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Abstract

We rapidly introduce elements of abstract interpretation, a for-
malization of the (effective) conservative approximation of the
semantics of programs and more generally software and hard-
ware computer systems.

We argue that most semantics-based reasonings and com-
putations on programs involve conservative approximations which
are naturally formalized by abstract interpretation. This is il-
lustrated on the syntax and semantics of programming lan-
guages, typing and type inference, program transformation,
model-checking and static program analysis.
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Motivations

This work was supported in part by the RTD project 1IST-1999-20527 DAEDALUS of
the european IST FP5 programme.
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Abstract Interpretation

e Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

e A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based
program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.
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Coping With Undecidability When
Computing on the Program Semantics

e Consider simple specifications or programs (hopeless);

e Consider decidable questions only or semi-algorithms (e.g.
model-checking);

e Ask the programmer to help (e.g. proof assistants);

e Consider approximations to handle practical complexity lim-
itations (the main application of abstract interpretation).
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The Theory of Abstract Interpretation

e Abstract interpretation’ is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a com-
puter system at some level of abstraction, ignoring irrel-
evant details:

Conservative: the approximation cannot lead to any er-
roneous conclusion.

1 P Cousot. Méthodes itératives de construction et d ‘approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. These d'Etat és sciences mathématiques. Grenoble, 21 Mar. 1978.
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Informal Introduction to
Abstract Interpretation
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Informal Introduction to Abstract Interpretation
1 — Property Abstraction

e Program concrete/abstract properties are elements of posets/
attices/. . .;

e Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

e The abstract property (hence semantics) is sound but may
be incomplete with respect to the concrete property (seman-
tics);
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2 — Correspondence between Concrete and
Abstract Properties

e |f any concrete property has a best approximation, approx-
imation is formalized by Galois connections (or equivalently

closure operators, etc. *);
e Otherwise, weaker abstraction/ concretization correspondences

are available °:

2 P, Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL'79, pp. 269-282, 1979.
3 P. Cousot & R. Cousot. Abstract interpretation frameworks. JLC 2(4):511-547, 1992.
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3 — Semantics Abstraction

e Program concrete semantics and specifications are defined
by syntactic induction and composition of fixpoints (or using
equivalent presentations *);

e [he property abstraction is extended compositionally to all
constructions of the concrete/abstract semantics, including
fixpoints;

e This leads to a constructive design of the abstract semantics

by approximation of the concrete semantics *;

4 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint,
closure-condition, rule-based and game theoretic form. CAV '95, LNCS 939, pp. 293-308, 1995.

5 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83-94, 1992.
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4 — Effective Analysis/Checking/
Verification Algorithms

e Computable abstract semantics lead to effective program
analysis/verification algorithms;

e Furthermore fixpoints can be over-approximated iteratively

by convergence acceleration through widening /narrowing that
Is non-standard induction °.

© P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. ACM POPL, pp. 238-252, 1977.
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Elements of

Abstract Interpretation
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Galois Connections’

(P, <) == {Q,E)

def

— (P, <) is a poset
— (@, E) is a poset
—VzeP: VyeQ al@)Cy < z<(y)

" The original Galois correspondence is semi-dual (J instead of C).
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Composing Galois Connections

o If (P, <) = (Q,C) and (Q,C) == = (R, =) then
(P,<) ——= (R, =)’
9o

8 This would not be true with the original definition of Galois correspondences.
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Function Abstraction

o If (P, <) == (Q,C) then

84
. AgeAy- .
(S <) g Ay-g9y)) (5 0.0)
Af-Az-af(z))
gl 2
o If (P, <) azl (@, <) and (R, <) &:2 (S, E) then
. A ° O O .
(P R, E) 2l 200 g ey
Afragofomy
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Kleenian Fixpoint Approximation

let Fe L—> Land F € L —= L be respective monotc%ne
maps on the cpos (L, L, C) and (L, L, C) and (L, 1) &—=

o Q
(L,C) such that « o F'oy C F. Then®:
o V5 € O: a(F°) C F° (iterates from the infimum);
e The iteration order of F is < to that of F":

L _ —
o olfp F) C lfp F,

C

Soundness: Ifp I'C P = lprF C y(P).

Iml

9 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL'79, pp. 269-282, 1979.
Numerous variants!
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Kleenian Fixpoint Abstraction
Moreover, the commutation condition F' o o = o o F' implies:
o ['=qao F o~, and
- c
o olfp F)=1lfp F;
Completeness: 1prF C v(P) = lip
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Systematic Design of an Abstract Semantics

By structural induction on the language syntax, for each lan-
guage construct:

: . C
e Define the semantics concrete lip™ F;

e Choose the abstraction &« = «y, © ... o a1 and check
(L,E) == (L,C);
o CalculateFd:efQOFoyand check that ' o av = v o F;

e |t follows, by construction, that oz(lprF) = lprF.

(and similarly in case of approximation ).

10 A complete example is handled in “P. Cousot. The Calculational Design of a Generic Abstract Interpreter. In
Calculational System Design, M. Broy and R. Steinbriiggen (Eds). Vol. 173 of NATO Science Series, Series F:
Computer and Systems Sciences. |0S Press, pp. 421-505, 1999.”
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Tarskian Fixpoint Abstraction

let F € L — Land F € L —5 L be respective mono-

tone maps on the complete lattices (L,C, 1, T, L), ) and

(L,C, 1, T,0,1M) and the abstraction function o € L —— L

) —

be a complete M-morphism satisfying:
e the commutation inequality ' o o C o o F', and

e the post-fixpoint correspondence Yy € L : F(y) C y =

drel alx)=yAF(x) C
C C —
Then™ a(lfp F') = lfp F.

11 p Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation,
TCS, 2002, to appear. Similar results hold for sound fixpoint approximation.
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A Potpourri of Applications of
Abstract Interpretation
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Application to Syntax

P. Cousot & R. Cousot. Parsing as Abstract Interpretation of Grammar Semantics, TCS, 2002, to
appear.
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The Semantics of Syntax

e The semantics of a grammar G = (N, T, P, A) is the set of
items [\, X ;= a/v e J]| such that 3y : AX = af € P:
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The Fixpoint Semantics of Syntax

-
S=lfp F

F(I) = |
U1

e, A:=¢clee ]| A:=0 € P}

MNX =aY /voe O] | [N X =a/yeY ] ETA
Y =60 ¢€ P}

U{[)\,X = &Y/’onﬁ] ‘ )\,X e Ck/’YOY6] E[/\

N, Y =6/ o€ €1}

U{IN X =aa/yae ]| NN X =a/yeal] e} .
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Syntactic Abstractions

def

o () ={yeT" ||, A:=a/yeec] eI}
Language of the grammar G = (N, T, P, A)
® W=W]...WWjr]...Wj...wn Input string
au(I) E{(X =aeBij)|0<i<j<nA
wi.owi, X = afwipy.owje B €T}

Earley's algorithm
def

e af(l)={aeT||\X =aayel| €}
U{e| [N, X =afb/cec] eI}
FIRST algorithm
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Application to Semantics

P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. MFPS XIII, ENTCS 6, 1997. http://www.elsevier.nl/locate/entcs/volume6.html,

25 p.
P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Inter-

pretation, TCS, 2002, to appear.
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Trace Semantics

Trace semantics of a transition system (3, 7):

o YT E U 0, n[— X finite traces
n>(

o YV E 0, wl— X infinite traces

o 5= lf]_@E Fextuxzv trace semantics

e F(X)={seXt|seXAVs eX:(s,s) &}
U{ss'o | (s,s') e T ANs'oc € X}  trace transformer
def

e XCY=(XNEHCHYNIENHA(XNEY) D (Y NXY)

computational ordering
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Semantics Abstractions
1 — Relational Semantics Abstractions

i

04

(p(ETUTY),C) —= (p(X x (ZU{L})),S)
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1 — Relational Semantics Abstractions (Cont’d)

o oI(X)=1{(s,5) | sos’ € XNEt}
U{(s, L) |soceXnX+}
trace to natural relational semantics
o /(X)=1{(s,s) | sos’ € XnET}
trace to angelic relational semantics
o (X)) ={(s,¢) | sos’ e XNET}

U{(s,sy |sce XNXYAs e BU{L}}
trace to demoniac relational semantics
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2 — Functional /Denotational Semantics
Abstractions
790

(2 x (BU{L}), C) === (Zr— p(LULL}), C)

e 0?(X)=As{s' e DU{L}] (s,5) € X}
relational to denotational semantics
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3 — Predicate Transformer Semantics
Abstractions

7

s (D) L p(DU{L)), E)

(Zr— p(EU{L}) <) ¢

Ckﬂ-

e 0"(¢)=A\P{s’eXU{lL}|TseP:s o)}

denotational to predicate transformer semantics
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4 — Predicate Transformer Semantics
Abstractions (Cont’d)

(0(T) > p(BU{L}), <) = ’Y 5 (0(2) S p(BU{L}), D)
(PSU{L}) S p(x), &) = ” 5 (P(SU{LY) D p(n), D)

® &N(q)) — )\P.—I(CD(—IP)) dual
¢ (D) =XAQA{s e X | P({s}) NQ # 0} U-inversion
¢ ''(D) = AQ.{s € X | P(~{s}HHUQ = XU{L}}-inversion
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b — Hoare Logic Semantics Abstractions

,yH

o

(9(2) — p(ZU{L}),D) === p(%) @" p(Z U {L}),2)

o o(d)={(P,Q)| P CdQ)}

predicate transformer to Hoare logic semantics

12 Semi-dual Shmuely tensor product.
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Lattice of Semantics

Hoare logics
7" .\./' T

H

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

abstraction

T — )
| N ___ equivalence
angelic natural demoniac --- restriction
determinist infinite
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Application to Typing

P. Cousot, Types as Abstract Interpretations, ACM 24th POPL, 1997, pp. 316-331.
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Syntax of the Eager Lambda Calculus

x,f,...e X variables
eclk expressions
e = X variable
AX - e abstraction
e1(e) application
putf-Ax-e recursion
1 one
e1 — €9 difference
(e1 7 e9:e3) conditional
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Semantic Domains

() wrong/runtime error value

L non-termination

W E {Q} wrong

z € /. Integers
u,f,peU=EW, 6Z, ¢ U—TU|", values
REREX—U environments

O ED TR—TU semantic domain

13 [U +— UJ: continuous, L-strict, {2-strict functions from values U to values U.
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Denotational Semantics with Run-Time
Type Checking

R
S[[61 — 62]]R & (S[[el]]R =1LV S[[GQ]]R =171
| Sle1|R =z AS|eg]R =297 21 — 29
| 2)

S[(e; ? ey:e3)|R e (Sle]]R=L7 L

Sle;]R =07 S[es]R
Sle;]R=z#07 S|es]R
(1)
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S[Ax-e]RE Au-(u=171
u=0Q70
| S[e]R[x—u] )

S[eq(e9)]R £ (S[e1]JR =LV S[es]R= 171
‘ S[[eﬂ]R =1 e [U — U] 7 f(S[[@Q]]R)
| 2)

def

S[puf - Ax-e]R = 1prAQO°S[[)\X°6]]R[f%gp]
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Standard Denotational and Collecting Semantics

e [he denotational semantics is:

Sle] c E— S

e A concrete property PP of a program is a set of possible pro-

gram behaviors:
def

PelP = o)

e [he standard collecting semantics is the strongest concrete
property:
Cle] cE—P  Cle] = {S[e]}
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Church/Curry Monotypes

e Simple types are monomorphic:

m € M m = int | m;>mo monotype

e A type environment associates a type to free program vari-
ables:

He H & X M type environment

MFPS XVIII March 23-26, 2002 — 39 — © P. Cousor


http://www.math.tulane.edu/~mfps/mfps18.html

Church/Curry Monotypes (continued)

e A typing (H, m) specifies a possible result type m in a given
type environment H assigning types to free variables:

0 cI°% H x M typing

e An abstract property or program type is a set of typings;

def

T € T = p(I) program type
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Concretization Function

The meaning of types is a program property, as defined by the

concretization function ~¢: "

e Monotypes v € M — p(U):
v<(int) £ Z U {1}

def

vi(m>my) = {¥ € [Ur U]

Yu € v(my) : ©(u) € v(1m»)}
U{L}

14 For short up/down lifting/injection are omitted.
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e type environment ¢ € H — p(R):
vi(H) = {RE€R | Vx € X: R(x) € 7{(H(x))}

e typing v; € [* — IP:
Y5((H,m)) = {6 € S | VR € 75(H) : ¢(R) € 7i(m)}

e program type v € T — P

(D) E () 7500)

oc'l
YD) =S
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Program Types

e Galois connection: ;

v
<IP)7 g) ®7 Sa U7 m> —— <TC7 27 ]Ica @7 ma U>

OKC

e Types T|e| of an expression e:

Tle] € a*(Cle]) = a*(1S[e] ;)

Typable Programs Cannot Go Wrong
Qe (Tle]) <= Tle]=0
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Church/Curry Monotype Abstract Semantics

T[x] £ {(H, H(x)) | H € H} (VAR)

T[Ax-e] & {(H, m;>my) | (ABS)
(Hxemy], mg) € Tle]}

Tlei(eo)] = {(H, my) | (H, my->my) € Teq] (APP)
A\ <H7 m1> S T[[62]]}
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T[pt Ax-e] £ {(H, m) | (REC)
(Hlf<m|, m) € T|[Ax-e¢|}

T[1] £ {(H, int) | H € H} (CST)
Tle; — eo] £ {(H, int) | (DIF)
<H, int> - T[[el]] M T[[eg]]}

Tl(e1? ez e3)] = {(H,m) | (CND)
(H,int) € Tler] A (H,m) € Tlea] N Tes]}


http://www.math.tulane.edu/~mfps/mfps18.html

The Herbrand Abstraction to Get Hindley’s
Type Inference Algorithm

(p(ground(T)), C, 0, ground(T), U, N)

ground

where: leg

e T': set of terms with variables ’a, ...,
e Icg: least common generalization,

e ground: set of ground instances,

e <: instance preordering,

® gci: greatest common Instance.
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Application to Model Checking

P. Cousot & R. Cousot, Temporal Abstract Interpretation, ACM 27th POPL, 2000, pp. 12-25.
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Objective of Model Checking

1) Built a model M of the computer system;

2) Check (i.e. prove enumeratively) or semi-check (with semi-
algorithms) that the model satisfies a specification given (as
a set of traces ) by a (linear) temporal formula: M C ¢ or

M N # 0.

e [he model and specification should be proved to be correct
abstractions of the computer system (often taken for granted,
could be done by abstract interpretation);
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Model-checking is an abstraction

e Universal abstraction:

(p(ETUE¥), D)

u
oz% ”? <@<2>7 2>
o, (®) % {s | {o € M| o= s} C P}

e Existential abstraction:

o,

5 (p(%),C)

a3 (@) E{s|{oc € M|og=s}Nd 0}
These abstractions lead to the classical (finite-state or nonter-
minating) model-checking algorithms.

(p(ETUD¥),C)
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Implicit Abstraction in Model Checking

Spurious traces: ===’
The semantics of the p-calculus is closed under this abstrac-

tion.
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Soundness

For a given class of properties, soundness means that:

Any property (in the given class) of the abstract
world must hold in the concrete world:
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Example for Unsoundness

S

. I
S S

o—0

S S S

@ @ o

s S S s s

e - - o )

S S S S S S

{ @ (o mrrzas » @— i Y

All abstract traces are infinite but not the concrete ones!
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Completeness

For a given class of properties, completeness means that:

Any property (in the given class) of the concrete
world must hold in the abstract world:
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Example for Incompleteness

S

. I
S S

o—0

S S S

@ @ o

s S S s s

e - - o )

S S S S S S

{ @ (o mrrzas » @— i Y

All concrete traces are finite but not the abstract ones!
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On the Soundness/Completeness of
Model-Checking

e Model checking is sound and complete (for the model);

e [his is due to restrictions on the models and specifications
(e.g. closure under the implicit abstraction);

e There are models/specifications (such as the ;#-calculus us-
ing bidirectional traces) for which:
- The implicit abstraction is incomplete (POPL'00),
- Any abstraction is incomplete (Ranzato, ESOP'01).
iIn both cases, even for finite transition systems.
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Bidirectional Traces

e (i,0) bidirectional trace
o€ Li— X trace
1 € L present time
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The reversible ﬁ-calculus

p=0g" [os]
T [t
S [De1]
1" [o17]
o1V o1V 9]
ald [ 1]
15 5 e o(x).

16 4 ¢ (X x X).
17 @® Is next time.
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def

p:
p:

{(t,0) | 0; € S}

{(i,0) | {04, 0441) €t}

{{i,0) | (i+1,0) € [pi]p
{{,0) | (=i, Aj.o_j) € [e1]p}

[e1]p U [pallp
—[1lp

— b7 — © P. Cousor


http://www.math.tulane.edu/~mfps/mfps18.html

The reversible /#-calculus (cont’d)

def

X [X]p = p(X)

pX-o Xl € Az [p1]pXa
vX-p [wX-plp Eep Az [pi]pXa
Vo [Ver:walp < {(i,0) € [pi]p|

{(i,0") € [e1lp | 0] = 0i} C [w2]p}

18 variable.

19 The traces of 1 such that all traces of ¢; with same present state satisfy ©s.
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Application to

Program Transformation

P. Cousot & R. Cousot, Systematic Design of Program Transformation Frameworks by Abstract Inter-
pretation, ACM 29th POPL, 2002, pp. 178—190.
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Online Program Transformation

Transformed
Subject program
Tt
program P < > t[P]
A Syntactic 3
transformation t

S|ip S||p

Subject pro- » Transformed pro-

gram seman- ) N gram semantics

tics S[[P] Semantic t[S{P]] C S[¢[P]]
transformation t
Py 5 Observational
2 © > 0 abstraction

ao(S[P]) = “aolt[S[P]])" = an(S[t[P]])
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Principle of Offline Program Transformation

Syntactic trans-

Static program |
‘ analysis S : ~ formation ¢ ‘
Sjﬂo Program /| - S| |p
.. Program
| emantic trans-

tic

fof¥ansformation

Observational
abstraction

abstraction «

r;oaly5|s 1.

@
(@

ao(S[P]) = ao(t[S[P](S[P])) = ao(S[t[P]])

— 61 — © P. Cousot

MFPS XVIII March 23-26, 2002


http://www.math.tulane.edu/~mfps/mfps18.html

Principle of Offline Program Transformation

Subject
program Static program — Syntactic trans— Transformed program
P —— (P, S[P[) t[P] 2 plt[S[P], «(S[P])]]
‘ analysis S 2 g formation t 1
S T]p p||S j S||p
Subject S : S Transformed
program emantic emantic trans- _
semantics | " _ > (S|P ]] Oz(S[[ I . > program semantics
S[[P abstraction « ormation t t HP ,Oz(S[[P]])] C S[[t[[P]]]]
bl Qo| |Yo O Observational
2 N S0 abstraction

ao(S[P]) = ao(t[S[P]].a(S[P])) = ao(S[t[P]])
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Examples of Program Transformations

e Constant propagation;
e Online and offline partial evaluation;
e Slicing;
e Static program monitoring,
ao(S[t[P, M) = ao(S[P]) M ao(S[M]):

- run-time checks elimination,

- security policy enforcement,

~ proof by transformation (o (S[P]) = ao(S[t[P, M]])).

e Code and analysis translation.
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Application to
Static Program Analysis

P. Cousot. Meéthodes itératives de construction et d’approximation de points fixes d’opérateurs mo-
notones sur un treillis, analyse sémantique de programmes. These d'Etat &s sciences mathématiques.
Grenoble, 21 Mar. 1978.

P. Cousot. Semantic Foundations of Program Analysis. Ch. 10 of Program Flow Analysis: Theory and
Applications, S.S. Muchnick & N.D. Jones, pp. 303-342. Prentice-Hall, 1981.
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What is static program analysis?

e Automatic static/compile time determination of dynamic/run-
time properties of programs;

e Basic idea: use effective computable approximations of the
program semantics;
Advantage: fully automatic, no need for error-prone
user designed model or costly user interaction;

Drawback: can only handle properties captured by
the approximation.
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Collecting Semantics Abstractions

—; (p(%), C)

(87

(p(XTUxY),C) ¢

Example 1: reachable states®

ar(X)E {o;|ce X Aoy INiecDom(o)}

Example 2: ancestor states *
ap(X)E{o;|ce X AIneDom(o):0<i<nAoy, € F}

20 Abusively called “software model-checking”!
21 Now “property based slicing” !
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Partitioning

o If > = (' x M (control and store state) and C' is finite **, we
can partition:

fyc
AN
77

0%

(p(C x M), C) « (C— p(M),C)

ac(S) = Ace C-{m| (c,m) € S}

e It remains to find abstractions of the store M =V +— D
(variables to data) e.g. of [in]finite set of points of the eu-
clidian space.

22 se e.g. dynamic partitioning if C' is infinite
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Approximations of an [in]finite set of points;

'\
o+
o+
+ + +
+ + +
------------ - 4+ +
+
+ + +

£,09, 7T, .
: (20, 02), ...}

Y ]
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Approximations of an [in]finite set of points:
From Above

A

£..,009, 770, ...

(20, 02), (2, 7),...}

X

From Below: dual® + combinations.

23 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).
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Effective computable approximations of an
[in]finite set of points; Signs”

24 p. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL'79, pp. 269-282, 1979.
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Effective computable approximations of an
[in]finite set of points; Intervals®

r € (19, 77|
{y e 20, 02]

25 P, Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2" Int. Symp. on
Programming, Dunod, 1976.
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Effective computable approximations of an
[in]finite set of points; Octagons ™

(1§:1:§9
x4y <77
Y 1<y<o
\x—y§99

26 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO '2001. LNCS 2053, pp.
155-172. Springer 2001.
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Effective computable approximations of an
[in]finite set of points; Polyhedra®

192 + 77y < 2002
20x 4+ 02y = 0

27 P, Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM POPL,
1978, pp. 84-97.
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Effective computable approximations of an

[in]finite set of points; Simple

congruences *

r =19 mod 77
20 mod 99

¥

0000000000000000>0

00000000OC0DOCGOGOGIOGIOSNOIO
000000000 OCGOCGCOCGOGIONOS
000000O0C0COCGONOGOOOOGIONONDS
00000O0GDOGCOOOOONONOOS
00000O0OOGCOOGOOOOONOO
000000000 OCGOCGCOCGOGIONOS
00000 OGOGOCOOOOOOOOO
00000O0COGOGOOSGIOOOSONOSIONONO
0000000O0GOCFOGOGOOGIOGIOGNOS
00000006000 OCOCGOGOGFOGNOTS
00000 OGO PO 0000000
OQ.QQOQ{QQOQQQQO
OQQQQOQ{Q.OQQQQO
QQQQQQQOQQQQQQ"AH

00000000000 OCGOCGCS

A 1
000000000 OCGOCGCOCGOGIONOS
0000000O0OGCOGOGOOONONOO

28 ph, Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165-190.

© P. Cousor
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Effective computable approximations of an

[in]finite set of points; Linear
congruences ”

..A..............Q.
:o:o:ozo:o:o:o:o:o 133—|—9y:7m0d8
.'I;:.'.f'.’.'.'.'.' 20 — 1y = 9 mod 9

29 ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program. TAPSOFT '91, pp.
169-192. LNCS 493, Springer, 1991.
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Effective computable approximations of an

[in]finite set of points; Trapezoidal lin-

ear congruences”
4 A A

y 4 v 4 A
> il Ay -
- ey
> > ud - { lx 4+ 9y € [0, 77] mod 10
A : A 2z — 1y € [0,99] mod 11
A A

30 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM 1CS 92,
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Example of Effective Abstractions
of Infinite Sets of Infinite Trees™
Binary Decision Graphs:

YN el N
Ol><l0 tru{ C \:: 0 D tru\e/

true false true
{0¥,1¥} infinite number of 0’s fair vectors ends by 0%

Tree Schemata: /l\ 2N

~O~£e~0 y y
R ~ o T 1 \1‘ ‘04 !
b/ Q f :tru{ :-) Cg{u‘) / £ lse/(_t£

{f(ae,b"e,c"e)|ln € N}
{a"bln € N} Note that E is the equality relation.

QL

31 Mauborgne. Improving the Representation of Infinite Trees to Deal with Sets of Trees. ESOP'00. LNCS 1782,
pp. 275-289, Springer, 2000.
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Conclusion on Formal Methods

e Formal methods concentrate on the deductive/exhaustive
verification of (abstract) models of the execution of pro-
grams;

e Most often this abstraction into a model is manual and left
completely informal, it not tortured to meet the tool limita-
tions;

e Semantics concentrates on the rigorous formalization of the
execution of programs;

e 5o models should abstract the program semantics. This is
the whole purpose of Abstract Interpretation!
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Conclusion on Abstract Interpretation

e Abstract interpretation provides mathematical foundations of
most semantic-based program verification and manipulation
techniques;

e In abstract interpretation, the abstraction of the program
semantics into an approximate semantics is automated so
that one can go much beyond examples modelled by hand;

e The abstraction can be tailored to classes of programs (e.g.
critical synchronous real-time embedded systems) so as to
design very efficient analyzers with almost zero-false alarm *.

32 p_ Cousot. Partial completeness of abstract fixpoint checking. SARA'2000. LNAI 1864, pp. 1-25. Springer.
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THE END

More references at URL www.di.ens.fr/~cousot.
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