On Completeness in Abstract Model Checking from the Viewpoint of Abstract Interpretation

Patrick COUSOT
École Normale Supérieure, 45 rue d’Ulm
75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr http://www.di.ens.fr/~cousot

Réunion Workshop on Implementation of Logics, November 11-12, 2000

Abstraction in Program Analysis & Model Checking

Abstract interpretation has been successfully applied in:
• static program analysis (by approximation of the semantics);
• model checking (state explosion & infinite state models).

Abstraction in Model Checking

Main abstractions in model checking:
• Implicit abstraction: to design the model of reference;
• Polyhedral abstraction (with widening): synchronous, real-time & hybrid system verification;
• Finitary abstraction (without widening): hardware & protocol verification

1 Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the abstract.

Motivations & Results
Abstraction in Program Analysis & Model Checking

- The abstraction must always be **sound**;
- For **completeness**:
 - in **static program analysis**: not required (possible uncertainty);
 - in **model checking**: required\(^2\) (formal verification method\(^3\)).

\(^2\) allowing only for yes/no answers, all uncertainty resulting only from getting out of computer resources.
\(^3\) otherwise model-checking would be a mere debugging method or equivalent to program/model analysis.

Discovery of Abstractions

- in **static program analysis**:
 - task of the program analyzer designer,
 - find a **sound** abstraction providing useful information for all programs,
 - essentially manual,
 - partially automated e.g. by combination & refinement of abstract domains;
- in **model checking**:
 - task of the user,
 - find a **sound & complete** abstraction required to verify one model,
 - looking for automation (e.g. starting from a trivial or user provided guess and refining by trial and error).

Informal Objective of the Talk

- Understand the **logical nature** of the problem of finding an **appropriate abstraction** (for proving safety properties).

Formalization of the Problem
Fixpoint Checking

- Model-checking safety properties of transition systems:
 \[\text{lfp} \leq \lambda X. I \lor F(X) \leq S ? \]

- Program static analysis by abstract interpretation:
 \[\gamma(\text{lfp} \leq \lambda X. \alpha(I \lor F(\gamma(X)))) \leq S ? \]

Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive concrete answer. So no error is possible when reasoning in the abstract;

Completeness: a positive concrete answer can always be found in the abstract;

Partial completeness: in case of termination of the abstract fixpoint checking algorithm, no positive answer can be missed.
Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive concrete answer. So no error is possible when reasoning in the abstract;

Completeness: a positive concrete answer can always be found in the abstract;

Partial completeness: in case of termination of the abstract fixpoint checking algorithm, no positive answer can be missed.

Termination/resource limitation is therefore considered a separate problem (widening/narrowing, etc.).

Practical Question

Is it possible to **automatize the discovery of complete abstractions**?

Objective of the Talk (Formally)

Constructively characterize the abstractions \(\langle \alpha, \gamma \rangle \) for which abstract fixpoint algorithms are partially complete.

Concrete Fixpoint Checking
Concrete Fixpoint Checking Problem

- Complete lattice \(\langle L, \leq, 0, 1, \lor, \land \rangle \);
- Monotonic transformer \(F \in L \xrightarrow{\text{mon}} L \);
- Specification \(\langle I, S \rangle \in L^2 \);

\[
\text{lfp} \leq \lambda X. I \lor F(X) \leq S?
\]

Example (contd.)

- Safety specification: \(S \subseteq \Sigma \)
- Reachable states from \(I \):

\[
\text{post}[\tau^*](I) = \text{lfp} \leq \lambda X. I \cup \text{post}[\tau](X);
\]

- Satisfaction of the safety specification \((\text{post}[\tau^*](I) \subseteq S) \):

\[
\text{lfp} \leq \lambda X. I \lor \text{post}[\tau](X) \leq S?
\]

Concrete Fixpoint Checking Algorithm

Algorithm 1

\[
X := I; \quad \text{Go} := (X \leq S);
\]

\[
\text{while Go do}
\]

\[
X' := I \lor F(X);
\]

\[
\text{Go} := (X \neq X') \& (X' \leq S);
\]

\[
X := X';
\]

\[
\text{od};
\]

\[
\text{return } (X \leq S);
\]

Example

- Set of states: \(\Sigma \);
- Initial states: \(I \subseteq \Sigma \);
- Transition relation: \(\tau \subseteq \Sigma \times \Sigma \);
- Transition system: \(\langle \Sigma, \tau, I \rangle \);
- Complete lattice: \(\langle \wp(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap \rangle \);
- Right-image of \(X \subseteq \Sigma \) by \(\tau \):

\[
\text{post}[\tau](X) \triangleq \{ s' | \exists s \in X : \langle s, s' \rangle \in \tau \};
\]

- Reflexive transitive closure of \(\tau \): \(\tau^* \)
Partial correctness of Alg. 1

Alg. 1 is **partially correct**: if it ever terminates then it returns \(\text{lfp} \preceq \lambda X. I \lor F(X) \leq S \).

Concrete Invariants

- \(A \in L \) an **invariant** for \(\langle F, I, S \rangle \) if and only if \(I \preceq A \land F(A) \leq A \land A \preceq S \);

Note 1 (Floyd’s proof method): \(\text{lfp} \preceq \lambda X. I \lor F(X) \leq S \) if and only if there exists an invariant \(A \in L \) for \(\langle F, I, S \rangle \);

Note 2: if Alg. 1 terminates successfully, then it has computed an invariant \(\chi = \text{lfp} \preceq \lambda X'. I \lor F(X') \).

Galois connection

A **Galois connection**, written
\[
\langle L, \preceq \rangle \Leftarrow \Rightarrow \rightarrow \langle M, \sqsubseteq \rangle,
\]

is such that:
- \(\langle L, \preceq \rangle \) and \(\langle M, \sqsubseteq \rangle \) are posets;
- the maps \(f \in L \mapsto M \) and \(g \in M \mapsto L \) satisfy
\[
\forall x \in L : \forall y \in M : f(x) \sqsubseteq y \text{ if and only if } x \preceq g(y).
\]

Concrete Adjoinedness

In general, \(F \) has an **adjoint** \(\tilde{F} \) such that \(\langle L, \preceq \rangle \Leftarrow \Rightarrow \rightarrow \langle L, \leq \rangle \).
Example of Concrete Adjoinedness

- τ^{-1} is the inverse of τ;
- $\text{pre}[\tau] \triangleq \text{post}[\tau^{-1}]$;
- Set complement $\neg X \triangleq \Sigma \setminus X$;
- $\text{pre}[\tau](X) \triangleq \neg \text{pre}[\tau](\neg X)$;

$$
\langle \varphi(\Sigma), \subseteq \rangle \xrightarrow{\text{pre}[\tau]} \langle \varphi(\Sigma), \subseteq \rangle.
$$

The Complete Lattice of Concrete Invariants

- The set \mathcal{I} of invariants for $\langle F, I, S \rangle$ is a complete lattice $\langle \mathcal{I}, \leq, \text{lfp} \leq \lambda X. I \lor F(X), \text{gfp} \leq \lambda X. S \land \overline{F}(X), \lor, \land \rangle$.

Fixpoint Concrete Adjoinedness

$$
\langle L, \leq \rangle \xrightarrow{\lambda \text{S}. \text{gfp} \leq \lambda X. S \land \overline{F}(X)} \lambda I. \text{lfp} \leq \lambda X. I \lor F(X)
$$

Proof:

$$
\text{lfp} \leq \lambda X. I \lor F(X) \leq S
\iff \exists A \in L : I \leq A \land F(A) \leq A \land A \leq S \quad (1)
\iff \exists A \in L : I \leq A \land A \leq \overline{F}(A) \land A \leq S
\iff I \leq \text{gfp} \leq \lambda X. S \land \overline{F}(X).
$$

Dual Concrete Fixpoint Checking Algorithm

Algorithm 2

1. $Y := S$; $Go := (I \leq Y)$;
2. while Go do
 1. $Y' := S \land \overline{F}(Y)$;
 2. $Go := (Y \neq Y') \land (I \leq Y')$;
 3. $Y := Y'$;
5. od;
6. return $(I \leq Y)$;

Partial correctness of Alg. 2

Alg. 2 is partially correct: if it ever terminates then it returns \(lfp \leq \lambda X. I \lor F(X) \leq S \).

On (Dual) Fixpoint Checking

\[lfp \leq \lambda X. I \lor F(X) \leq S \]

if and only if

\[I \leq gfp \leq \lambda X. S \land \tilde{F}(X) \]

if and only if

\[lfp \leq \lambda X. I \lor F(X) \leq gfp \leq \lambda X. S \land \tilde{F}(X) \]

The Adjoined Concrete Fixpoint Checking Algorithm

Algorithm 3

\[
X := I; \quad Y := S; \quad Go := (X \leq Y);
\]

while Go do

\[
X' := I \lor F(X); \quad Y' := S \land \tilde{F}(Y);
\]

\[
Go := (X \neq X') \land (Y \neq Y') \land (X' \leq Y');
\]

\[
X := X'; \quad Y := Y';
\]

od;

return \(X \leq Y \);

Partial correctness of Alg. 3

Alg. 3 is partially correct: if it ever terminates then it returns \(lfp \leq \lambda X. I \lor F(X) \leq S \).
Abstract Fixpoint Checking

Example: the Recurrent Abstraction in Abstract Model-Checking

- State abstraction: \(h \in \Sigma \mapsto \Sigma; \)
- Property abstraction: \(\alpha_h(X) \triangleq \{ h(x) \mid x \in X \} = \text{post}[h]; \)
- Property concretization: \(\gamma_h(Y) \triangleq \{ x \mid h(x) \in Y \} = \text{pre}[h]; \)
- Galois connection:

\[
\langle \wp(\Sigma), \subseteq \rangle \leftarrow \alpha_h \rightarrow \langle \wp(\Sigma'), \subseteq \rangle.
\]

Example (rule of signs): \(\Sigma = \mathbb{Z} \) so choose \(h(z) \) to be the sign of \(z \).

\(^6\) Considering the function \(h \) as a relation.

Abstract Fixpoint Checking Algorithm

Algorithm 4

\[
X := \alpha(I); \quad Go := (\gamma(X) \leq S);
\]
while \(Go \) do

\[
X' := \alpha(I \lor F(\gamma(X))); \quad Go := (X \neq X') \& (\gamma(X') \leq S);
\]

\[
X := X'; \quad \text{od};
\]

return if \((\gamma(X) \leq S) \) then \text{true} else \text{I don't know};

\(^7\) In P. Cousot & R. Cousot, POPL'77, \((\gamma(X) \leq S) \in X \subseteq S'\) where \(S' = \alpha(S) \).
Partial correctness of Alg. 4

Alg. 4 is partially correct: if it terminates and returns "true" then \(\text{ifp} \leq \lambda X. I \lor F(X) \leq S \).

Example of Dual Abstraction

If

- \(\langle L, \leq, 0, 1, \lor, \land, \neg \rangle \) is a complete boolean lattice;
- \(\langle M, \sqsubseteq, \bot, \top, \sqcap, \sqcup, \sim \rangle \) is a complete boolean lattice;
- \(\langle L, \leq \rangle \overset{\gamma}{\longrightarrow} \langle M, \sqsubseteq \rangle \);

\(\tilde{\alpha} \triangleq \sim \circ \alpha \circ \sim \) and \(\tilde{\gamma} \triangleq \neg \circ \gamma \circ \neg \)

then

\(\langle L, \geq \rangle \overset{\tilde{\gamma}}{\longrightarrow} \langle M, \sqsupseteq \rangle \)

Example of Dual Abstraction (Contd.)

For the recurrent abstraction in abstract model-checking \(\alpha_h(X) \)

\(\triangleq \{ h(x) \mid x \in X \} = \text{post}[h] \) we have:

- \(\langle \varphi(\Sigma), \sqsubseteq \rangle \overset{\text{pre}[h]}{\longrightarrow}^{\text{post}[h]} \langle \varphi(\Sigma), \sqsubseteq \rangle \);
- \(\widehat{\text{pre}}[h](X) = \neg \text{pre}[h](\neg X) \) and \(\widehat{\text{post}}[h](X) = \neg \text{post}[h](\neg X) \), so:
- \(\langle \varphi(\Sigma), \sqsupseteq \rangle \overset{\text{pre}[h]}{\longrightarrow}^{\text{post}[h]} \langle \varphi(\Sigma), \sqsupseteq \rangle \).
Abstract Adjoinedness

\(\langle L, \leq \rangle \xrightarrow{\gamma}{\alpha} \langle M, \sqsubseteq \rangle, \langle L, \leq \rangle \xrightarrow{\tilde{F}} \langle L, \leq \rangle \text{ and } \langle L, \geq \rangle \xrightarrow{\gamma}{\alpha} \langle M, \sqsupseteq \rangle \) imply:

\(\langle M, \sqsubseteq \rangle \xrightarrow{\tilde{\alpha} \circ \tilde{F} \circ \gamma}{\tilde{\alpha} \circ \tilde{F}} \langle M, \sqsubseteq \rangle. \)

Partial correctness of Alg. 5

Alg. 5 is partially correct: if it terminates and returns "true" then \(\text{lfp} \leq \lambda X. I \lor F(X) \leq S \).

The Dual Abstract Fixpoint Checking Algorithm

Algorithm 5

Y := \(\tilde{\alpha}(S) \); Go := \((I \leq \tilde{\gamma}(Y)) \);
while Go do
 \(Y' := \tilde{\alpha}(S \land \tilde{F}(\tilde{\gamma}(Y))) \);
 Go := \((Y \neq Y') \& (I \leq \tilde{\gamma}(Y')) \);
 Y := Y';
od;
return if \((I \leq \tilde{\gamma}(Y)) \) then true else I don’t know;

The Particular Case of Complement Abstraction

1. \(\langle L, \leq, 0, 1, \lor, \land, \neg \rangle \) is a complete boolean lattice;
2. \(\langle M, \sqsubseteq, \bot, \top, \sqcup, \sqcap, \sim \rangle \) is a complete boolean lattice;
3. \(\langle L, \leq \rangle \xrightarrow{\gamma}{\alpha} \langle M, \sqsubseteq \rangle \);
4. \(\langle L, \leq \rangle \xrightarrow{\tilde{F}} \langle L, \leq \rangle \);
5. \(\tilde{F} \triangleq \neg \circ F \circ \neg, \tilde{\alpha} \triangleq \sim \circ \alpha \circ \sim \) and \(\tilde{\gamma} \triangleq \neg \circ \gamma \circ \sim \).
Algorithm 6 becomes:

\[
Z := \alpha(\neg S); \quad Go := (I \land \gamma(Z) = 0);
\]

while \(Go \) do
\[
Z' := \alpha(\neg S \lor F(\gamma(Z)));
Go := (Z \neq Z') \land (I \land \gamma(Z') = 0);
Z := Z';
\]
end while

return if \((I \land \gamma(Z) = 0)\) then true else I don’t know;

Partial correctness of Alg. 6

Alg. 6 is partially correct: if it terminates and returns “true” then \(\text{lfp} \leq \lambda X. I \lor F(X) \leq S \).
Further Requirements for Program Static Analysis

- In program static analysis, one cannot compute γ, $\tilde{\gamma}$ and \leq and sometimes neither I nor S may even be machine representable;
- So Alg. 7, which can be useful in model-checking, is of limited interest in program static analysis;
- Such problems do no appear in abstract model checking since the concrete model is almost always machine-representable (although sometimes too large).

Example: the Recurrent Abstraction in Abstract Model-Checking

Continuing with the abstraction of p. 31 with

$$\alpha \triangleq \text{post}[h] \quad \gamma \triangleq \text{pre}[h]$$

and

$$\tilde{\alpha} \triangleq \text{post}[h] \quad \tilde{\gamma} \triangleq \text{pre}[h],$$

we have:

1. $\forall X \in L : \gamma \circ \tilde{\alpha}(X) \subseteq X$;
2. $\forall X \in L : X \subseteq \tilde{\gamma} \circ \alpha(X)$.

Additional Hypotheses

In order to be able to check termination in the abstract, we assume:

1. $\forall X \in L : \gamma \circ \tilde{\alpha}(X) \leq X$;
2. $\forall X \in L : X \leq \tilde{\gamma} \circ \alpha(X)$.

The Adjoined Abstract Fixpoint Abstract Checking Algorithm

Algorithm 8

1. $X := \alpha(I)$; $Y := \tilde{\alpha}(S)$; $Go := (X \subseteq Y)$;
2. while Go do
3.
4. $X' := \alpha(I) \sqcup \alpha \circ F \circ \gamma(X)$; $Y' := \tilde{\alpha}(S) \sqcap \tilde{\alpha} \circ \tilde{F} \circ \tilde{\gamma}(Y)$;
5. $Go := (X \neq X') \& (Y \neq Y') \& (X' \subseteq Y')$;
6. $X := X'$; $Y := Y'$;
7. od;
8. return if $X \subseteq Y$ then true else I don’t know;
Partial correctness of Alg. 8

Alg. 8 is partially correct: if it ever terminates and returns "true" then $\text{ifp} \leq \lambda X. I \lor F(X) \leq S$.

Partially Complete Abstraction (definition)

Definition 9 The abstraction $\langle \alpha, \gamma \rangle$ is partially complete if, whenever Alg. 4 terminates and $\text{ifp} \leq \lambda X. I \lor F(X) \leq S$ then the returned result is "true".

Characterization of Partially Complete Abstractions for Algorithm 4

Theorem 10 The abstraction $\langle \alpha, \gamma \rangle$ is partially complete for Alg. 4 if and only if $\alpha(L)$ contains an abstract value A such that $\gamma(A)$ is an invariant for $\langle F, I, S \rangle$.

Observations: this notion of partial completeness is different from the notions of fixpoint completeness ($\alpha(\text{fixpoint}) = \text{fixpoint } \alpha + G = \text{fixpoint } (\alpha \circ G + \gamma)$) and the stronger one of local completeness ($\alpha \circ G = \alpha \circ G \circ \gamma$) considered in P. Cousot & R. Cousot, POPL '79.
Characterization of Partially Complete Abstractions for Algorithm 4

Theorem 10 The abstraction \(\langle \alpha, \gamma \rangle \) is partially complete for Alg. 4 if and only if \(\alpha(L) \) contains an abstract value \(A \) such that \(\gamma(A) \) is an invariant for \(\langle F, I, S \rangle \).

Intuition: finding a partially complete abstraction is logically equivalent to making an invariance proof.

The Most Abstract Partially Complete Abstraction (Definition)

Definition 11 The most abstract partially complete abstraction \(\langle \alpha, \gamma \rangle \), if it exists, is defined such that:
1. The abstract domain \(\overline{M} = \overline{\alpha}(L) \) has the smallest possible cardinality;
2. If another abstraction \(\langle \alpha', \gamma' \rangle \) is a partially complete abstraction with the same cardinality, then there exists a bijection \(\beta \) such that \(\forall x \in \overline{M} : \gamma'((\beta(x))) \leq \gamma(x) \).

The Least Abstract Partially Complete Abstraction (Definition)

Definition 13 Dually, the least abstract partially complete abstraction \(\langle \alpha, \gamma \rangle \), if it exists, is defined such that:
1. The abstract domain \(\overline{M} = \overline{\alpha}(L) \) has the smallest possible cardinality;
2. If another abstraction \(\langle \alpha', \gamma' \rangle \) is a partially complete abstraction with the same cardinality, then there exists a bijection \(\beta \) such that \(\forall x \in \overline{M} : \gamma((\beta(x))) \leq \gamma'(\beta(x)) \).

9. Otherwise stated, the abstract values in \(\overline{\alpha}(L) \) are more approximate than the corresponding elements in \(\alpha'(L) \).

10. Otherwise stated, the abstract values in \(\overline{\alpha}(L) \) are less approximate than the corresponding elements in \(\alpha'(L) \).
Characterization of the Least Abstract Complete Abstraction

Theorem 14 Dually, the least abstract partially complete abstraction for Alg. 4 is such that:

- if \(I = 1 \) then \(M = \{ T \} \) where \(\alpha \overset{\Delta}{=} \lambda X \cdot T \) and \(\gamma \overset{\Delta}{=} \lambda Y \cdot 1; \)
- if \(I \neq 1 \) then \(M = \{ \bot, T \} \) where \(\bot \in \bot \subseteq T \subseteq T \) with \(\langle \alpha, \gamma \rangle \) such that:
 \[
 \alpha(X) \overset{\Delta}{=} \text{if } X \leq \text{lfp} \leq X. I \lor F(X) \text{ then } \bot \text{ else } T
 \]
 \[
 \gamma(\bot) \overset{\Delta}{=} \text{lfp} \leq X. I \lor F(X)
 \]
 \[
 \gamma(T) \overset{\Delta}{=} 1
 \]

The Complete Lattice of Minimal Complete Abstractions for Alg. 4

Theorem 16
- The relation \(\langle \{ \bot, T \}, \subseteq, \alpha, \gamma \rangle \preceq \langle \{ \bot', T' \}, \subseteq', \alpha', \gamma' \rangle \) if and only if \(\gamma(\bot) \leq \gamma'(\bot') \) is a pre-ordering on \(\mathcal{A} \).
- Let \(\langle \{ \bot, T \}, \subseteq, \alpha, \gamma \rangle \cong \langle \{ \bot', T' \}, \subseteq', \alpha', \gamma' \rangle \) if and only if \(\gamma(\bot) = \gamma'(\bot') \) be the corresponding equivalence.
- The quotient \(\mathcal{A}/\cong \) is a complete lattice for \(\preceq \) with infimum \(\langle M, \subseteq, \alpha, \gamma \rangle \) and supremum \(\langle \bar{M}, \subseteq, \bar{\alpha}, \bar{\gamma} \rangle \).

Intuition for Minimal Partially Complete Abstractions

Theorem 15
- The set \(\mathcal{A} \) of partially complete abstractions of minimal cardinality for Alg. 4 is the set of all abstract domains \(\langle M, \subseteq, \alpha, \gamma \rangle \) such that \(M = \{ \bot, T \} \) with \(\bot \subseteq \bot \subseteq T \subseteq T \), \(\langle L, \preceq \rangle \overset{\alpha}{\mapsfrom} \langle M, \subseteq \rangle \), \(\gamma(\bot) \in I \) and \(\bot = T \) if and only if \(\gamma(T) \in I \).

Similar results hold for the other Algs. 6, 7 & 8.
On the Automatic Inference of Partially Complete Abstractions

- The automatic inference/refinement of abstractions is an active subject of research \(^{12}\);
- Automating the abstraction is logically equivalent to discovering an invariant and checking a proof obligation (Th. 10);

\(^{12}\) Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saidi, CAV’97; Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl & Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saidi & Shankar, CAV’99; Saidi, SAS’00; Baumgartner, Tripp, Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
On the Automatic Inference of Partially Complete Abstractions (contd.)

Will the empirical methods (presently) used in abstract model-checking be able to automatize the discovery of partially complete abstractions? 13

May be not so abstract model-checking will eventually boil down to incomplete abstract interpretations as used in program analysis or program debugging, using a simultaneous simulation of program executions (although the current per-example reasoning can go on for ever).

THE END, THANK YOU.