
Compositional Separate Modular
Static Analysis of Programs

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr

http://www.di.ens.fr/˜cousot

Radhia COUSOT
École Polytechnique

91128 Palaiseau cedex, France

mailto:Radhia.Cousot@polytechnique.fr

http://lix.polytechnique.fr/˜rcousot

SSGRR’2001, L’Aquila, Italy August 6–12, 2001

1

Introductive Motivations

1

Program Static Analysis

• Static program analysis is the automatic compile-time deter­
mination of run-time properties of programs;

• Used in many applications from optimizing compilers, to ab­
stract debuggers and semantics based program manipulation
tools (such as partial evaluators, error detection and program
understanding tools).

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 2 © P. Cousot & R. Cousot



Abstract Interpretation

• Supporting theory;
• General idea: a program static analyzer computes an effective

approximation of the program semantics (semantics = formal
specification of all possible run-time behaviors).

3

Principle of Program Static Analysis

In order to determine runtime properties of a program P , a
static analyzer:
• inputs the program P ;
• builts a system of equations/constraints X ! F !P "X;
• solves it A ! lfp F ;
• outputs the solution A (in some user understandable form).

Example: Interval Analysis 1

program equations solution
x := 1;

1:
while x < 10000 do

2:
x := x + 1

3:
od;

4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]

A1 = [1, 1]
A2 = [1, 9999]
A3 = [2, 10000]
A4 = [10000, 10000]

5

Global analysis

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 6 © P. Cousot & R. Cousot



Principle of Global Analysis

• A global system of equations/constraints is established for
the whole program;

• This system of equations is solved iteratively at once (using
various chaotic iteration strategies).

7

Advantages/Drawbacks of Global Analysis

• Simple and can be made very precise;
but • The program hence the system of equations can be very

large;
• The convergence of the iterates may be slow;
• The whole program must be reanalyzed even if a small

part only is changed;
so • Either less precise global analyzes;

• Or better, separate modular local analyses;

The Problem

9

The Problem Considered in the Paper

Design methods for compositional separate modular
static analysis of programs.

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 10 © P. Cousot & R. Cousot



Separate Local Analysis

11

Principle of (Ideal) Separate Analysis

• The program P [P1, . . . , Pn] is decomposed into parts P1 , …,
Pn (such as functions, procedures, modules, classes, compo­
nents, libraries, etc.);

• The parts are analyzed separately: Ai ! lfp
'i F !Pi" , i =

1, . . . , n
• The whole program is analyzed by composing the analyzes of

the parts: A ! lfp
'

F !P "[A1, . . . , An].

Advantages of Separate Analysis

• Memory saving: the whole-system of equations/constraints
does not need to fully reside in memory at the same time;

• Time saving:The separate analyses of the parts can be
done in parallel;

but • In general the analyzes of the parts are interdependent:
Ai ! lfp

'i λXi. F !Pi"〈Y, X1, . . . , Xi, . . . , Xn〉
Y : dependence on the global program elements;
Xk, k = 1, . . . , i − 1, i + 1, . . . , n: dependence of part
Pi on the other program parts.

13

Proposed Separate Analysis Methods

A global whole-program analysis can be decomposed into sep­
arate analyses, by one of the following methods:

• Simplification-based separate analyses;

• Worst-case separate analyses;

• Separate analyses with (user-provided) interfaces;

• Symbolic relational separate analyses;

• Composition of the above separate local analyses and global
analysis methods.

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 14 © P. Cousot & R. Cousot



Simplification-Based
Separate Analysis

15

Principle of
Simplification-Based Separate Analysis

• When handling a program part Pi , just simplify the
equations/constraints into X !i Fs!Pi"(X);

• Wait for the whole-program before computing the
solution for parts together with the global solution:
A ! lfp

'
Fs!P "[lfp

'1 Fs!P1", . . . , lfp
'n

Fs!Pn"];

variant: • Use a preliminary simpler whole-program analysis to
help the simplification process.

Advantages/Drawbacks of
Simplification-Based Separate Analysis

• The simplification is cheap and improves the later itera­
tive fixpoint computation cost;

but: • Negligible benefit when compared to the cost of the it­
erative fixpoint computations;

• Does not scale up for very large programs;

17

Worst-Case Separate Analysis

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 18 © P. Cousot & R. Cousot



Principle of Worst-Case Separate Analysis

• Assume absolutely no information is known on the global
program elements and on the other program parts:

Ai ! lfp
'i λXi. F !Pi"〈*, *, . . . , Xi, . . . , *〉

(* denotes the absence of information).

19

Advantages/Drawbacks of Worst-Case
Separate Analysis

• Very efficient (the analyzes of the parts can be done in
parallel before the global analysis of the main program);

but • Quite imprecise.

Separate Analysis with
(User-Provided) Interfaces

21

Principle of Separate Analysis with
(User-Provided) Interfaces

• Ask the user which assumptions can be made on other
parts P1, . . . , Pi−1, Pi+1, . . . , Pn when analyzing part
Pi;

• Check that the analysis of part Pi guarantees that the
assumptions made by the other parts on Pi are satisfied;

• Otherwise ask the user to provide more precise informa­
tion on the interfaces between the program parts;

variant: • Generate (part of) the interfaces automatically (e.g. types).

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 22 © P. Cousot & R. Cousot



Advantages/Drawbacks of Separate
Analysis with (User-Provided) Interfaces

• Can always be made as precise as a global analysis;
• Much more efficient;

but: • A large burden on the user.

23

Symbolic relational
separate analysis

Principle of
Symbolic Relational Separate Analysis

• Name the external objects and operations used by a program
part;

• Relate them to internal objects by analysis of the internal
operation done on external objects;

• Delay the analysis of the external effects as much as possible.

25

Example of Symbolic Relational Analysis , Con’d
procedure Hanoi (n : integer; var a, b, c : integer; var Ta, Tb, Tc : Tower);
begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }
if n = 1 then begin

b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0;a := a − 1;
{ n = n0 = 1 ∧ a = a0 − 1 ∧ b = b0 + 1 ∧ c = c0 }

end else begin
Hanoi(n − 1, a, c, b, Ta, Tc, Tb);
{ n = n0 > 1 ∧ a = a0 − n + 1 ∧ b = b0 ∧ c = c0 + n − 1 }
b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0;a := a − 1;
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + 1 ∧ c = c0 + n − 1 }
Hanoi(n − 1, c, b, a, Tc, Tb, Ta);
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + n ∧ c = c0 }

end;
{ n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0 }

end;

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 26 © P. Cousot & R. Cousot



Example of Symbolic Relational Analysis , Con’d
a := n; b := 0; c := 0;
{ n = a ∧ b = 0 ∧ c = 0 }

Hanoi(n, a, b, c, Ta, Tb, Tc);
{ ∃n0, a0, b0, c0 : n0 = a0 ∧ b0 = 0 ∧ c0 = 0 ∧
n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0 }

This last post-condition can be simplified by projection as:
{ a = 0 ∧ n = b ≥ 1 ∧ c = 0 }

27

Advantages/Drawbacks of Symbolic
Relational Analysis

• Fully automatic (no human interaction);
• Very powerful;

but: • Relational analyzes can be very expensive;
• If nothing is known about the other program parts every­

thing may end up being delayed until the global analysis
(e.g. virtual methods in object-oriented languages).

Composition of Separate
Local and Global Analyses

29

Principle of Separate Local and Global
Analysis Composition

In practice, a good combination of the previous methods is
necessary. For example:
• Create parts through cutpoints;
• Preliminary global analysis and simplification;
• Refine the abstract domain into a symbolic relational domain;
• Iterated separate program static analysis starting from worst-

case;

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 30 © P. Cousot & R. Cousot



Example: Iterated Separate
Program Static Analysis

• Start with a worst case assumption Y 0 = * , X0
1 = * , …,

X0
n = * (or user-provided assumptions);

• Iterate a separate analysis with interfaces:

Xk+1
i = lfp

'i λXi. F !Pi"〈Y k, Xk
1 , . . . , Xi, . . . , Xk

n〉
i = 1, . . . , n

Y k+1 = lfp
'

λY . F !P [P1, . . . , Pn]"〈Y, Xk
1 , . . . , Xk

n〉

31

Advantages/Drawbacks of Iterated Separate
Program Static Analysis

• The iteration can be expansive;
but: • The iteration can be stopped at any step (e.g. when

getting out of time);

Conclusion

• Many variants are presented in the paper (together with ref­
erences);

• Presently one can globally analyze a few 100 000 lines of code
in few minutes to hours;

• Already effective methods so it’s time to think to Internet
applications;

• More work and experimentation on separate analysis is needed
to deal with a few 1 000 000 lines;

33

THE END, THANK YOU.

© P. Cousot & R. Cousot August 6–12, 2001SSGRR’2001, L’Aquila, Italy 34 © P. Cousot & R. Cousot


