} &:= 1; \\
1: &\quad \text{while } \text{x} < 10000 \text{ do} \\
2: &\quad \text{x} := \text{x} + 1 \\
3: &\quad \text{od}; \\
4: &
\end{align*}
\]

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

Example: interval analysis (1975)

Increasing chaotic iteration: convergence??

\[
\begin{align*}
\text{x} &:= 1; \\
1: &\quad \text{while } \text{x} < 10000 \text{ do} \\
2: &\quad \text{x} := \text{x} + 1 \\
3: &\quad \text{od}; \\
4: &
\end{align*}
\]

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]
Example: interval analysis (1975)

Increasing chaotic iteration: convergence?????

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

\[
x := 1; \\
\text{while } x < 10000 \text{ do} \\
x := x + 1 \\
\text{od;}
\]

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= [1, 4] \\
X_3 &= [2, 4] \\
X_4 &= \emptyset
\end{align*}
\]

\[\text{Example: interval analysis (1975)} \ 2\]

Increasing chaotic iteration: convergence?????

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

\[
x := 1; \\
\text{while } x < 10000 \text{ do} \\
x := x + 1 \\
\text{od;}
\]

\[
\begin{align*}
X_1 &= [1, 1] \\
X_2 &= [1, 5] \\
X_3 &= [2, 5] \\
X_4 &= \emptyset
\end{align*}
\]
Example: interval analysis (1975)

Convergence speed-up by extrapolation:

\[x := 1; \]
\[\begin{align*}
1: & \quad \text{while } x < 10000 \text{ do} \\
2: & \quad x := x + 1 \\
3: & \quad \text{od;}
\end{align*} \]
\[\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*} \]

\[\begin{align*}
X_1 &= [1, 1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1, 1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*} \]

Example: interval analysis (1975)

Decreasing chaotic iteration:

\[x := 1; \]
\[\begin{align*}
1: & \quad \text{while } x < 10000 \text{ do} \\
2: & \quad x := x + 1 \\
3: & \quad \text{od;}
\end{align*} \]
\[\begin{align*}
X_1 &= [1, 1] \\
X_2 &= [1, +\infty] \quad \Leftarrow \text{widening} \\
X_3 &= [2, 6] \\
X_4 &= \emptyset
\end{align*} \]

Example: interval analysis (1975)

Decreasing chaotic iteration:

\[x := 1; \]
\[\begin{align*}
1: & \quad \text{while } x < 10000 \text{ do} \\
2: & \quad x := x + 1 \\
3: & \quad \text{od;}
\end{align*} \]
\[\begin{align*}
X_1 &= [1, 1] \\
X_2 &= [1, +\infty] \\
X_3 &= [2, +\infty] \\
X_4 &= \emptyset
\end{align*} \]
Example: interval analysis (1975) ²

Decreasing chaotic iteration:

\[
\begin{align*}
X_1 &= [1,1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1,1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

\[
\begin{align*}
x &:= 1; \\
1: & \quad \text{while } x < 10000 \text{ do} \\
2: & \quad x := x + 1 \\
3: & \quad \text{od;} \\
4: & \quad \text{end}
\end{align*}
\]

² P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) ²

Result of the interval analysis:

\[
\begin{align*}
X_1 &= [1,1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1,1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

\[
\begin{align*}
x &:= 1; \\
1: & \quad \{ x = 1 \} \\
2: & \quad \{ x \in [1,9999] \} \\
3: & \quad \{ x \in [2,10000] \} \\
4: & \quad \{ x = 10000 \}
\end{align*}
\]

² P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) ²

Final solution:

\[
\begin{align*}
X_1 &= [1,1] \\
X_2 &= (X_1 \cup X_3) \cap [-\infty, 9999] \\
X_3 &= X_2 \oplus [1,1] \\
X_4 &= (X_1 \cup X_3) \cap [10000, +\infty]
\end{align*}
\]

\[
\begin{align*}
x &:= 1; \\
1: & \quad \text{while } x < 10000 \text{ do} \\
2: & \quad x := x + 1 \\
3: & \quad \text{od;} \\
4: & \quad \text{end}
\end{align*}
\]

² P. Cousot & R. Cousot, ISOP’1976, POPL’77.

A More Intriguing Example

program Variant_of_McCarthy_91_function;
var X, Y : integer;
function F(X : integer) : integer;
begin
if X > 100 then F := X - 10
else F := F(F(F(F(F(F(F(X + 90))))))));
end;
begin
readln(X);
Y := F(X);
\(\{ Y \in [91, +\infty] \} \)
end.

Reference

Probabilistic Program Analysis

```c
double x, i;
assume (-1.0 < x < 0.0);
i = 0.0;
while (i < 3.0) {
    x += uniform();
i += 1.0;
}
assert (x < 1.0);
```

With 99% safety:
- the probability of the outcome \(x < 1 \) is less than 0.859,
- assuming:
 - worst-case nondeterministic choices of the precondition \((-1.0 < x < 0.0)\),
 - random choices \(\text{uniform()} \) chosen in \([0,1]\) with the Lebesgue uniform distribution.

Communication Topology of Mobile Processes

```
A
  
  A
  
  S
  
  Request
  
  B
  
  Q1
  
  Data exchange
  
  B
  
  Q2
  
  Data exchange
  
  A
  
  Q2

```

Objective of Static Program Checking

```
Program

Specification

Program checker

Diagnosis
```

2. D. Monniaux, SAS'00, POPL'01

3. J. Feret, SAS'00, ENTCS Vol. 39
Principle of a Static Program Checker

![Diagram of a Static Program Checker]

- **Program**
- **Specification**
- **Generator**
- **Solver**
- **Diagnosis**

System of fixpoint equations/constraints

Approximate) solution

Design of a Static Program Checker by Abstract Interpretation

Abstract Static Program Checking

Computer program

Programming language semantics

Program semantics

Satisfaction

Specification semantics

Specification language semantics

Formal specification

Abstract program semantics

Abstract semantics specification

ABSTRACTION

- Program semantics = model of actual program executions in all environments
- Specification semantics = model of required program executions in allowed environments

Example: interval analysis (1975)

Exploitation of the result of the interval analysis:

```
x := 1;
1: {x = 1}
while x < 10000 do
2: {x ∈ [1, 9999]}
   x := x + 1
3: {x ∈ [2, 10000]}
od;
4: {x = 10000}
```

\[X_1 = [1, 1] \]

\[X_2 = (X_1 \cup X_3) \cap [−\infty, 9999] \]

\[X_3 = X_2 \oplus [1, 1] \]

\[X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \]

2 P. Cousot & R. Cousot, ISOP ’76, POPL ’77.

Other Examples of Faultless Execution Checks

- Absence of runtime errors (array bounds violations, arithmetic overflow, erroneous data accesses, etc.).
- Absence of memory leaks (dangling pointers, uninitialized variables, etc.).
- Handling of all possible runtime exceptions (failures of I/O and system calls, etc.).
- No resource contention and race conditions in concurrent programs (deadlocks & livelocks).
- Termination / non termination conditions,
- Etc.

© P. Cousot
Abstract checking versus Abstract Testing

- **Abstract checking**: specification derived automatically from the program (e.g. using the language specification for run-time errors);
- **Abstract testing**: specification provided by the programmer.

Abstract Program Testing

<table>
<thead>
<tr>
<th>Debugging</th>
<th>Abstract testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run the program</td>
<td>Compute the abstract semantics</td>
</tr>
<tr>
<td>On test data</td>
<td>Choosing a predefined abstraction</td>
</tr>
<tr>
<td>Checking if all right</td>
<td>Checking user-provided abstract assertions</td>
</tr>
<tr>
<td>Providing more tests</td>
<td>With more refined abstractions</td>
</tr>
<tr>
<td>Until coverage</td>
<td>Until enough assertions proved or no predefined abstraction can do.</td>
</tr>
</tbody>
</table>

Combining Empirical and Formal Methods

- The user provides local formal abstractions of the program specifications using predefined abstractions;
- The program is evaluated by abstract interpretation of the formal semantics of the program;
- If the local abstract specification cannot be proved correct, a more precise abstract domain must be considered;
- The process is repeated until appropriate coverage of the specification.
Example of predefined abstraction

Example of predefined abstraction: intervals

A Tiny Example

0: \{ n:[-\infty, +\infty] ?; f:[-\infty, +\infty] ? \}
 \text{read}(n);
1: \{ n:[0, +\infty]; f:[-\infty, +\infty] ? \}
 f := 1;
2: \{ n:[0, +\infty]; f:[1, +\infty] \}
 \text{while} (n \neq 0) \text{do}
 3: \{ n:[1, +\infty]; f:[1, +\infty] \}
 f := (f \times n);
 4: \{ n:[1, +\infty]; f:[1, +\infty] \}
 n := (n - 1)
 5: \{ n:[0, +\infty]; f:[1, +\infty] \}
 od;
6: \{ n:[0,0]; f:[1, +\infty] \}

A Tiny Example (Cont’d)

0: \{ n:\bot; f:\bot \}
 \text{initial} (n < 0);
1: \{ n:[-\infty,-1]; f:[-\infty, +\infty] ? \}
 f := 1;
2: \{ n:[-\infty,-1]; f:[-\infty, +\infty] \}
 \text{while} (n \neq 0) \text{do}
 3: \{ n:[-\infty,-1]; f:[-\infty, +\infty] \}
 f := (f \times n);
 4: \{ n:[-\infty,-1]; f:[-\infty, +\infty] \}
 n := (n - 1)
 5: \{ n:[-\infty,-2]; f:[-\infty, +\infty] \}
 od;
6: \{ n:\bot; f:\bot \}

A More Intriguing Example

program Variant_of_McCarthy_91_function;
var X, Y : integer;
function F(X : integer) : integer;
begin
 if X > 100 then F := X − 1091
 else F := F(F(F(F(F(F(F(F(X + 90))))))));
end;
begin
 readln(X);
 if (% X > 100 %)
 Y := F(X);
 {% sometime true %}
end.

Example of cycle: F(100) → F(190) → F(180) → F(170) → F(160) → F(150) → F(140) → F(130) → F(120) → F(110) → F(100) → ...

Examples of Functional Specifications for Abstract Testing

• Worst-case execution/response time in real-time systems running on a computer with pipelines and caches;
• Periodicity of some action over time/with respect to some clock;
• Possible reactions to real-time event/message sequences;
• Compatibility with state/transition/sequence diagrams/charts;
• Absence of deadlock/livelock with different scheduling policies;

Comparing with program debugging

• Similarity: user interaction, on the source code;
• Essential differences:
 • user provided test data are replaced by abstract specifications;
 • evaluation of an abstract semantics instead of program execution/simulation;
 • one can prove the absence of (some categories of) bugs, not only their presence;
 • abstract evaluation can be forward and/or backward (reverse execution).

Conclusion
Concluding Remarks

- Program debugging is still the prominent industrial program “verification” method. Complementary program verification methods are needed;
- Fully mechanized program verification by formal methods is either impossible (e.g. typing/program analysis) or extremely costly since it ultimately requires user interaction (e.g. abstract model checking/deductive methods for large programs);
- For program verification, semantic abstraction is mandatory but difficult whence hardly automatizable, even with the help of programmers;

Concluding Suggestions

- Abstract interpretation introduces the idea of safe approximation within formal methods;
- So you might think to use it for partial verification of the source specification/program code:
 - Abstract checking (fully automatic and exhaustive diagnosis on run-time safety properties),
 - Abstract testing (interactive/planned diagnosis on functional, behavioural and resources-usage requirements),
 using tools providing predefined abstractions.

Industrialization of Static Analysis/Checking by Abstract Interpretation

- Does apply to any computer-related language with a well-specified semantics describing computations (e.g. specification languages, data base languages, sequential, concurrent, distributed, mobile, logical, functional, object oriented, ... programming languages, etc.);
- Does apply to any property and combinations of properties (such as safety, liveness, timing, event preconditions, ...);
- Can follow up program modifications over time;
- Very cost effective, especially in early phases of program development.

Internal use for compiler design.
DAEDALUS European project on the verification of critical real-time avionic software (oct. 2000 — sep. 2002):

- P. Cousot (ENS, France), scientific coordinator;
- R. Cousot (École polytechnique, France);
- A. Deutsch & D. Pilaud (Polyspace Technologies, France);
- C. Ferdinand (AbsInt, Germany);
- É. Goubault (CEA, France);
- N. Jones (DIKU, Denmark);
- F. Randimbivololona & J. Souyris (EADS Airbus, France), coord.;
- M. Sagiv (Univ. Tel Aviv, Israel);
- H. Seidel (Univ. Trier, Germany);
- R. Wilhelm (Univ. Sarrebrücken, Germany);

A reference (with a large bibliography)

P. Cousot.

Abstract interpretation based formal methods and future challenges.

In R. Wilhelm (editor), « Informatics — 10 Years Back, 10 Years Ahead ».

An extended electroning version is also available on Springer-Verlag website together with a very long electroning version with a complete bibliography.