Parallel Combination of Abstract Interpretation and Model-Based Automatic Analysis of Software

Patrick COUSOT
École Normale Supérieure
DMI, 45, rue d’Ulm
75230 Paris cedex 05
France
cousot@dimi.ens.fr
http://www.ens.fr/~cousot

Radhia COUSOT
CNRS & École Polytechnique
LIX
91440 Palaiseau cedex
France
rcousot@lix.polytechnique.fr
http://lix.polytechnique.fr/~radhia

AAS’97, Paris, January 14, 1997

Combining Model-Checking and Abstract Interpretation

How?

1. Abstract symbolic methods:
 - Use symbolic representations of properties (BDDs, convex polyhedra, ...)
 - One can make approximations (e.g. widenings)
 ⇒ Approximate properties of an exact model

2. Model abstraction:
 - The finite model is an abstraction of the system
 ⇒ Exact properties of an approximate model

3. In this paper...

Combining Model-Checking and Abstract Interpretation

Why?

- Model-checking:
 - Finite state space
 - Sound and complete property verification
- Abstract Interpretation:
 - Infinite state space
 - Sound but uncomplete property determination

Parallel combination of model-checking and abstract interpretation:

 - Model-checking:
 * Exact symbolic representation of properties
 * The model is an exact representation of the system
 ⇒ Exact properties of exact model
 - Abstract interpretation:
 * Preliminary/parallel analysis of the model by abstract interpretation
 ⇒ Limit the state search space
 ⇒ Exact properties of an exact sub-model
Example: Maximum Delay Problem

Find the maximum delay to reach a final state starting from some initial state:

![Diagram of a state transition graph]

Maximum Delay Algorithm “maximum1”

```plaintext
procedure maximum1 (I, F);
    R' := S;
    n := 0;
    R := (S - F);
    while (R ≠ R' ∧ R ∩ I ≠ ∅) do
        R' := R;
        n := n + 1;
        R := pre[t] R' ∩ (S - F);
    od;
    return if (R' = R) then ∞ else n;
```

Execution trace of the “maximum1” algorithm

It is useless to explore the states which are not:
- descendants of the initial states;
- ascendants of the initial states.

Maximum Delay Algorithm “maximum2”

(with state search space restriction)

```plaintext
procedure maximum2 (I, F);
    R' := S;
    n := 0;
    R := (U₀ - F);
    while (R ≠ R' ∧ R ∩ I ≠ ∅) do
        R' := R;
        n := n + 1;
        R := pre[t] R' ∩ (Uₙ - F);
    od;
    return if (R' = R) then ∞ else n;
```

where: \(n ≥ 0 : Uₙ ⊇ U \triangleq \text{post}[t⁺] I \cap \text{pre}[t⁺] F \)
Execution trace of the “maximum2” algorithm

![Diagram showing execution trace]

- Any upper-approximations $U_0, U_1, \ldots, U_n, \ldots$ of U can be used;
- In the worst case $U_n = S$ (all states), hence “maximum2” = “maximum1”.

Analysis of the model by abstract interpretation

- We can compute:
 $$U_0 \supseteq U_1 \supseteq \ldots \supseteq U_n \supseteq U \equiv \text{post}[t^*] I \cap \text{pre}[t^*] F$$
 by abstract interpretation;
- The abstract interpretation can be done in parallel with the model-checking (at almost no supplementary cost);
- The abstract interpretation results are used on the fly for U_n as they become available to restrict the state search space;
- Several restriction operators have been proposed for symbolic model checking (with BDDs & convex polyhedra).

Upper approximation D of post$[t^*] I = \text{lfp} D \subseteq \lambda X. I \cup \text{post}[t] X$ by abstract interpretation.

1. Consider an abstract domain $\langle I, \sqsubseteq \rangle$ approximating sets of states $\langle \psi(S), \sqsubseteq \rangle$;
2. define a correspondence:
 $$\langle \psi(S), \sqsubseteq \rangle \xrightarrow{\gamma} \langle I, \sqsubseteq \rangle$$
 which is a Galois connection:
 $$\forall P \in \psi(S) : \forall Q \in I : \alpha(P) \subseteq Q \iff P \subseteq \gamma(Q) .$$
 The abstract value $\alpha(P)$ is the approximation of $P \subseteq S$: $P \subseteq \gamma(\alpha(P))$.

3. Define an abstract post-image transformer $F \in I \mapsto L$:
 $$\forall Q \in I : \alpha \circ (\lambda X. I \cup \text{post}[t] X) \circ \gamma(Q) \sqsubseteq F(Q)$$

4. Define a widening operator $\triangledown \in L \times L \mapsto L$:
 - it is an upper approximation5,
 - it enforces finite convergence of F-upward iterates6;

5. The upward forward iteration sequence with widening:
 $$\hat{F}^0 \equiv \alpha(\emptyset),$$
 $$\hat{F}^{i+1} \equiv \hat{F}^i \triangledown F(\hat{F}^i) \quad \text{if} \; F(\hat{F}^i) \subseteq \hat{F}^i$$
 $$\hat{F}^{i+1} \equiv \hat{F}^i \quad \text{otherwise}$$
 is ultimately stationary;
 its limit \hat{F} is a sound upper approximation of $\text{post}[t^*] I$ in that:
 $$\text{post}[t^*] I \subseteq \gamma(\text{lfp} \subseteq F) \subseteq \gamma(\hat{F}) .$$

4 Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints.

5 Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints.

6 Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints.

6. Define a *narrowing operator* \(\Delta \in L \times L \mapsto L \) such that:
 - it is an upper approximation \(^1\),
 - it enforces finite convergence of \(\mathcal{F} \)-downward iterates \(^2\).

7. The *downward forward iteration sequence with narrowing*:

 \[
 \begin{align*}
 \hat{x}^0 & \equiv \hat{x}, \\
 \hat{x}^{i+1} & \equiv \hat{x}^i & \text{if } \mathcal{F}(\hat{x}^i) = \hat{x}^i \\
 \hat{x}^{i+1} & \equiv \hat{x}^i \Delta \mathcal{F}(\hat{x}^i) & \text{otherwise}
 \end{align*}
 \]

 is ultimately stationary;

 its limit \(\hat{x} \) is a better sound upper approximation \(\text{post}[t^*] \) in that:

 \[
 \text{post}[t^*] I \subseteq \gamma(\text{lfp}^\infty \mathcal{F}) \subseteq \gamma(\hat{x}) \subseteq \gamma(\hat{x}).
 \]

Abstract interpretation design

- The design of:
 - the abstract algebra \(\langle L, \subseteq, \perp, T, \cup, \cap, \triangledown, \Delta, f_1, \ldots, f_n \rangle \)
 - the transformer \(\mathcal{F} \) (usually composed out of the primitives \(f_1, \ldots, f_n \))

are problem dependent;

- Natural choices in the model-checking context are:
 - BDDs (discrete systems),
 - Convex polyhedra (hybrid systems);

for which widening operators have been defined \(^3\) \(^4\).

6. Define a narrowing operator \(\Delta \in L \times L \mapsto L \) such that:
 - it is an upper approximation \(^1\),
 - it enforces finite convergence of \(\mathcal{F} \)-downward iterates \(^2\).

7. The *downward forward iteration sequence with narrowing*:

 \[
 \begin{align*}
 \hat{x}^0 & \equiv \hat{x}, \\
 \hat{x}^{i+1} & \equiv \hat{x}^i & \text{if } \mathcal{F}(\hat{x}^i) = \hat{x}^i \\
 \hat{x}^{i+1} & \equiv \hat{x}^i \Delta \mathcal{F}(\hat{x}^i) & \text{otherwise}
 \end{align*}
 \]

 is ultimately stationary;

 its limit \(\hat{x} \) is a better sound upper approximation \(\text{post}[t^*] \) in that:

 \[
 \text{post}[t^*] I \subseteq \gamma(\text{lfp}^\infty \mathcal{F}) \subseteq \gamma(\hat{x}) \subseteq \gamma(\hat{x}).
 \]

Abstract interpretation design

- The design of:
 - the abstract algebra \(\langle L, \subseteq, \perp, T, \cup, \cap, \triangledown, \Delta, f_1, \ldots, f_n \rangle \)
 - the transformer \(\mathcal{F} \) (usually composed out of the primitives \(f_1, \ldots, f_n \))

are problem dependent;

- Natural choices in the model-checking context are:
 - BDDs (discrete systems),
 - Convex polyhedra (hybrid systems);

for which widening operators have been defined \(^3\) \(^4\).

Upper approximation \(A \) of \(\text{pre}[t^*] F = \text{lfp}^\infty \lambda X \cdot F \cup \text{pre}[t] X \) by abstract interpretation \(^11\)

Use the same abstract algebra \(\langle L, \subseteq, \perp, T, \cup, \cap, \triangledown, \Delta, f_1, \ldots, f_n \rangle \):

8. Define an abstract pre-image transformer \(\mathcal{F} \in L \mapsto m \mapsto L \):

 \[
 \forall Q \in L : \alpha \circ (\lambda X \cdot F \cup \text{pre}[t] X) \circ \gamma(Q) \subseteq B(Q)
 \]

9. First use an *upward backward iteration sequence with widening* finitely converging to \(B \);

10. Improve by a *downward iteration sequence with narrowing* finitely converging to \(B \) such that:

 \[
 \text{pre}[t^*] F = \text{lfp}^\infty \lambda X \cdot F \cup \text{pre}[t] X \subseteq \gamma(\text{lfp}^\infty B) \subseteq \gamma(\hat{B}) \subseteq \gamma(B)
 \]

Sequence of upper approximations

\(U_0, U_1, \ldots, U_n, \ldots \) of \(U = \text{post}[t^*] I \cap \text{pre}[t^*] F \) by abstract interpretation \(^12,13\)

- \(U_0 = S \); all states;
- \(U_1 \) is the \(\gamma \)-concretization of the limit of the upward forward iteration sequence with widening for \(\mathcal{F} \);
- \(U_2 \) is the \(\gamma \)-concretization of the limit of the corresponding downward forward iteration sequence with narrowing for \(\mathcal{F} \) starting from \(U_0 \);
- \(\ldots \)

\(^1\) Via \(\delta \in L \times L \mapsto L \), \(\delta \subseteq L \times L \).

\(^2\) For all decrasing chains \(\hat{x}^0 \geq \hat{x}^1 \geq \cdots \) the decrasing chain defined by \(\gamma(\hat{x}^0) \geq \gamma(\hat{x}^1) \geq \cdots \) is not strictly decrasing.

\(^3\) Cousot, P. and Cousot, R., Abstract interpretation and application to logic programs. J. Log. Prog., 13, 2-3, 303-339. (The editor of JLP has mistakenly published the erroneous galley proof. For a correct version of this paper, see http://www-rocq.inria.fr/"cousot.

\(^6\) Cousot, F. and Cousot, R. Abstract interpretation and application to logic programs. J. Log. Prog., 13, 2-3, 303-339. (The editor of JLP has mistakenly published the erroneous galley proof. For a correct version of this paper, see http://www-rocq.inria.fr/"cousot.

Sequence of upper approximations

\(U_0, U_1, \ldots, U_n, \ldots \) of \(U = \text{post}[t^*] I \cap \text{pre}[t^*] F \) by abstract interpretation \(^12,13\)

- \(U_0 = S \); all states;
- \(U_1 \) is the \(\gamma \)-concretization of the limit of the upward forward iteration sequence with widening for \(\mathcal{F} \);
- \(U_2 \) is the \(\gamma \)-concretization of the limit of the corresponding downward forward iteration sequence with narrowing for \(\mathcal{F} \) starting from \(U_0 \);
- \(\ldots \)
U^{4n+3} is the γ-concretization of the limit of the upward backward iteration sequence with widening for $\lambda X \cdot (U^{4n+2} \sqcap B(X))$;

U^{4n+4} is the γ-concretization of the limit of the corresponding downward backward iteration sequence with narrowing for $\lambda X \cdot (U^{4n+2} \sqcap B(X))$ starting from U^{4n+3};

U^{4n+5} is the γ-concretization of the limit of the upward forward iteration sequence with widening for $\lambda X \cdot (U^{4n+4} \sqcap \mathcal{F}(X))$;

U^{4n+6} is the γ-concretization of the limit of the corresponding downward forward iteration sequence with narrowing for $\lambda X \cdot (U^{4n+4} \sqcap \mathcal{F}(X))$ starting from U^{4n+5};

The sequence $U_0, U_1, U_2, \ldots, U^{4n+3}, U^{4n+4}, U^{4n+5}, U^{4n+6}, \ldots$ is a descending chain;

\Rightarrow The restriction is more and more precise as the model-checking goes on;

All elements U_k is the sequence are sound:

$U_k \subseteq \text{post}(i^*) I \cap \text{pre}(i^*) F$

Stop the abstract interpretation computation with a narrowing or when the parallel model-checking terminates;

PROBLEMATIC TERMINATION

- The abstract interpretation always terminate;

- The abstract interpretation is approximate so the state-space restriction may not be finite;

\Rightarrow The parallel combination of abstract interpretation and model-checking is incomplete since it may not terminate;

- In case of nontermination the information gathered by abstract interpretation is reusable for verification by:
 - abstract symbolic methods,
 - model abstraction;
 - which are also incomplete but guarantee termination.

CONCLUSION

- We have proposed a method for the parallel combination of model-analysis by abstract interpretation and verification by model-checking where the verification:
 - makes no approximation on states and transitions,
 - explores an (hopefully finite) subgraph;

- Semi-algorithm since there is no guarantee that the explored subgraph will be finite:
 - classical model-checking would have failed anyway,
 - case by case experimentation is needed;

- The method should be used before resorting to model-checking of a more abstract model (the information gathered about the exact model being reusable).