Discrete Fixpoint Approximation Methods in Program Static Analysis

P. Cousot

Département de Mathématiques et Informatique
École Normale Supérieure – Paris
<couso@dmi.ens.fr>
<http://www.dmi.ens.fr/~cousot>

Static Program analysis

- Automatic determination of runtime properties of infinite state programs
- Applications:
 - compilation (dataflow analysis, type inference),
 - program transformation (partial evaluation, parallelization/vectorization, . . .)
 - program verification (test generation, abstract debugging, . . .)
- Problems:
 - text inspection only (excluding executions or simulations)
 - undecidable
 - necessarily approximate

Example

```
0 1
```

```
{ n:Ω; i:Ω; j:Ω }
read_int(n);
{ n:1; i:Ω; j:Ω }
i := n;
{ n:[0,∞]; i:[0,∞]; j:(1,+∞)? }
while (i <> 0) do
  { n:[0,∞); i:[1,∞); j:[1,∞)? }
  j := 0;
  { n:[0,∞); i:[1,∞); j:[0,∞) }
  while (j <> i) do
    { n:[0,∞); i:[1,∞); j:[0,1073741822]!! }
    j := (j + 1)
    { n:[0,∞); i:[1,∞); j:[1,∞) }
  od;
  { n:[0,∞); i:[1,∞); j:[1,∞) }
i := (i - 1);
{ n:[0,∞); i:[0,1073741822]; j:[1,∞) }
od;
{ n:[0,∞); i:[0,0]; j:[1,∞)? }
```

1 Ω denotes uninitialization.
2 !! denotes inevitable error when the invariant is violated.
3 +∞ = 1073741823, −∞ = −1073741824.
4 This questionmark indicates possible uninitialization.

Abstract interpretation

Abstract interpretation [1, 2]:
- design method for static analysis algorithms;
- effective approximation of the semantics of programs;
- often, the semantics maps the program text to a model of computation obtained as the least fixpoint of an operator on a partially ordered semantic domain;
- effective approximation of fixpoints of posets;

References

Fixpoint semantics

Program semantics can be defined as least fixpoints \[3\]:

$$\text{lfp} \subseteq F$$

where

$$F(\text{lfp} \subseteq F) = \text{lfp} \subseteq F \quad F(x) = x \implies \text{lfp} \subseteq F \subseteq x$$

of a monotonic operator $$F \in \mathcal{L} \mapsto \mathcal{L}$$ on a complete partial order (CPO):

$$\langle \mathcal{L}, \subseteq, \bot, \top, \sqcup \rangle$$

where $$\langle \mathcal{L}, \subseteq \rangle$$ is a poset with infimum $$\bot$$ and the least upper bound (lub) $$\sqcup$$ of increasing chains exists.

Reference

Kleenean fixpoint theorem

- A map $$\varphi \in L \mapsto L$$ on a cpo $$\langle L, \subseteq, \bot, \top \rangle$$ is upper-continuous iff it preserves lubs of increasing chains $$x_i, i \in N$$:

$$\varphi(\bigsqcup_{i \in N} x_i) = \bigsqcup_{i \in N} \varphi(x_i)$$

- The least fixpoint of an upper-continuous map $$\varphi \in L \mapsto L$$ on a cpo $$\langle L, \subseteq, \bot, \top \rangle$$ is:

$$\text{lfp} \varphi = \bigsqcup_{n \geq 0} \varphi^n(\bot)$$

where the iterates $$\varphi^n(x)$$ of $$\varphi$$ from $$x$$ are:

- $$\varphi^0(x) \overset{\text{def}}{=} x$$;
- $$\varphi^{n+1}(x) \overset{\text{def}}{=} \varphi(\varphi^n(x))$$ for all $$x \in L$$.

Tarski’s Fixpoint Theorem

A monotonic map $$\varphi \in L \mapsto L$$ on a complete lattice:

$$\langle L, \subseteq, \bot, \top, \sqcup, \sqcap \rangle$$

has a least fixpoint:

$$\text{lfp} \varphi = \cap \{x \in L \mid \varphi(x) \subseteq x\}$$

and, dually, a greatest fixpoint:

$$\text{gfp} \varphi = \cup \{x \in L \mid x \subseteq \varphi(x)\}$$

Chaotic/asynchronous iterations

- Convergent iterates $$L = \bigsqcup_{n \geq 0} F^n(P)$$ of a monotonic system of equations on a poset:

$$X = F(X) \begin{cases} X_1 = F_1(X_1, \ldots, X_n) \\ \vdots \\ X_n = F_n(X_1, \ldots, X_n) \end{cases}$$

starting from a prefixpoint $$(P \subseteq F(P))$$ always converge to the same limit $$L$$ whichever chaotic or asynchronous iteration strategy is used.
Example: reachability analysis

- Program:
 \[
 \begin{align*}
 &\{ X_1 \} \\
 &x := 1; \\
 &\{ X_2 \} \\
 &\text{while } (x < 1000) \text{ do} \\
 &\quad \{ X_3 \} \\
 &\quad x := x + 1; \\
 &\quad \{ X_4 \} \\
 &\od;
 \end{align*}
 \]
- System of equations:
 \[
 \begin{align*}
 X_1 &= \{ \Omega \} \\
 X_2 &= \{ 1 \} \cup X_4 \\
 X_3 &= \{ x \in X_2 \mid x < 1000 \} \\
 X_4 &= \{ x + 1 \mid x \in X_3 \} \\
 X_5 &= \{ x \in X_2 \mid x \geq 1000 \}
 \end{align*}
 \]
- Reachable states:
 \[
 \begin{align*}
 X_1 &= \{ \Omega \} \\
 X_2 &= \{ x \mid 1 \leq x \leq 1000 \} \\
 X_3 &= \{ x \mid 1 \leq x < 1000 \} \\
 X_4 &= \{ x + 1 \mid x \in X_3 \} \\
 X_5 &= \{ 1000 \}
 \end{align*}
 \]

Effective fixpoint approximation

- Simplify the fixpoint system of semantic equations: Galois connections;
- Accelerate convergence of the iterates: widening/narrowing;

Definition of Galois connections

Given posets \((P, \sqsubseteq) \) and \((Q, \preceq) \), a Galois connection is a pair of maps such that:

\[
\begin{align*}
\alpha \in P &\rightarrow Q \\
\gamma \in Q &\rightarrow P
\end{align*}
\]

\(\forall x \in P : \forall y \in Q : \alpha(x) \preceq y \iff x \sqsubseteq \gamma(y) \)

in which case we write:

\[
(P, \sqsubseteq) \xrightarrow{\alpha} (Q, \preceq)
\]

Equivalent definition of Galois connections

\[
\begin{align*}
\langle P, \sqsubseteq \rangle &\xrightarrow{\alpha} \langle Q, \preceq \rangle \quad \text{Galois connection} \\
\alpha &\in \langle D^\ast, \sqsubseteq \rangle \xrightarrow{m} \langle Q, \preceq \rangle \\
\gamma &\in \langle Q, \preceq \rangle \xrightarrow{m} \langle P, \sqsubseteq \rangle \\
\forall x \in P : x &\sqsubseteq \gamma \circ \alpha(x) \quad \alpha \text{ monotone} \\
\forall y \in Q : \alpha \circ \gamma(y) &\preceq y \quad \gamma \circ \alpha \text{ extensive} \\
\end{align*}
\]
Duality principle

• We write \(\leq^{-1}\) or \(\geq\) for the inverse of the partial order \(\leq\).

• Observe that:
 \[
 \langle P, \sqsubseteq \rangle \overset{\gamma}{\leftarrow} \langle Q, \preceq \rangle \]
 if and only if
 \[
 Q(\geq) \overset{\alpha}{\leftarrow} P(\sqsubseteq) \]

• duality principle: if a theorem is true for all posets, then so is its dual obtained by substituting \(\geq\), \(\succ\), \(\bot\), \(\top\), \(\vee\), \(\wedge\), \(\alpha\), \(\gamma\) etc. respectively for \(\leq\), \(<\), \(\sqsubseteq\), \(\sqsupseteq\), \(\land\), \(\lor\), \(\gamma\), \(\alpha\), etc.

Example 1 of Galois connection

If

• \(\varnothing \in P \longrightarrow Q\)

• \(\alpha \in \wp(P) \longrightarrow \wp(Q)\)
 \[
 \alpha(X) \overset{\text{def}}{=} \{ f(x) \mid x \in X \} \]

• \(\gamma \in \wp(Q) \longrightarrow \wp(P)\)
 \[
 \gamma(Y) \overset{\text{def}}{=} \{ x \mid \varnothing(x) \in Y \} \]

then

\[
\langle \wp(P), \subseteq \rangle \overset{\gamma}{\leftarrow} \langle \wp(Q), \subseteq \rangle
\]

Example 2 of Galois connection

If

• \(\rho \subseteq P \times Q\)

• \(\alpha \in \wp(P) \longrightarrow \wp(Q)\)
 \[
 \alpha(X) = \text{post}[\rho]X \quad \text{post-image}
 \]
 \[
 \overset{\text{def}}{=} \{ y \mid \exists x \in X : (x, y) \in \rho \}
 \]

• \(\gamma \in \wp(Q) \longrightarrow \wp(P)\)
 \[
 \gamma(Y) = \text{pre}[\rho]Y \quad \text{dual pre-image}
 \]
 \[
 \overset{\text{def}}{=} \{ x \mid \forall y : (x, y) \in \rho \Rightarrow y \in Y \}
 \]

then

\[
\langle \wp(P), \subseteq \rangle \overset{\gamma}{\leftarrow} \langle \wp(Q), \subseteq \rangle
\]

Example 3 of Galois connections

If \(S\) and \(T\) are sets then

\[
\langle \wp(S \longrightarrow T), \subseteq \rangle \overset{\gamma}{\leftarrow} \langle S \longrightarrow \wp(T), \subseteq \rangle
\]

where:

\[
\alpha(F) \overset{\text{def}}{=} \lambda x \{ f(x) \mid f \in F \}
\]

\[
\gamma(\varnothing) \overset{\text{def}}{=} \{ f \in S \longrightarrow T \mid \forall x \in S : f(x) \in \varnothing(x) \}
\]
Moore families

- A Moore family is a subset of a complete lattice \(\langle L, \sqsubseteq, \bot, \top, \sqcap, \sqcup \rangle \) containing \(\top \) and closed under arbitrary glbs \(\sqcap \);
- If \(\langle P, \sqsubseteq \rangle \xrightarrow{\gamma_1/\alpha_1} \langle Q, \preceq \rangle \) and \(\langle P, \sqsubseteq, \bot, \top, \sqcap, \sqcup \rangle \) is a complete lattice then \(\gamma(Q) \) is a Moore family.
- A consequence is that one can reason upon the abstract semantics using only \(P \) and the image of \(P \) by the upper closure operator \(\gamma \circ \alpha \) (instead of \(Q \)).
- Intuition:
 - The upper-approximation of \(x \in P \) is any \(y \in \gamma(Q) \) such that \(x \sqsubseteq y \);
 - The best approximation of \(x \) is \(\gamma \circ \alpha(x) \).

Preservation of lubs/glbs

- If \(\langle P, \sqsubseteq \rangle \xrightarrow{\gamma/\alpha} \langle Q, \preceq \rangle \), then \(\alpha \) preserves existing lubs: if \(\sqcup X \) exists, then \(\alpha(\sqcup X) \) is the lub of \(\{ \alpha(x) \mid x \in X \} \).
 By the duality principle:
- If \(\langle P, \sqsubseteq \rangle \xrightarrow{\gamma/\alpha} \langle Q, \preceq \rangle \) then \(\gamma \) preserves existing glbs: if \(Y \subseteq Q \) and \(\sqcap Y \) exists, then \(\gamma(\sqcap Y) \) is the glb of \(\{ \gamma(y) \mid y \in Y \} \).

Unique adjoint

In a Galois connection, one function uniquely determines the other:
- If \(\langle P, \sqsubseteq \rangle \xrightarrow{\gamma_1/\alpha_1} \langle Q, \preceq \rangle \) and \(\langle P, \sqsubseteq \rangle \xrightarrow{\gamma_2/\alpha_2} \langle Q, \preceq \rangle \), then \(\alpha_1 = \alpha_2 \) if and only if \(\gamma_1 = \gamma_2 \).

\[\forall x \in P : \alpha(x) = \cap \{ y \mid x \sqsubseteq \gamma(y) \} \]
\[\forall y \in Q : \gamma(y) = \cup \{ x \mid \alpha(x) \preceq y \} \]

Complete join preserving abstraction function and complete meet preserving concretization function

- Let \(\langle P, \sqsubseteq \rangle \) and \(\langle Q, \preceq \rangle \) be posets.
- If
 1. \(\alpha \in P(\sqcup) \xrightarrow{\alpha} Q(\sqcup) \)
 2. \(\sqcup \{ x \mid \alpha(x) \preceq y \} \) exists for all \(y \in Q \),
 then
\[\langle P, \sqsubseteq \rangle \xrightarrow{\gamma/\alpha} \langle Q, \preceq \rangle \]
where \(\forall y \in Q : \gamma(y) = \sqcup \{ x \mid \alpha(x) \preceq y \} \).
- By duality, if
 1. \(\gamma \in Q(\sqcap) \xrightarrow{\gamma} P(\sqcap) \)
 2. \(\sqcap \{ y \mid x \sqsubseteq \gamma(y) \} \) exists for all \(x \in P \),
 then
\[\langle P, \sqsubseteq \rangle \xleftarrow{\gamma/\alpha} \langle Q, \preceq \rangle \]
where \(\forall x \in P : \alpha(x) = \sqcap \{ y \mid x \sqsubseteq \gamma(y) \} \).
Galois surjection & injection

If $\langle P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle Q, \preceq \rangle$, then:
- α is onto
- iff γ is one-to-one
- iff $\alpha \circ \gamma$ is the identity

By the duality principle, if $\langle P, \sqsubseteq \rangle \xleftarrow{\gamma} \langle Q, \preceq \rangle$, then:
- α is one-to-one
- iff γ is onto
- iff $\gamma \circ \alpha$ is the identity

Notation:

$\langle P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle Q, \preceq \rangle$	Galois connection
$\langle P, \sqsubseteq \rangle \xleftarrow{\gamma} \langle Q, \preceq \rangle$	Galois surjection
$\langle P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle Q, \preceq \rangle$	Galois injection
$\langle P, \sqsubseteq \rangle \xleftarrow{\gamma} \langle Q, \preceq \rangle$	Galois bijection

with \leftarrow denoting ‘into’ and \rightarrow denoting ‘onto’.

The image of a complete lattice by a Galois surjection is a complete lattice

- If $\langle P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle Q, \preceq \rangle$ and $\langle P, \sqsubseteq, \bot, \top, \sqcap, \sqcup, \sqsubseteq \rangle$ is a complete lattice, then so is $\langle Q, \preceq \rangle$ with:
 - $0 = \alpha(\bot)$ infimum
 - $1 = \alpha(\top)$ supremum
 - $\vee Y = \alpha(\sqcup_{y \in Y} \gamma(y))$ lub
 - $\wedge Y = \alpha(\sqcap_{y \in Y} \gamma(y))$ glb

The image of a Cpo by a Galois surjection is a Cpo

- If $\langle P, \sqsubseteq, \bot, \top, \sqcap, \sqcup, \sqsubseteq \rangle$ is a cpo and $\langle Q, \preceq \rangle$ is a poset and $\langle P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle Q, \preceq \rangle$, then $\langle Q, \preceq, 0, \vee \rangle$ is a cpo with:
 - $0 \overset{\text{def}}{=} \alpha(\bot)$
 - $\vee X \overset{\text{def}}{=} \alpha(\sqcup_{x \in X} \gamma(x))$

Pointwise extension of Galois connections

- If $\langle S \rightarrowtail P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle S \rightarrowtail Q, \preceq \rangle$ then:

 $\langle S \mapsto P, \sqsubseteq \rangle \xrightarrow{\gamma} \langle S \mapsto Q, \preceq \rangle$

 where:
 - $\hat{\alpha}(f) \overset{\text{def}}{=} \alpha \circ f$
 - $\hat{\gamma}(g) \overset{\text{def}}{=} \gamma \circ g$
Lifting Galois connections at higher-order

If
\[\langle P_1, \sqsubseteq_1 \rangle \xleftarrow{\gamma_1} \alpha_1 \xrightarrow{\alpha_1} \langle Q_1, \preceq_1 \rangle \]
\[\langle P_2, \sqsubseteq_2 \rangle \xleftarrow{\gamma_2} \alpha_2 \xrightarrow{\alpha_2} \langle Q_2, \preceq_2 \rangle \]
then
\[\langle P_1 \xrightarrow{m} P_2, \sqsubseteq_2 \rangle \xleftarrow{\gamma} \alpha \xrightarrow{\alpha} \langle Q_1 \xrightarrow{m} Q_2, \preceq_2 \rangle \]
where
\[\varphi \sqsubseteq \psi \iff \forall x : \varphi(x) \sqsubseteq \psi(x) \]
\[\alpha(\varphi) \equiv \alpha_2 \circ \varphi \circ \gamma_1 \]
\[\gamma(\psi) \equiv \gamma_2 \circ \psi \circ \alpha_1 \]

Example: interval analysis

- **Concrete/exact:**
 \[D \overset{\text{def}}{=} \{ x \in \mathbb{N} \mid \min_{\text{int}} \leq x \leq \max_{\text{int}} \} \]
 \[D_\Omega \overset{\text{def}}{=} D \cup \{ \Omega \} \]
 variables & uninitialization
 \[n \geq 1 \]
 program points
 \[V \]
 \[S \overset{\text{def}}{=} [1, n] \rightarrow (V \rightarrow D_\Omega) \]
 states
- **Abstract/approximate:**
 \[I \overset{\text{def}}{=} \{ [a, b] \mid x \in \mathbb{N} \mid a \leq x \leq b \} \]
 intervals
 \[\gamma(\Omega) \overset{\text{def}}{=} \{ \Omega \} \]
 concretization
 \[\gamma([a, b]) \overset{\text{def}}{=} \{ x \in \mathbb{N} \mid a \leq x \leq b \} \]
 \[\gamma(\Omega, [a, b]) \overset{\text{def}}{=} \gamma(\Omega) \cup \gamma([a, b]) \]
 abstract
 \[L \overset{\text{def}}{=} [1, n] \rightarrow (V \rightarrow A) \]
 domain
 \[\gamma \in A \mapsto \psi(D_\Omega) \]
 concretization
 \[\gamma(P) \overset{\text{def}}{=} \{ \rho \mid x \in \mathbb{N} \mid \forall v \in V : \rho(i)(v) \in \gamma(P(i)(v)) \} \]
 \[P \sqsubseteq Q \overset{\text{def}}{=} \gamma(P) \subseteq \gamma(Q) \]
 ordering

- **Galois connexion:**
 \[\langle \varphi(S), \sqsubseteq \rangle \xleftarrow{\gamma} \alpha \xrightarrow{\alpha} \langle L, \sqsubseteq \rangle \]

Composition of Galois connections

The composition of Galois connections is a Galois connection:

\[\left(\langle P, \sqsubseteq \rangle \xleftarrow{\gamma} \langle P, \sqsubseteq \rangle \land \langle Q, \sqsubseteq \rangle \right) \]
\[\Rightarrow \langle P, \sqsubseteq \rangle \xleftarrow{\gamma \circ \alpha} \langle Q, \sqsubseteq \rangle \]

Kleenean fixpoint abstraction

If \(\langle D, \sqsubseteq, \bot, \sqcup \rangle \) is a cpo, \(\langle Q, \preceq \rangle \) is a poset,
\[F \in \mathcal{P} \xrightarrow{m} D, F^\sharp \in Q \xrightarrow{m} Q, \]
and
\[F^\sharp \circ \alpha = \alpha \circ F \]
then
\[\alpha(\text{lfp} \sqsubseteq F) = \text{lfp} \preceq F^\sharp \]
Kleenian fixpoint approximation

If \(\langle D, \sqsubseteq, \bot, \sqcup \rangle \) is a cpo, \(\langle Q, \preceq \rangle \) is a poset,
\(F \in \mathcal{P}_{m} \mapsto \downarrow D \), \(F^\sharp \in \mathcal{A}_{m} \mapsto \downarrow \mathcal{A} \), and
\[
F^\sharp \circ \alpha \preceq \alpha \circ F
\]
\[
\langle D, \sqsubseteq \rangle \xrightarrow{\alpha} \langle D^\sharp, \preceq \rangle
\]
then
\[
\alpha(\text{lfp} \subseteq F) \preceq \text{lfp} \preceq F^\sharp
\]

Infinite strictly increasing chains

- Because of infinite (or very long) strictly increasing chains, the fixpoint iterates may not converge (or very slowly);
- Because of infinite (or very long) strictly decreasing chains, the local decreasing iterates may not converge (or not rapidly enough);
- The design strategy of using a more abstract domain satisfying the ACC often yields too imprecise results;
- It is often both more precise and faster to speed up convergence using widenings along increasing chains and narrowings along decreasing ones.

Interval lattice

Slow fixpoint iterations

--- program:
\[
0: x := 1;
1: \text{while true do}
2: x := (x + 1)
3: \text{od (false)}
\]
4:
--- forward abstract equations:
\[
X0 = (\text{INIT} 0)
X1 = \text{assign}[|x, 1|](X0) U X3
X2 = \text{assert}[|\text{true}|](X1)
X3 = \text{assign}[|x, (x + 1)|](X2)
X4 = \text{assert}[|\text{false}|](X1)
--- iterations from:
X0 = \{ x:_O_ \} X1 = __ X2 = __ X3 = __ X4 = __

X0 = \{ x:_O_ \} X1 = \{ x:[1,1] \} X2 = \{ x:[1,1] \} X3 = \{ x:[2,2] \} X4 = \{ x:[2,2] \}

X0 = \{ x:_O_ \} X1 = \{ x:[1,1] \} X2 = \{ x:[1,1] \} X3 = \{ x:[2,2] \} X4 = \{ x:[2,2] \}

X0 = \{ x:_O_ \} X1 = \{ x:[1,2] \} X2 = \{ x:[1,2] \} X3 = \{ x:[2,3] \} X4 = \{ x:[2,3] \}

X0 = \{ x:_O_ \} X1 = \{ x:[1,3] \} X2 = \{ x:[1,3] \} X3 = \{ x:[2,4] \} X4 = \{ x:[2,4] \}

X0 = \{ x:_O_ \} X1 = \{ x:[1,4] \} X2 = \{ x:[1,4] \} X3 = \{ x:[2,5] \} X4 = \{ x:[2,5] \}

Widening

Definition: A widening $\nabla \in P \times P \rightarrow P$ on a poset (P, \sqsubseteq) satisfies:
- $\forall x, y \in P : x \sqsubseteq (x \nabla y) \land y \sqsubseteq (x \nabla y)$
- For all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots$
 - the increasing chain $y^0 \overset{\text{def}}{=} x^0, \ldots, y^{n+1} \overset{\text{def}}{=} y^n \nabla x^{n+1}, \ldots$ is not strictly increasing.

Use:
- Approximate missing lubs.
- Convergence acceleration.

Fixpoint upper approximation by widening

- Any iteration sequence with widening is increasing and stationary after finitely many iteration steps;
- Its limit $L \nabla$ is a post-fixpoint of F, whence an upper-approximation of the least fixpoint $\lfp F \sqsubseteq F^\ast$: $\lfp F \sqsubseteq L \nabla$

Iteration sequence with widening

- Let F be a monotonic operator on a poset (P, \sqsubseteq);
- Let $\nabla \in P \times P \rightarrow P$ be a widening;
- The iteration sequence with widening ∇ for F from \bot is $X^n, n \in \mathbb{N}$:
 - $X^0 = \bot$
 - $X^{n+1} = X^n$ if $F(X^n) \sqsubseteq (X^n)$
 - $X^{n+1} = X^n \nabla F(X^n)$ if $F(X^n) \not\sqsubseteq X^n$

Example of widening for intervals

$[a, b] \nabla [a', b'] \overset{\text{def}}{=} \Omega$
- $[a, b] \nabla [a', b'] = \langle \Omega, [a, b] \rangle$
- $\Omega \nabla \langle \Omega, [a, b] \rangle = \langle \Omega, [a, b] \rangle$
- $[a, b] \nabla \Omega = \Omega$
- $\Omega \nabla \Omega = \Omega$
- $\langle \Omega, [a, b] \rangle \nabla [a', b'] \overset{\text{def}}{=} \langle \Omega, [a, b] \nabla [a', b'] \rangle$
- $\langle \Omega, [a, b] \rangle \nabla \langle \Omega, [a', b'] \rangle = \langle \Omega, [a, b] \nabla [a', b'] \rangle$
Widening for systems of equations

A very rough idea:

- compute the dependence graph of the system of equations;
- widen at cut-points;
- iterate according to the weak topological ordering

Interval program analysis example with widening

labelled program:

```plaintext
--
0: x := 1;
1: y := 1000;
2: while (x < y) do
3:  x := (x + 1)
4: od
5:
--
```

iterations with widening from:

```plaintext
X0 = { x:_O_; y:_O_ }  X1 = _L_  X2 = _L_
X3 = _L_  X4 = _L_  X5 = _L_
```

```
X0 = { x:_O_; y:_O_ }
X1 = { x:[1,1]; y:_O_ }
widening at 2 by { x:[1,1]; y:[1000,1000] }
X2 = { x:[1,1]; y:[1000,1000] }
X3 = { x:[1,1]; y:[1000,1000] }
X4 = { x:[2,2]; y:[1000,1000] }
widening at 2 by { x:[1,2]; y:[1000,1000] }
X2 = { x:[1,1000]; y:[1000,1000] }
X3 = { x:[1,999]; y:[1000,1000] }
X4 = { x:[2,1000]; y:[1000,1000] }
X2 = { x:[1,1000]; y:[1000,1000] }
X3 = { x:[1,999]; y:[1000,1000] }
X4 = { x:[2,1000]; y:[1000,1000] }
X5 = { x:[1000,1000]; y:[1000,1000] }
```

Example

labelled program:

```plaintext
--
0: x := 1;
1: y := 1000;
2: while (x < y) do
3:  x := (x + 1)
4: od
5:
--
```

forward abstract equations:

```plaintext
X0 = (INIT 0)
X1 = assign[x, 1](X0)
X2 = assign[y, 1000](X1) U X4
X3 = assert[(x < y)](X2)
X4 = assign[x, (x + 1)](X3)
X5 = assert[(y < x) ∨ (x = y)](X2)
```

forward graph with 6 vertices:

```plaintext
0 : (1)
1 : (2)
2 : (3, 5)
3 : (4)
4 : (2)
5 : ()
```

forward weak topological order: 0 1 (2 3 4) 5

forward cut & check points: {2}

Narrowing

- Since we have got a post-fixpoint L^\triangledown of $F \in P \longrightarrow P$, its iterates $F^n(L^\triangledown)$ are all upper approximations of $\text{lfp } F$.
- To accelerate convergence of this decreasing chain, we use a narrowing $\triangledown \in P \times P \longrightarrow P$ on the poset (P, \sqsubseteq) satisfying:

 - $\forall x, y \in P : y \subseteq x$ \implies y $\sqsubseteq x \triangledown y$ $\sqsubseteq x$
 - For all decreasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots$, the decreasing chain $y^0 \triangledown x^0, \ldots, y^n \triangledown A \triangledown y^n \triangledown x^{n+1}, \ldots$ is not strictly decreasing.
Decreasing iteration sequence with narrowing

- Let F be a monotonic operator on a poset $\langle P, \sqsubseteq \rangle$;
- Let $\triangle \in P \times P \rightarrow P$ be a narrowing;
- The iteration sequence with narrowing \triangle for F from the postfixpoint P^* is Y^n, $n \in \mathbb{N}$:
 - $Y^0 = P$
 - $Y^{n+1} = Y^n$ if $F(Y^n) = Y^n$
 - $Y^{n+1} = Y^n \triangle F(Y^n)$ if $F(Y^n) \neq Y^n$

Fixpoint upper approximation by narrowing

- Any iteration sequence with narrowing starting from a postfixpoint P of F^* is decreasing and stationary after finitely many iteration steps;
- if $\text{lfp}^\subseteq F$ does exist and $\text{lfp}^\subseteq F \sqsubseteq P$ then its limit L^\triangle is a fixpoint of F, whence an upper-approximation of the least fixpoint $\text{lfp}^\subseteq F$:
 $$\text{lfp}^\subseteq F \sqsubseteq L^\triangle \sqsubseteq P$$

Example of narrowing for intervals

if $x \leq x' \leq y' \leq y$ then $[x,y] \triangle [x',y'] = \text{narrow } x \ y \ x' \ y'$

let narrow $x \ y \ x' \ y'$ =
 (if (x = min_int) then x' else x),
 (if (y = max_int) then y' else y) ;

Trivially extended to initialization & interval analysis.

Program analysis example with narrowing

labelled program:
--
0: x := 1;
1: y := 1000;
2: while (x < y) do
3: x := (x + 1)
4: od {((y < x) | (x = y))}
5: --

iterations with narrowing from:
--
X0 = { x: _O_; y: _O_ }
X1 = { x: [1,1]; y: _O_ }
X2 = { x: [1,1000]; y: [1000,1000] }
X3 = { x: [1,999]; y: [1000,1000] }
X4 = { x: [2,1000]; y: [1000,1000] }
X5 = { x: [1000,1000]; y: [1000,1000] }
--
X0 = { x: _O_; y: _O_ }
X1 = { x: [1,1]; y: _O_ }
X2 = { x: [1,1000]; y: [1000,1000] }
X3 = { x: [1,999]; y: [1000,1000] }
X4 = { x: [2,1000]; y: [1000,1000] }
X5 = { x: [1000,1000]; y: [1000,1000] }
--
stable
Widenings and Narrowings are not Dual

- The iteration with \textit{widen}ing starts from below the least fixpoints and stabilizes above;
- The iteration with \textit{narrowing} starts from above the least fixpoints and stabilizes above;
- In general, widenings and narrowing are \textit{not} monotonic.

Improving the Precision of Widenings/Narrowings

- **Threshold:**
- Widening/narrowing (and stabilization checks) at cut points;
- **Computation history-based** extrapolation:
 A simple example:
 - Do not widen/narrow if a component of the system of fixpoint equations was computed for the first time since the last widening/narrowing;
 - Otherwise, do not widen/narrow the abstract values of variables which were not “assigned to” \footnote{more precisely which did not appear in abstract equations corresponding to an assignment to these variables} since the last widening/narrowing.

Conclusion

- A very elementary introduction to abstract interpretation;
- For more details, see e.g. \url{http://www.dmi.ens.fr/~cousot}