Abstract Interpretation:
A Theory of Approximation

Patrick COUSOT

Ecole Normale Supérieure
45 rue d'Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot

MFPS XVIII Tulane University, New Orleans, LA, USA
March 23-26, 2002

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot

Abstract

We rapidly introduce elements of abstract interpretation, a for-
malization of the (effective) conservative approximation of the
semantics of programs and more generally software and hard-
ware computer systems.

We argue that most semantics-based reasonings and com-
putations on programs involve conservative approximations which
are naturally formalized by abstract interpretation. This is il-
lustrated on the syntax and semantics of programming lan-
guages, typing and type inference, program transformation,
model-checking and static program analysis.

Content

L. Motivations.ot 2
2. Informal introduction to abstract interpretation............... 6
3. Elements of abstract interpretation.......................... 11
4. A potpourri of applications of abstract interpretation......... 19
(@) Syntax ... 20
(b) Semantics....... ... 24
() Typing ... 33
(d) Model Checking i, 47
(e) Program Transformations.............................. 59
(f) Static Program Analysis............................... 64
5. Conclusion 78

MFPS XVIII March 23-26, 2002 — 1 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Motivations

This work was supported in part by the RTD project 1IST-1999-20527 DAEDALUS of
the european IST FP5 programme.

MFPS XVIII March 23-26, 2002 — 2 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Abstract Interpretation

e Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

e A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based
program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.

MFPS XVIII March 23-26, 2002 — 3 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Coping With Undecidability When
Computing on the Program Semantics

e Consider simple specifications or programs (hopeless);

e Consider decidable questions only or semi-algorithms (e.g.
model-checking);

e Ask the programmer to help (e.g. proof assistants);

e Consider approximations to handle practical complexity lim-
itations (the main application of abstract interpretation).

MFPS XVIII March 23-26, 2002 — 4 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

The Theory of Abstract Interpretation

e Abstract interpretation’ is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a com-
puter system at some level of abstraction, ignoring irrel-
evant details:

Conservative: the approximation cannot lead to any er-
roneous conclusion.

1 P Cousot. Méthodes itératives de construction et d ‘approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. These d'Etat és sciences mathématiques. Grenoble, 21 Mar. 1978.

MFPS XVIII March 23-26, 2002 — 5 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Informal Introduction to
Abstract Interpretation

MFPS XVIII March 23-26, 2002 — 6 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Informal Introduction to Abstract Interpretation
1 — Property Abstraction

e Program concrete/abstract properties are elements of posets/
attices/. . .;

e Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

e The abstract property (hence semantics) is sound but may
be incomplete with respect to the concrete property (seman-
tics);

MFPS XVIII March 23-26, 2002 — 7 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

2 — Correspondence between Concrete and
Abstract Properties

e |f any concrete property has a best approximation, approx-
imation is formalized by Galois connections (or equivalently

closure operators, etc. *);
e Otherwise, weaker abstraction/ concretization correspondences

are available °:

2 P, Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL'79, pp. 269-282, 1979.
3 P. Cousot & R. Cousot. Abstract interpretation frameworks. JLC 2(4):511-547, 1992.

MFPS XVIII March 23-26, 2002 — 8 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

3 — Semantics Abstraction

e Program concrete semantics and specifications are defined
by syntactic induction and composition of fixpoints (or using
equivalent presentations *);

e [he property abstraction is extended compositionally to all
constructions of the concrete/abstract semantics, including
fixpoints;

e This leads to a constructive design of the abstract semantics

by approximation of the concrete semantics *;

4 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint,
closure-condition, rule-based and game theoretic form. CAV '95, LNCS 939, pp. 293-308, 1995.

5 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83-94, 1992.

MFPS XVIII March 23-26, 2002 — 9 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

4 — Effective Analysis/Checking/
Verification Algorithms

e Computable abstract semantics lead to effective program
analysis/verification algorithms;

e Furthermore fixpoints can be over-approximated iteratively

by convergence acceleration through widening /narrowing that
Is non-standard induction °.

© P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. ACM POPL, pp. 238-252, 1977.

MFPS XVIII March 23-26, 2002 — 10 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Elements of

Abstract Interpretation

MFPS XVIII March 23-26, 2002

— 11 —

© P. Cousot

http://www.math.tulane.edu/~mfps/mfps18.html

Galois Connections’

(P, <) == {Q,E)

def

— (P, <) is a poset
— (@, E) is a poset
—VzeP: VyeQ al@)Cy < z<(y)

" The original Galois correspondence is semi-dual (J instead of C).

MFPS XVIII March 23-26, 2002 — 12 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Composing Galois Connections

o If (P, <) = (Q,C) and (Q,C) == = (R, =) then
(P,<) ——= (R, =)’
9o

8 This would not be true with the original definition of Galois correspondences.

MFPS XVIII March 23-26, 2002 — 13 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Function Abstraction

o If (P, <) == (Q,C) then

84
. AgeAy- .
(S <) g Ay-g9y)) (5 0.0)
Af-Az-af(z))
gl 2
o If (P, <) azl (@, <) and (R, <) &:2 (S, E) then
. A ° O O .
(P R, E) 2l 200 g ey
Afragofomy

MFPS XVIII March 23-26, 2002 — 14 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Kleenian Fixpoint Approximation

let Fe L—> Land F € L —= L be respective monotc%ne
maps on the cpos (L, L, C) and (L, L, C) and (L, 1) &—=

o Q
(L,C) such that « o F'oy C F. Then®:
o V5 € O: a(F°) C F° (iterates from the infimum);
e The iteration order of F is < to that of F":

L _ —
o olfp F) C lfp F,

C

Soundness: Ifp I'C P = lprF C y(P).

Iml

9 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL'79, pp. 269-282, 1979.
Numerous variants!

MFPS XVIII March 23-26, 2002 — 15 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Kleenian Fixpoint Abstraction
Moreover, the commutation condition F' o o = o o F' implies:
o ['=qao F o~, and
- c
o olfp F)=1lfp F;
Completeness: 1prF C v(P) = lip

MFPS XVIII March 23-26, 2002 — 16 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Systematic Design of an Abstract Semantics

By structural induction on the language syntax, for each lan-
guage construct:

: . C
e Define the semantics concrete lip™ F;

e Choose the abstraction &« = «y, © ... o a1 and check
(L,E) == (L,C);
o CalculateFd:efQOFoyand check that ' o av = v o F;

e |t follows, by construction, that oz(lprF) = lprF.

(and similarly in case of approximation).

10 A complete example is handled in “P. Cousot. The Calculational Design of a Generic Abstract Interpreter. In
Calculational System Design, M. Broy and R. Steinbriiggen (Eds). Vol. 173 of NATO Science Series, Series F:
Computer and Systems Sciences. |0S Press, pp. 421-505, 1999.”

MFPS XVIII March 23-26, 2002 — 17 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Tarskian Fixpoint Abstraction

let F € L — Land F € L —5 L be respective mono-

tone maps on the complete lattices (L,C, 1, T, L),) and

(L,C, 1, T,0,1M) and the abstraction function o € L —— L

) —

be a complete M-morphism satisfying:
e the commutation inequality ' o o C o o F', and

e the post-fixpoint correspondence Yy € L : F(y) C y =

drel alx)=yAF(x) C
C C —
Then™ a(lfp F') = lfp F.

11 p Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation,
TCS, 2002, to appear. Similar results hold for sound fixpoint approximation.

MFPS XVIII March 23-26, 2002 — 18 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

A Potpourri of Applications of
Abstract Interpretation

MFPS XVIII March 23-26, 2002 — 19 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Application to Syntax

P. Cousot & R. Cousot. Parsing as Abstract Interpretation of Grammar Semantics, TCS, 2002, to
appear.

MFPS XVIII March 23-26, 2002 — 20 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

The Semantics of Syntax

e The semantics of a grammar G = (N, T, P, A) is the set of
items [\, X ;= a/v e J]| such that 3y : AX = af € P:

MFPS XVIII March 23-26, 2002 — 21 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

The Fixpoint Semantics of Syntax

-
S=lfp F

F(I) = |
U1

e, A:=¢clee]| A:=0 € P}

MNX =aY /voe O] | [N X =a/yeY] ETA
Y =60 ¢€ P}

U{[)\,X = &Y/’onﬁ] ‘)\,X e Ck/’YOY6] E[/\

N, Y =6/ o€ €1}

U{IN X =aa/yae]| NN X =a/yeal] e} .

MFPS XVIII March 23-26, 2002 — 22 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Syntactic Abstractions

def

o () ={yeT" ||, A:=a/yeec] eI}
Language of the grammar G = (N, T, P, A)
® W=W]...WWjr]...Wj...wn Input string
au(I) E{(X =aeBij)|0<i<j<nA
wi.owi, X = afwipy.owje B €T}

Earley's algorithm
def

e af(l)={aeT||\X =aayel| €}
U{e| [N, X =afb/cec] eI}
FIRST algorithm

MFPS XVIII March 23-26, 2002 — 23 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Application to Semantics

P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. MFPS XIII, ENTCS 6, 1997. http://www.elsevier.nl/locate/entcs/volume6.html,

25 p.
P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Inter-

pretation, TCS, 2002, to appear.

MFPS XVIII March 23-26, 2002 — 24 — © P. Cousor

http://www.elsevier.nl/locate/entcs/volume6.html
http://www.math.tulane.edu/~mfps/mfps18.html

Trace Semantics

Trace semantics of a transition system (3, 7):

o YT E U 0, n[— X finite traces
n>(

o YV E 0, wl— X infinite traces

o 5= lf]_@E Fextuxzv trace semantics

e F(X)={seXt|seXAVs eX:(s,s) &}
U{ss'o | (s,s') e T ANs'oc € X} trace transformer
def

e XCY=(XNEHCHYNIENHA(XNEY) D (Y NXY)

computational ordering

MFPS XVIII - March 23-26, 2002 — 25 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Semantics Abstractions
1 — Relational Semantics Abstractions

i

04

(p(ETUTY),C) —= (p(X x (ZU{L})),S)

MFPS XVIII March 23-26, 2002 — 26 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

1 — Relational Semantics Abstractions (Cont’d)

o oI(X)=1{(s,5) | sos’ € XNEt}
U{(s, L) |soceXnX+}
trace to natural relational semantics
o /(X)=1{(s,s) | sos’ € XnET}
trace to angelic relational semantics
o (X)) ={(s,¢) | sos’ e XNET}

U{(s,sy |sce XNXYAs e BU{L}}
trace to demoniac relational semantics

MFPS XVIII March 23-26, 2002 — 27 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

2 — Functional /Denotational Semantics
Abstractions
790

(2 x (BU{L}), C) === (Zr— p(LULL}), C)

e 0?(X)=As{s' e DU{L}] (s,5) € X}
relational to denotational semantics

MFPS XVIII March 23-26, 2002 — 28 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

3 — Predicate Transformer Semantics
Abstractions

7

s (D) L p(DU{L)), E)

(Zr— p(EU{L}) <) ¢

Ckﬂ-

e 0"(¢)=A\P{s’eXU{lL}|TseP:s o)}

denotational to predicate transformer semantics

MFPS XVIII March 23-26, 2002 — 29 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

4 — Predicate Transformer Semantics
Abstractions (Cont’d)

(0(T) > p(BU{L}), <) = ’Y 5 (0(2) S p(BU{L}), D)
(PSU{L}) S p(x), &) = ” 5 (P(SU{LY) D p(n), D)

® &N(q)) —)\P.—I(CD(—IP)) dual
¢ (D) =XAQA{s e X | P({s}) NQ # 0} U-inversion
¢ ''(D) = AQ.{s € X | P(~{s}HHUQ = XU{L}}-inversion

MFPS XVIII - March 23-26, 2002 — 30 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

b — Hoare Logic Semantics Abstractions

,yH

o

(9(2) — p(ZU{L}),D) === p(%) @" p(Z U {L}),2)

o o(d)={(P,Q)| P CdQ)}

predicate transformer to Hoare logic semantics

12 Semi-dual Shmuely tensor product.

MFPS XVIII March 23-26, 2002 — 31 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Lattice of Semantics

Hoare logics
7" .\./' T

H

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

abstraction

T —)
| N ___ equivalence
angelic natural demoniac --- restriction
determinist infinite
MFPS XVIII March 23-26, 2002 — 32 —

© P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Application to Typing

P. Cousot, Types as Abstract Interpretations, ACM 24th POPL, 1997, pp. 316-331.

MFPS XVIII March 23-26, 2002 — 33 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Syntax of the Eager Lambda Calculus

x,f,...e X variables
eclk expressions
e = X variable
AX - e abstraction
e1(e) application
putf-Ax-e recursion
1 one
e1 — €9 difference
(e1 7 e9:e3) conditional

MFPS XVIII March 23-26, 2002 — 34 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Semantic Domains

() wrong/runtime error value

L non-termination

W E {Q} wrong

z € /. Integers
u,f,peU=EW, 6Z, ¢ U—TU|", values
REREX—U environments

O ED TR—TU semantic domain

13 [U +— UJ: continuous, L-strict, {2-strict functions from values U to values U.

MFPS XVIII March 23-26, 2002 — 35 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Denotational Semantics with Run-Time
Type Checking

R
S[[61 — 62]]R & (S[[el]]R =1LV S[[GQ]]R =171
| Sle1|R =z AS|eg]R =297 21 — 29
| 2)

S[(e; ? ey:e3)|R e (Sle]]R=L7 L

Sle;]R =07 S[es]R
Sle;]R=z#07 S|es]R
(1)

MFPS XVIII March 23-26, 2002 — 36 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

S[Ax-e]RE Au-(u=171
u=0Q70
| S[e]R[x—u])

S[eq(e9)]R £ (S[e1]JR =LV S[es]R= 171
‘ S[[eﬂ]R =1 e [U — U] 7 f(S[[@Q]]R)
| 2)

def

S[puf - Ax-e]R = 1prAQO°S[[)\X°6]]R[f%gp]

MFPS XVIII March 23-26, 2002 — 37 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Standard Denotational and Collecting Semantics

e [he denotational semantics is:

Sle] c E— S

e A concrete property PP of a program is a set of possible pro-

gram behaviors:
def

PelP = o)

e [he standard collecting semantics is the strongest concrete
property:
Cle] cE—P Cle] = {S[e]}

MFPS XVIII March 23-26, 2002 — 38 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Church/Curry Monotypes

e Simple types are monomorphic:

m € M m = int | m;>mo monotype

e A type environment associates a type to free program vari-
ables:

He H & X M type environment

MFPS XVIII March 23-26, 2002 — 39 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Church/Curry Monotypes (continued)

e A typing (H, m) specifies a possible result type m in a given
type environment H assigning types to free variables:

0 cI°% H x M typing

e An abstract property or program type is a set of typings;

def

T € T = p(I) program type

MFPS XVIII March 23-26, 2002 — 40 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Concretization Function

The meaning of types is a program property, as defined by the

concretization function ~¢: "

e Monotypes v € M — p(U):
v<(int) £ Z U {1}

def

vi(m>my) = {¥ € [Ur U]

Yu € v(my) : ©(u) € v(1m»)}
U{L}

14 For short up/down lifting/injection are omitted.

MFPS XVIII March 23-26, 2002 — 41 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

e type environment ¢ € H — p(R):
vi(H) = {RE€R | Vx € X: R(x) € 7{(H(x))}

e typing v; € [* — IP:
Y5((H,m)) = {6 € S | VR € 75(H) : ¢(R) € 7i(m)}

e program type v € T — P

(D) E () 7500)

oc'l
YD) =S

MFPS XVIII March 23-26, 2002 — 42 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Program Types

e Galois connection: ;

v
<IP)7 g) ®7 Sa U7 m> —— <TC7 27]Ica @7 ma U>

OKC

e Types T|e| of an expression e:

Tle] € a*(Cle]) = a*(1S[e] ;)

Typable Programs Cannot Go Wrong
Qe (Tle]) <= Tle]=0

MFPS XVIII March 23-26, 2002 — 43 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Church/Curry Monotype Abstract Semantics

T[x] £ {(H, H(x)) | H € H} (VAR)

T[Ax-e] & {(H, m;>my) | (ABS)
(Hxemy], mg) € Tle]}

Tlei(eo)] = {(H, my) | (H, my->my) € Teq] (APP)
A\ <H7 m1> S T[[62]]}

MFPS XVIII March 23-26, 2002 — 44 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

T[pt Ax-e] £ {(H, m) | (REC)
(Hlf<m|, m) € T|[Ax-e¢|}

T[1] £ {(H, int) | H € H} (CST)
Tle; — eo] £ {(H, int) | (DIF)
<H, int> - T[[el]] M T[[eg]]}

Tl(e1? ez e3)] = {(H,m) | (CND)
(H,int) € Tler] A (H,m) € Tlea] N Tes]}

http://www.math.tulane.edu/~mfps/mfps18.html

The Herbrand Abstraction to Get Hindley’s
Type Inference Algorithm

(p(ground(T)), C, 0, ground(T), U, N)

ground

where: leg

e T': set of terms with variables ’a, ...,
e Icg: least common generalization,

e ground: set of ground instances,

e <: instance preordering,

® gci: greatest common Instance.

MFPS XVIII March 23-26, 2002 — 46 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Application to Model Checking

P. Cousot & R. Cousot, Temporal Abstract Interpretation, ACM 27th POPL, 2000, pp. 12-25.

MFPS XVIII March 23-26, 2002 — 47 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Objective of Model Checking

1) Built a model M of the computer system;

2) Check (i.e. prove enumeratively) or semi-check (with semi-
algorithms) that the model satisfies a specification given (as
a set of traces) by a (linear) temporal formula: M C ¢ or

M N # 0.

e [he model and specification should be proved to be correct
abstractions of the computer system (often taken for granted,
could be done by abstract interpretation);

MFPS XVIII March 23-26, 2002 — 48 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Model-checking is an abstraction

e Universal abstraction:

(p(ETUE¥), D)

u
oz% ”? <@<2>7 2>
o, (®) % {s | {o € M| o= s} C P}

e Existential abstraction:

o,

5 (p(%),C)

a3 (@) E{s|{oc € M|og=s}Nd 0}
These abstractions lead to the classical (finite-state or nonter-
minating) model-checking algorithms.

(p(ETUD¥),C)

MFPS XVIII March 23-26, 2002 — 49 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Implicit Abstraction in Model Checking

Spurious traces: ===’
The semantics of the p-calculus is closed under this abstrac-

tion.

MFPS XVIII March 23-26, 2002

(N
. ' ' ------ ' ' '
[o e—— i — eo— o
. ' ' ------ ' ' '
[L o—— — —— @ — i
[L 4 @ —— - — & @ i
[\ 4 @ —— — & @ i
&) — 0 —
(N
\ ' ' ------ ' ' ’
.\\’ - "’.\ PY /'\\
e P '_\' ® 2 PY \\
.\ . \ 4 ' !"———.—;.— -....\.o
N NS .
\ vttt ~ ’NN %,
[N L = SO=": "9 ° - .:,'.'""“
[\’ o— R U
&) — /y _—
) = o) y ues

C Y (Y ()
° ° °
° ° °
° ° °
° ° °
° ° °
° ° °

— S

Y (Y ()
° ° °
° ° °
° ° °
° ° °
° ° °
° ° °

— S

N (Y ()

° ° °

° °

b b e | ...
° ° B

° °

° °

— U
N (Y ()

° ° °

° °

b b e | ...
° ° B

° °

° °

— U

© P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Soundness

For a given class of properties, soundness means that:

Any property (in the given class) of the abstract
world must hold in the concrete world:

MFPS XVIII March 23-26, 2002 — 51 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Example for Unsoundness

S

. I
S S

o—0

S S S

@ @ o

s S S s s

e - - o)

S S S S S S

{ @ (o mrrzas » @— i Y

All abstract traces are infinite but not the concrete ones!

MFPS XVIII March 23-26, 2002 — 52 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Completeness

For a given class of properties, completeness means that:

Any property (in the given class) of the concrete
world must hold in the abstract world:

MFPS XVIII March 23-26, 2002 — 53 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Example for Incompleteness

S

. I
S S

o—0

S S S

@ @ o

s S S s s

e - - o)

S S S S S S

{ @ (o mrrzas » @— i Y

All concrete traces are finite but not the abstract ones!

MFPS XVIII March 23-26, 2002 — 54 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

On the Soundness/Completeness of
Model-Checking

e Model checking is sound and complete (for the model);

e [his is due to restrictions on the models and specifications
(e.g. closure under the implicit abstraction);

e There are models/specifications (such as the ;#-calculus us-
ing bidirectional traces) for which:
- The implicit abstraction is incomplete (POPL'00),
- Any abstraction is incomplete (Ranzato, ESOP'01).
iIn both cases, even for finite transition systems.

MFPS XVIII March 23-26, 2002 — 55 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Bidirectional Traces

e (i,0) bidirectional trace
o€ Li— X trace
1 € L present time

MFPS XVIII March 23-26, 2002 — 56 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

The reversible ﬁ-calculus

p=0g" [os]
T [t
S [De1]
1" [o17]
o1V o1V 9]
ald [1]
15 5 e o(x).

16 4 ¢ (X x X).
17 @® Is next time.

MFPS XVIII March 23-26, 2002

def

p:
p:

{(t,0) | 0; € S}

{(i,0) | {04, 0441) €t}

{{i,0) | (i+1,0) € [pi]p
{{,0) | (=i, Aj.o_j) € [e1]p}

[e1]p U [pallp
—[1lp

— b7 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

The reversible /#-calculus (cont’d)

def

X [X]p = p(X)

pX-o Xl € Az [p1]pXa
vX-p [wX-plp Eep Az [pi]pXa
Vo [Ver:walp < {(i,0) € [pi]p|

{(i,0") € [e1lp | 0] = 0i} C [w2]p}

18 variable.

19 The traces of 1 such that all traces of ¢; with same present state satisfy ©s.

MFPS XVIII March 23-26, 2002 — 58 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Application to

Program Transformation

P. Cousot & R. Cousot, Systematic Design of Program Transformation Frameworks by Abstract Inter-
pretation, ACM 29th POPL, 2002, pp. 178—190.

MFPS XVIII

March 23-26, 2002

© P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Online Program Transformation

Transformed
Subject program
Tt
program P < > t[P]
A Syntactic 3
transformation t

S|ip S||p

Subject pro- » Transformed pro-

gram seman-) N gram semantics

tics S[[P] Semantic t[S{P]] C S[¢[P]]
transformation t
Py 5 Observational
2 © > 0 abstraction

ao(S[P]) = “aolt[S[P]])" = an(S[t[P]])

MFPS XVIII March 23-26, 2002 — 60 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Principle of Offline Program Transformation

Syntactic trans-

Static program |
‘ analysis S : ~ formation ¢ ‘
Sjﬂo Program /| - S| |p
.. Program
| emantic trans-

tic

fof¥ansformation

Observational
abstraction

abstraction «

r;oaly5|s 1.

@
(@

ao(S[P]) = ao(t[S[P](S[P])) = ao(S[t[P]])

— 61 — © P. Cousot

MFPS XVIII March 23-26, 2002

http://www.math.tulane.edu/~mfps/mfps18.html

Principle of Offline Program Transformation

Subject
program Static program — Syntactic trans— Transformed program
P —— (P, S[P[) t[P] 2 plt[S[P], «(S[P])]]
‘ analysis S 2 g formation t 1
S T]p p||S j S||p
Subject S : S Transformed
program emantic emantic trans- _
semantics | " _ > (S|P]] Oz(S[[I . > program semantics
S[[P abstraction « ormation t t HP ,Oz(S[[P]])] C S[[t[[P]]]]
bl Qo| |Yo O Observational
2 N S0 abstraction

ao(S[P]) = ao(t[S[P]].a(S[P])) = ao(S[t[P]])

MFPS XVIII March 23-26, 2002 — 62 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Examples of Program Transformations

e Constant propagation;
e Online and offline partial evaluation;
e Slicing;
e Static program monitoring,
ao(S[t[P, M) = ao(S[P]) M ao(S[M]):

- run-time checks elimination,

- security policy enforcement,

~ proof by transformation (o (S[P]) = ao(S[t[P, M]])).

e Code and analysis translation.

MFPS XVIII March 23-26, 2002 — 63 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Application to
Static Program Analysis

P. Cousot. Meéthodes itératives de construction et d’approximation de points fixes d’opérateurs mo-
notones sur un treillis, analyse sémantique de programmes. These d'Etat &s sciences mathématiques.
Grenoble, 21 Mar. 1978.

P. Cousot. Semantic Foundations of Program Analysis. Ch. 10 of Program Flow Analysis: Theory and
Applications, S.S. Muchnick & N.D. Jones, pp. 303-342. Prentice-Hall, 1981.

MFPS XVIII March 23-26, 2002 — 64 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

What is static program analysis?

e Automatic static/compile time determination of dynamic/run-
time properties of programs;

e Basic idea: use effective computable approximations of the
program semantics;
Advantage: fully automatic, no need for error-prone
user designed model or costly user interaction;

Drawback: can only handle properties captured by
the approximation.

MFPS XVIII March 23-26, 2002 — 65 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Collecting Semantics Abstractions

—; (p(%), C)

(87

(p(XTUxY),C) ¢

Example 1: reachable states®

ar(X)E {o;|ce X Aoy INiecDom(o)}

Example 2: ancestor states *
ap(X)E{o;|ce X AIneDom(o):0<i<nAoy, € F}

20 Abusively called “software model-checking”!
21 Now “property based slicing” !

MFPS XVIII March 23-26, 2002 — 66 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Partitioning

o If > = (' x M (control and store state) and C' is finite **, we
can partition:

fyc
AN
77

0%

(p(C x M), C) « (C— p(M),C)

ac(S) = Ace C-{m| (c,m) € S}

e It remains to find abstractions of the store M =V +— D
(variables to data) e.g. of [in]finite set of points of the eu-
clidian space.

22 se e.g. dynamic partitioning if C' is infinite

MFPS XVIII March 23-26, 2002 — 67 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Approximations of an [in]finite set of points;

'\
o+
o+
+ + +
+ + +
------------ - 4+ +
+
+ + +

£,09, 7T, .
: (20, 02), ...}

Y]

MFPS XVIII March 23-26, 2002 — 68 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Approximations of an [in]finite set of points:
From Above

A

£..,009, 770, ...

(20, 02), (2, 7),...}

X

From Below: dual® + combinations.

23 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).

MFPS XVIII March 23-26, 2002 — 69 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an
[in]finite set of points; Signs”

24 p. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL'79, pp. 269-282, 1979.

MFPS XVIII March 23-26, 2002 — 70 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an
[in]finite set of points; Intervals®

r € (19, 77|
{y e 20, 02]

25 P, Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2" Int. Symp. on
Programming, Dunod, 1976.

MFPS XVIII March 23-26, 2002 — 71 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an
[in]finite set of points; Octagons ™

(1§:1:§9
x4y <77
Y 1<y<o
\x—y§99

26 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO '2001. LNCS 2053, pp.
155-172. Springer 2001.

MFPS XVIII March 23-26, 2002 — 72 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an
[in]finite set of points; Polyhedra®

192 + 77y < 2002
20x 4+ 02y = 0

27 P, Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM POPL,
1978, pp. 84-97.

MFPS XVIII March 23-26, 2002 — 713 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an

[in]finite set of points; Simple

congruences *

r =19 mod 77
20 mod 99

¥

0000000000000000>0

00000000OC0DOCGOGOGIOGIOSNOIO
000000000 OCGOCGCOCGOGIONOS
000000O0C0COCGONOGOOOOGIONONDS
00000O0GDOGCOOOOONONOOS
00000O0OOGCOOGOOOOONOO
000000000 OCGOCGCOCGOGIONOS
00000 OGOGOCOOOOOOOOO
00000O0COGOGOOSGIOOOSONOSIONONO
0000000O0GOCFOGOGOOGIOGIOGNOS
00000006000 OCOCGOGOGFOGNOTS
00000 OGO PO 0000000
OQ.QQOQ{QQOQQQQO
OQQQQOQ{Q.OQQQQO
QQQQQQQOQQQQQQ"AH

00000000000 OCGOCGCS

A 1
000000000 OCGOCGCOCGOGIONOS
0000000O0OGCOGOGOOONONOO

28 ph, Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165-190.

© P. Cousor

— 74 —

MFPS XVIII March 23-26, 2002

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an

[in]finite set of points; Linear
congruences ”

..A..............Q.
:o:o:ozo:o:o:o:o:o 133—|—9y:7m0d8
.'I;:.'.f'.’.'.'.'.' 20 — 1y = 9 mod 9

29 ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program. TAPSOFT '91, pp.
169-192. LNCS 493, Springer, 1991.

MFPS XVIII March 23-26, 2002 — 75 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Effective computable approximations of an

[in]finite set of points; Trapezoidal lin-

ear congruences”
4 A A

y 4 v 4 A
> il Ay -
- ey
> > ud - { lx 4+ 9y € [0, 77] mod 10
A : A 2z — 1y € [0,99] mod 11
A A

30 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM 1CS 92,

MFPS XVIII March 23-26, 2002 — 76 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Example of Effective Abstractions
of Infinite Sets of Infinite Trees™
Binary Decision Graphs:

YN el N
Ol><l0 tru{ C \:: 0 D tru\e/

true false true
{0¥,1¥} infinite number of 0’s fair vectors ends by 0%

Tree Schemata: /l\ 2N

~O~£e~0 y y
R ~ o T 1 \1‘ ‘04 !
b/ Q f :tru{ :-) Cg{u‘) / £ lse/(_t£

{f(ae,b"e,c"e)|ln € N}
{a"bln € N} Note that E is the equality relation.

QL

31 Mauborgne. Improving the Representation of Infinite Trees to Deal with Sets of Trees. ESOP'00. LNCS 1782,
pp. 275-289, Springer, 2000.

MFPS XVIII March 23-26, 2002 — 77 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

MFPS XVIII March 23-26, 2002

Conclusion

© P. Cousot

http://www.math.tulane.edu/~mfps/mfps18.html

Conclusion on Formal Methods

e Formal methods concentrate on the deductive/exhaustive
verification of (abstract) models of the execution of pro-
grams;

e Most often this abstraction into a model is manual and left
completely informal, it not tortured to meet the tool limita-
tions;

e Semantics concentrates on the rigorous formalization of the
execution of programs;

e 5o models should abstract the program semantics. This is
the whole purpose of Abstract Interpretation!

MFPS XVIII March 23-26, 2002 — 79 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

Conclusion on Abstract Interpretation

e Abstract interpretation provides mathematical foundations of
most semantic-based program verification and manipulation
techniques;

e In abstract interpretation, the abstraction of the program
semantics into an approximate semantics is automated so
that one can go much beyond examples modelled by hand;

e The abstraction can be tailored to classes of programs (e.g.
critical synchronous real-time embedded systems) so as to
design very efficient analyzers with almost zero-false alarm *.

32 p_ Cousot. Partial completeness of abstract fixpoint checking. SARA'2000. LNAI 1864, pp. 1-25. Springer.

MFPS XVIII March 23-26, 2002 — 80 — © P. Cousor

http://www.math.tulane.edu/~mfps/mfps18.html

THE END

More references at URL www.di.ens.fr/~cousot.

MFPS XVIII March 23-26, 2002 — 81 — © P. Cousor

http://www.di.ens.fr/~cousot/COUSOTpapers.html
http://www.math.tulane.edu/~mfps/mfps18.html

	Abstract
	Content
	MOTIVATIONS
	Abstract interpretation
	Coping with undecidable questions on the program semantics
	The theory of abstract interpretation
	INFORMAL INTRODUCTION TO ABSTRACT INTERPRETATION
	Informal introduction to abstract interpretation. 1 -- Property abstraction
	2 -- Correspondence between concrete and abstract properties
	3 -- Semantics abstraction
	4 --- Effective analysis/checking/verification algorithms
	ELEMENTS OF ABSTRACT INTERPRETATION
	Galois connections
	Composing Galois connection
	Function abstraction
	Kleenian fixpoint approximation
	Kleenian fixpoint abstraction
	Systematic design of an abstract semantics
	Tarskian fixpoint abstraction
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Application to Syntax
	The semantics of syntax
	The fixpoint semantics of syntax
	Syntactic abstractions
	Application to Semantics
	Trace semantics
	Semantics abstractions --- 1) relational abstractions
	1 --- Relational semantics abstractions (cont'd)
	2 --- Functional/denotational semantics abstractions
	3 --- Predicate transformer semantics abstractions
	4 --- Predicate transformer semantics abstractions (cont'd)
	5 --- Hoare logic semantics abstractions
	Lattice of semantics
	Application to Typing
	Syntax of the eager lambda calculus
	Semantic domains
	Denotational semantics with run-time type checking
	Standard denotational and collecting semantics
	Church/Curry monotypes
	Church/Curry monotypes (continued)
	Concretization function
	Program types
	Church/Curry monotype abstract semantics
	The Herbrand abstraction to get Hindley's type inference algorithm
	Application to Model Checking
	Objective of model checking
	Model-checking is an abstraction
	Implicit abstraction in model checking
	Soundness
	Example for unsoundness
	Completeness
	Example for incompleteness
	On the soundness/completeness of model-checking
	Bidirectional traces
	The reversible mu-calculus
	The reversible mu-calculus (cont'd)
	Application to Program Transformation
	Online program transformation (Done)
	Principle of offline program transformation (1)
	Principle of offline program transformation (2)
	Examples of program transformations
	Application to Static Program Analysis
	What is static program analysis?
	Collecting semantics abstractions
	Partitioning
	Approximations of an [in]finite set of points
	Approximations of an [in]finite set of points
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	Example of effective abstractions of infinite sets of infinite trees
	CONCLUSION
	Conclusion on formal methods
	Conclusion on abstract interpretation

