
Automatic Verification of Embedded
Control Software with ASTRÉE and beyond

Patrick Cousot
Jerome C. Hunsaker Visiting Professor

Department of Aeronautics and Astronautics, MIT
cousot mit edu www.mit.edu/~cousot

École normale supérieure, Paris
cousot ens fr www.di.ens.fr/~cousot

Workshop on Critical Research Areas in Aerospace Software
Aero. Astro. Dept., MIT, August 9th, 2005

State of Practice

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 2 — ľ P. Cousot

An example among many others (Matlab code)
» h=get(gca,’children’);

apple.awt.EventQueueExceptionHandler Caught Throwable : java.lang.ArrayIndexOutOfBoundsException: 2 >= 2
java.lang.ArrayIndexOutOfBoundsException: 2 >= 2
at java.util.Vector.elementAt(Vector.java:431)
at com.mathworks.mde.help.IndexItem.getFilename(IndexItem.java:100)
at com.mathworks.mde.help.Index.getFilenameForLocation(Index.java:706)
at com.mathworks.mde.help.Index.access$3100(Index.java:29)
at com.mathworks.mde.help.Index$IndexMouseMotionAdapter.mouseMoved(Index.java:768)
at java.awt.AWTEventMulticaster.mouseMoved(AWTEventMulticaster.java:272)
at java.awt.AWTEventMulticaster.mouseMoved(AWTEventMulticaster.java:271)
at java.awt.Component.processMouseMotionEvent(Component.java:5211)
at javax.swing.JComponent.processMouseMotionEvent(JComponent.java:2779)
at com.mathworks.mwswing.MJTable.processMouseMotionEvent(MJTable.java:725)
at java.awt.Component.processEvent(Component.java:4967)
at java.awt.Container.processEvent(Container.java:1613)
at java.awt.Component.dispatchEventImpl(Component.java:3681)
at java.awt.Container.dispatchEventImpl(Container.java:1671)
at java.awt.Component.dispatchEvent(Component.java:3543)
at java.awt.LightweightDispatcher.retargetMouseEvent(Container.java:3527)
at java.awt.LightweightDispatcher.processMouseEvent(Container.java:3255)
at java.awt.LightweightDispatcher.dispatchEvent(Container.java:3172)
at java.awt.Container.dispatchEventImpl(Container.java:1657)
at java.awt.Window.dispatchEventImpl(Window.java:1606)
at java.awt.Component.dispatchEvent(Component.java:3543)
at java.awt.EventQueue.dispatchEvent(EventQueue.java:456)
at java.awt.EventDispatchThread.pumpOneEventForHierarchy(EventDispatchThread.java:234)
at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:184)
at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:178)
at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:170)
at java.awt.EventDispatchThread.run(EventDispatchThread.java:100)
»

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 3 — ľ P. Cousot

The software challenge for next 10 years

--- Present-day software engineering is almost exclusively
manual, with very few automated tools;

--- Trust and confidence in specifications and software can
no longer be entirely based on the development process
(e.g. DO178B);

--- In complement, quality assurance must be ensured by
new design, modeling, checking, verification and certi-
fication tools based on the product itself.

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 4 — ľ P. Cousot

State of the Art in Automatic
Static Program Analysis

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 5 — ľ P. Cousot

Static analysis tools

--- Determine automatically from the program text pro-
gram properties of a certain class that do hold at run-
time (e.g. absence of runtime error);

--- Based on the automatic computation of machine repre-
sentable abstractions 1 of all possible executions of the
program in any possible environment;

--- Scales up to hundreds of thousands lines;
--- Undecidable whence false alarms are possible 2

1 sound but (in general) uncomplete approximations.
2 cases when a question on the program runtime behavior cannot be answered automatically for sure

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 6 — ľ P. Cousot

Degree of specialization
--- Specialization for a class of runtime properties (e.g. ab-
sence of runtime errors)

--- Specialization for a programming language (e.g. PolySpace
Suite for Ada, C or C++)

--- Specialization for a programming style (e.g. C Global
Surveyor)

--- Specialization for an application type (e.g. ASTRÉE for
embedded real-time synchronous 3 autocodes)
) The more specialized, the less false alarms 4!
3 deterministic
4 but the less specialized, the larger commercial market (and the less client satisfaction)!

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 7 — ľ P. Cousot

The ASTRÉE static analyzer
--- ASTRÉE is a static program analyzer aiming at proving
the absence of Run Time Errors (started Nov. 2001)

--- C programs, no dynamic memory allocation and recur-
sion

--- Encompass many (automatically generated) synchro-
nous, time-triggered, real-time, safety critical, embed-
ded software

--- automotive, energy and aerospace applications
) e.g. No false alarm on the electric flight control codes
for the A340 (Nov. 2003) and A380 (Nov. 2004) gener-
ated from SAO/SCADE.

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 8 — ľ P. Cousot

Ellipsoid Abstract Domain for Filters2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

--- Computes Xn =


¸Xn`1 + ˛Xn`2 + Yn

In

--- The concrete computation is bounded, which
must be proved in the abstract.

--- There is no stable interval or octagon.
--- The simplest stable surface is an ellipsoid.

X U F(X)

X

F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 9 — ľ P. Cousot

Filter Exampletypedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

Reference
see http://www.astree.ens.fr/

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 10 — ľ P. Cousot

Arithmetic-geometric progressions
--- Abstract domain: (R+)5 5

--- Concretization (any function bounded by the arithmetic-
geometric progression):
‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M; a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“

–x . ax + b ‹ (–x . a0x + b0)k
”

(M)g

Reference
see http://www.astree.ens.fr/

5 here in R

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 11 — ľ P. Cousot

Arithmetic-Geometric Progressions (Example 1)
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {

__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 12 — ľ P. Cousot

Arithmetic-geometric progressions (Example 2)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 4.491048e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1
+ 1.19209290217e-07)ˆclock
- 5.87747175411e-39 /
1.19209290217e-07 <=
23.0393526881

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 13 — ľ P. Cousot

Towards System Verification Tools

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 14 — ľ P. Cousot

Computer controlled systems

Approximations: program ! precise, system! precise
Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 15 — ľ P. Cousot

Software test

Abstractions: program ! none, system ! precise
Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 16 — ľ P. Cousot

--- Very expensive
--- Not exhaustive
--- Extended during flight test period
--- Late discovery of errors can delay the program by months
(the whole software development process must be rechecked)

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 17 — ľ P. Cousot

Software analysis & verification with ASTRÉE

!"#$%&'()*&+)"'
,+)$+-.

/0*1)+1 2(&3-&)+1

4

Abstractions: program ! precise, system ! coarse
Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 18 — ľ P. Cousot

--- Exhaustive
--- Can be made precise by specialization 6 to get no false
alarm

--- No specification of the controlled system (but for ranges
of values of a few sensors)

--- Impossible to prove essential properties of the controlled
system (e.g. controlability, stability)

6 To specific families of properties and programs

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 19 — ľ P. Cousot

System analysis & verification by control engineers

Abstractions: program ! imprecise, system ! precise
Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 20 — ľ P. Cousot

--- The controler model is a rough abstraction of the con-
trol program:

-- Continuous, not discrete
-- Limited to control laws
-- Does not take into account fault-tolerance to fail-
ures and computer-related system dependability.

--- In theory, SDP-based search of system invariants (Lyapunov-
like functions) can be used to prove reachability and
inevitability properties

--- Problems to scale up (e.g. over long periods of time)
--- In practice, the system/controler model is explored by
discrete simulations (testing)

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 21 — ľ P. Cousot

Exploring new avenues
in static analysis

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 22 — ľ P. Cousot

System analysis & verification, Avenue 1

Abstractions: program ! precise, system ! precise

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 23 — ľ P. Cousot

--- Exhaustive (contrary to current simulations)
--- Traditional abstractions (e.g. polyhedral abstraction
with widening) seem to be too imprecise

--- Currently exploring new abstractions (issued from con-
trol theory like ellipsoidal calculus using SDP)

--- Prototype implementation in construction!

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 24 — ľ P. Cousot

System analysis & verification, Avenue 2

Abstractions: program ! precise, system ! precise

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 25 — ľ P. Cousot

--- Example of invariant translation: ellipsoidal !̀ polyhedral 7
--- The static analysis is easier on the system/controller
model using continuous optimization methods

--- The translated invariants can be checked for the sys-
tem simulator/control program (easier than invariant
discovery)

--- Should scale up since these complex invariants are rel-
evant to a small part of the control program only

7 For which floating point computations can be taken into account

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 26 — ľ P. Cousot

System analysis & verification, Avenue 3

Abstractions: program ! precise, system ! precise

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 27 — ľ P. Cousot

--- The invariant hypotheses on the controlled system are
assumed to be true

--- It remains to perform the control program analysis un-
der these hypothesis

--- The results can then be checked on the whole system
(as in case 2, but now using refined invariants on the
control program!)

--- Iterating this process leads to static analysis by refine-
ment of specifications

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 28 — ľ P. Cousot

Conclusion

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 29 — ľ P. Cousot

Scientific and technologic objective

To develop formal tools to answer questions about soft-
ware:
--- from control model design to software implementation,
--- for a wide range of design and software properties,
which would be general enough to benefit all software-
intensive industries, and can be adapted to specific ap-
plication domains.

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 30 — ľ P. Cousot

Research on software safety and security

--- Investing
1

10000
or even less of the software costs in re-

search is far from sufficient
--- A sustained effort of 1 to 3% would be more realistic
and could significantly contribute to progress in the 10
forthcoming years.

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 30 — ľ P. Cousot

