A Few Remarks on the Abstraction and Equivalence of Semantics

P. Cousot
DMI - École Normale Supérieure
45 rue d’Ulm, 75230 Paris cedex 05, France

cousot@mi.ens.fr
http://www.dmi.ens.fr/cousot

Objective

- Assume that we are given any transition system:
 \[\langle S, t \rangle \]
 state space \(\rightarrow \) transition relation

- We first define all semantics of this given transition system in the hierarchy of semantics as abstractions of the natural trace semantics;
- We then constructively derive fixpoint characterizations of all semantics in the hierarchy by abstraction of a fixpoint characterization of the natural trace semantics of the transition system.

The Hierarchy of Semantics

Description of the hierarchy of semantics as abstractions of the natural trace semantics
NATURAL TRACE SEMANTICS

- The system/program we are interested in is assumed to be specified by a transition system:
 \[\langle S, t \rangle \]
 - state space \(S \)
 - transition relation \(t \)

- Its natural trace semantics is:

\[
\mathcal{T}^\parallel = \begin{cases}
\{ \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \text{ blocking} \} & \to \text{finite traces} \\
\cup \{ \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \} & \to \text{infinite traces}
\end{cases}
\]

\[
\downarrow \quad \downarrow
\]

\[
\text{any state} \quad \text{transition}
\]

RELATIONAL SEMANTICS

\[\alpha \in \text{Traces} \mapsto \varphi(S \times S_\perp), \quad S_\perp = S \cup \{ \perp \} \]

\[\mathcal{R} = \alpha(\mathcal{T}) \]

\[\begin{array}{cccccc}
& a & b & a \\
\{ \bullet, \bullet \} & \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \in \mathcal{T} \\
a & a \\
\cup \{ \bullet, \perp \} & \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \in \mathcal{T}
\end{array} \]

\[\alpha \] is a Galois connection.

NATURAL, DEMONIAC & ANGELIC SEMANTICS

- Natural trace semantics: \(\mathcal{T}^\parallel \);

- Angelic abstraction \(^\wedge \):
 \[\alpha(\mathcal{T}^\parallel) = \{ \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \mid \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \in \mathcal{T}^\parallel \}; \]

- Demoniac abstraction \(^\vee \):
 \[\alpha(\mathcal{T}^\parallel) = \mathcal{T}^\parallel \cup \{ \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \mid \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \in \mathcal{T}^\parallel \}. \]

The \(\alpha \)'s are Galois connections.

NON-DETERMINISTIC DENOTATIONAL SEMANTICS

\[\alpha \in \varphi(S \times S_\perp) \mapsto (S \mapsto \varphi(S_\perp)) \]

\[\mathcal{D} = \alpha(\mathcal{R}) \]

\[\begin{array}{cccccc}
& a & b & a \\
\lambda s \{ s' \in S_\perp \mid \langle s, s' \rangle \in \mathcal{R} \} & \text{right image}
\end{array} \]

\[\alpha \] is a Galois isomorphism.
Predicate Transformer Semantics

\[\alpha \in (\mathcal{S} \mapsto \varphi(\mathcal{S}_\perp)) \mapsto (\varphi(\mathcal{S}_\perp) \mapsto \varphi(\mathcal{S})) \]

\[\mathcal{W} = \alpha(\mathcal{D}) \]

\[= \lambda Q \{ s \in \mathcal{S} \mid \forall s' \in \mathcal{S}_\perp : s' \in \mathcal{D}(s) \Rightarrow s' \in Q \} \]

\(\alpha \) is a Galois injection.

Axiomatic Semantics

\[\alpha \in (\varphi(\mathcal{S}) \mapsto \varphi(\mathcal{S}_\perp)) \mapsto \varphi(\varphi(\mathcal{S}) \times \varphi(\mathcal{S}_\perp)) \]

\[\mathcal{H} = \alpha(\mathcal{W}) \]

\[= \{ \langle P, Q \rangle \mid P \subseteq \mathcal{W}(Q) \} \]

\(\alpha \) is a Galois injection.

Fixpoint presentation of the semantics in the hierarchy

Fixpoint presentation of a semantics

- Fixpoint presentations of a semantic:

 \[
 \begin{array}{c}
 \mathcal{T} = \text{Izf} \sqsubseteq \mathcal{F} \\
 \Rightarrow \quad \text{semantics} \quad \text{monotonic transformer}
 \end{array}
 \]

- \textbf{Problem}: find a fixpoint characterization of all semantics in the hierarchy.
The known fixpoint characterizations look similar; So there should be a simple way of transferring/lifting fixpoint definitions through abstractions α (as we do in abstract interpretation [CC77]);

I failed for some time and will explain some of the crucial steps to have this idea work properly.

References

Difficulty 1: Orderings

- Because "natural" semantics describe both finite and infinite behaviors simultaneously, we cannot use lfp for \subseteq. But we could use gfp \subseteq;
- Unfortunately the abstraction of the gfp \subseteq fixpoint semantics for natural traces does not lead to Scott’s denotational semantics;
- So we resort to two orderings:
 1. \subseteq (approximation, refinement, logical implication, …) for Galois connections α;
 2. \sqsubseteq (computational ordering) for fixpoints.

Natural Trace Fixpoint Semantics

Let X and Y be sets of complete traces:

- $X \subseteq Y$, refinement
- $X \sqsubseteq Y$, computational ordering

\[
\begin{align*}
X^+ &\triangleq X^+ \subseteq Y^+ \land X^\omega \supseteq Y^\omega \\
X^+ &\triangleq \text{the finite traces of } X \\
X^\omega &\triangleq \text{the infinite traces of } X \\
\mathcal{T} &\triangleq \text{lfp} \subseteq \mathcal{F} \\
\mathcal{F} &\triangleq \sqsubseteq \mathcal{T} \cup \{X\}
\end{align*}
\]

traces of length 1 ending in blocking states
traces of X prefixed by an initial transition

Difficulty 2: The Computational Ordering

- There is only one approximation ordering;
- There are many possible computational orderings;
- Theorem (very rough sketch) lfp $\subseteq \mathcal{F} = \text{lfp} \subseteq' \mathcal{F}$ iff when ordering the transfinite iterates of \mathcal{F} from \perp by \sqsubseteq and \sqsubseteq', the respective lubs will lead to the same limit.

More precisely …
Fixpoint Iterates Reordering

- Let \(\langle D, \subseteq, \bot, \sqcup \rangle, F \) be a fixpoint semantic specification;
- Let \(E \) be a set and \(\preceq \) be a binary relation on \(E \), such that:
 1. \(\preceq \) is a pre-order on \(E \);
 2. all iterates \(F^\delta, \delta \in \| \) of \(F \) belong to \(E \);
 3. \(\bot \) is the \(\preceq \)-infimum of \(E \);
 4. the restriction \(F|_E \) of \(F \) to \(E \) is \(\preceq \)-monotone;
 5. for all \(x \in E \), if \(\lambda \) is a limit ordinal and \(\forall \delta < \lambda : F^\delta \preceq x \) then \(\bigcup_{\delta < \lambda} F^\delta \preceq x \).

- Then \(\text{lf}_{\preceq} F \subseteq \text{lf}_{\preceq} F|_E \in E \).

Possible Demoniac Iterate Orderings

\[
\begin{align*}
\{a, b\} & \quad \{a\} \\
\{a\} & \quad \emptyset \\
\{a, b, \bot\} & \quad \{a, b\} \\
\{a, b, \bot\} & \quad \{a\}
\end{align*}
\]

Demoniac ordering \(\sqsubseteq^\# \)
Demoniac ordering \(\sqsubseteq^\circ \)

\[
\begin{align*}
\{a\} & \quad \{b\} \\
\{a\} & \quad \{a, b\} \\
\{a, b, \bot\} & \quad \{a, b\} \\
\{a, b, \bot\} & \quad \{a\}
\end{align*}
\]

Smyth ordering \(\sqsubseteq^\triangledown \)
Flat ordering \(\sqsubseteq^\flat \)

Orderings for the Nondeterministic Denotational Semantics, \(S = \{a, b\} \)

\[
\begin{align*}
\{a, b\} & \quad \{a, b\} \\
\{a\} & \quad \{a\} \\
\{a, b, \bot\} & \quad \{a, b, \bot\} \\
\{a, b, \bot\} & \quad \{a, b, \bot\} \\
\emptyset & \quad \emptyset \\
\{a, \bot\} & \quad \{a, \bot\} \\
\{b, \bot\} & \quad \{b, \bot\} \\
\{\bot\} & \quad \{\bot\}
\end{align*}
\]

Computational ordering \(\sqsubseteq \)
Egli-Milner ordering \(\sqsubseteq^{\text{EM}} \)

\[\text{possibly iterates of } \mathcal{F}\]

Difficulty 3: Fixpoint transfer

- Fixpoint transfer/lifting theorems based upon:
 - Kleene def. of fixpoints
 - Tarski
- May not be applicable;

- However, fixpoint transfer/lifting may work by parts.
Kleene Fixpoint Transfer Theorem

If \(\langle D, F \rangle \) and \(\langle D^\#, F^\# \rangle \) are semantic specifications and
\[
\alpha(\bot) = \bot^#
\]
\[
F^\# \circ \alpha = \alpha \circ F
\]
\[
\forall \sqsubseteq\text{-increasing chains } X_K, K \in \Delta : \alpha(\bigsqcup_{K \in \Delta} X_K) = \bigsqcup_{K \in \Delta} \alpha(X_K)
\]
then
\[
\alpha(\text{lfp} \sqsubseteq F) = \text{lfp} \sqsubseteq^# F^#
\]

Note 1: The condition \(F^\# \circ \alpha = \alpha \circ F \) provides guidelines for designing \(F^\# \) when knowing \(F \) and \(\alpha \).

Note 2: \(F^\# \) convergence is faster than that of \(F \).

Tarski Fixpoint Transfer Theorem

If \(\langle \mathcal{D}, \sqsubseteq, \bot, \top \rangle \) and \(\langle \mathcal{D}^\#, \sqsubseteq^#, \bot^#, \top^# \rangle \) are complete lattices,
\(F \in \mathcal{D} \rightarrow \mathcal{D} \), \(F^\# \in \mathcal{D}^\# \rightarrow \mathcal{D}^\# \) are monotonic and

- \(\alpha \) is a complete \(\sqsubseteq \)-morphism
- \(F^\# \circ \alpha \sqsubseteq^# \alpha \circ F \)
- \(\forall y \in \mathcal{D}^# : F^#(y) \sqsubseteq^# y \Rightarrow \exists x \in \mathcal{D} : \alpha(x) = y \land F(x) \sqsubseteq^# x \)

then
\[
\alpha(\text{lfp} \sqsubseteq F) = \text{lfp} \sqsubseteq^# F^#
\]

Example: Traces to Relation Abstraction

- Problem for \(\alpha \in \text{Traces} \rightarrow \text{Relation} \):
 - \(\alpha \) is continuous for \(\subseteq \)
 - \(\alpha \) is not continuous for \(\sqsubseteq \):
 - \(\Rightarrow \) Kleene fixpoint transfer not applicable,
 - \(\Rightarrow \) But applicable to finite traces;
 - \(\alpha \) is not a complete \(\sqsubseteq \)-morphism (because not complete \(\sqsubseteq \)-morphism):
 - \(\Rightarrow \) Tarski fixpoint transfer not applicable,
 - \(\Rightarrow \) But applicable to infinite traces (since \(\alpha \) is a complete \(\sqsubseteq \)-morphism);
- Solution: split, transfer by parts, combine.

Difficulty 4: Predicate transformer transformer

- For the predicate transformer semantics, the fixpoint characterization has the form:
 \[
 \mathcal{W} = \text{lfp} \sqsubseteq \mathcal{F} \uparrow \quad \uparrow
 \]
 predicate transformer predicate transformer
• Use the further abstraction:

\[\alpha_Q \subseteq (\varphi(S) \mapsto \varphi(S)) \mapsto \varphi(S) \]

\[\alpha_Q(W) = \mathcal{W}(Q) \]

which consists in fixing the postcondition \(Q \subseteq S \) to get Dijkstra’s fixpoint:

\[\mathcal{W} = \lambda Q \cdot \text{lfp} \subseteq \mathcal{F}(Q) \]

\[\uparrow \]

\[\text{predicate transformer} \]

\[\uparrow \]

\[\text{predicate transformer} \]

Example 1: Predicate Transformers

\[(S \mapsto \varphi(S)) \mapsto \alpha \mapsto (\varphi(S) \mapsto \varphi(S)) \]

+ \(\alpha \) surjective

\[\Rightarrow \]

\[(S \mapsto \varphi(S)) \mapsto \alpha \mapsto (\varphi(S) \mapsto \varphi(S)) \]

Example 2: Hoare Logics

\[\text{Predicate transformer} \quad \text{Hoare logic} \]

\[(\varphi(S) \mapsto \varphi(S)) \mapsto \alpha \mapsto \varphi(\varphi(S) \times \varphi(S)) \]

+ \(\alpha \) surjective

\[\Rightarrow \]

\[(\varphi(S) \mapsto \varphi(S)) \mapsto \alpha \mapsto \varphi(S) \otimes \varphi(S) \]

Exercise: what is \(\otimes \)?
• Tensor product:

\[\langle D, \Box \rangle \otimes \langle D^\mathbb{Z}, \Box^\mathbb{Z} \rangle \triangleq \{ H \in \wp(D \times D^\mathbb{Z}) \mid (1) \land (2) \land (3) \} \]

where the conditions are:

1. \((X \subseteq X' \land \langle X', Y' \rangle \in H \land Y' \subseteq Y) \Rightarrow (\langle X, Y \rangle \in H) \)

 (consequence rule of Hoare logic)

2. \((\forall i \in \Delta : \langle X_i, Y \rangle \in H) \Rightarrow (\bigcup_{i \in \Delta} X_i, Y \in H) \)

3. \((\forall i \in \Delta : \langle X, Y_i \rangle \in H) \Rightarrow (\bigcap_{i \in \Delta} X, Y_i \in H) \)

 (by induction on the program structure, 2 and 3 follow from Hoare logic rules).

DIFFICULTY 6: FROM FIXPOINT TO PROOF RULE SEMANTICS

1) For safety/invariance, use Park induction (\(F \) monotonic on complete lattice):

\[\exists I: F(I) \subseteq I \land I \subseteq P \]

Galois Connection Commutative Diagram

\[\langle \langle D, \Box \rangle, \langle D^\mathbb{Z}, \Box^\mathbb{Z} \rangle \rangle \]

2) For inevitability/liveness, use Scott induction? No (\(F \) monotonic on cpo):

\[\exists I \in \wp(\Sigma) : I \subseteq F(\bigcup_{\beta \leq \delta} I^\beta) \land P \subseteq I^\epsilon \]
CONCLUSION

- Synthetic and uniformizing (although somewhat contemplative) work;
- Shows that abstract interpretation formalizes semantics abstraction nicely;
- Help to compare abstract interpretation based program analysis methods;
- Help to understand their limitations (e.g. denotational semantics + $\subseteq = \subseteq \Rightarrow$ failure for binding time analysis + strictness analysis);

RESEARCH WORK

- Extend the hierarchy to other semantics of transition systems;
- Extend to a programming calculus with interpretations at all levels in the hierarchy;
- Extend at higher-order to the λ-calculus\(^*\).

REFERENCE

For technical details and references, see:

\(^*\) The original text should be "but is it really worth looking at?"