Abstract

- Abstract interpretation [1, 2] is a formal method for software verification with significant industrial applications, in particular in avionics [3, 4, 5, 6].

References

1. The Endless “Software Failure” Problem

Software is hidden everywhere

Origin of accidents (metro)

- Paris métro line 12 accident\(^1\): the driver was going too fast

- Roma metro line A accident\(^2\): the driver went on at a red signal

 Origin of accidents (aviation)

Worldwide analysis of the primary cause of major commercial-jet accidents between 1995 and 2004 as determined by the investigating authority

<table>
<thead>
<tr>
<th>Cause</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplane</td>
<td>17%</td>
</tr>
<tr>
<td>Weather</td>
<td>13%</td>
</tr>
<tr>
<td>Other</td>
<td>6%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>4%</td>
</tr>
<tr>
<td>Pile-up</td>
<td>4%</td>
</tr>
</tbody>
</table>

Reference

\(^1\) On August 30\(^{th}\), 2000, at the Notre-Dame-de-Lorette métro station in Paris, a car flipped over on its side and slid to a stop just a few feet from a train stopped on the opposite platform (24 injured).

\(^2\) On October 17\(^{th}\), 2006, a speeding subway train rammed into another train halted at the Vittorio Emanuele station in central Rome (1 dead, 60 injured). The driver might have misunderstood the control centre authorising the train to proceed to the “next station” (Manzoni, closed to the public) while the driver would have understood it to mean the “next working station” (Vittorio Emanuele, after Manzoni), La Repubblica, Oct. 20\(^{th}\), 2006.
Software replaces human operators

- Computer control is the cheapest and safest solution to avoid such accidents
- New **high-speed** métro line 14 (Météor): fully automated, no operators
- Modern commercial airplanes: **massive automation** of control/commands, piloting, communications, collision avoidance, etc

As computer hardware capacity grows exponentially since 1975...

ENIAC
5,000 flops

IBM’s Blue Gene/P
4 petaflops

<table>
<thead>
<tr>
<th>Text editor</th>
<th>Operating system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,700,000 lines of C</td>
<td>35,000,000 lines of C</td>
</tr>
</tbody>
</table>

Software size grows...

... and so does the number of bugs

<table>
<thead>
<tr>
<th>Text editor</th>
<th>Operating system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,700,000 lines of C</td>
<td>35,000,000 lines of C</td>
</tr>
<tr>
<td>1,700 bugs (estimation)</td>
<td>30,000 known bugs</td>
</tr>
</tbody>
</table>

6 Floating point operations per second
7 Petaflop = 10^15 flops = one-quadrillion operations per second

As computer hardware capacity grows exponentially since 1975...

ENIAC
5,000 flops

IBM’s Blue Gene/P
4 petaflops

<table>
<thead>
<tr>
<th>Text editor</th>
<th>Operating system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,700,000 lines of C</td>
<td>35,000,000 lines of C</td>
</tr>
</tbody>
</table>

Software size grows...

... and so does the number of bugs

<table>
<thead>
<tr>
<th>Text editor</th>
<th>Operating system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,700,000 lines of C</td>
<td>35,000,000 lines of C</td>
</tr>
<tr>
<td>1,700 bugs (estimation)</td>
<td>30,000 known bugs</td>
</tr>
</tbody>
</table>
All Computer Scientists Have Experienced Bugs

Ariane 5.01
Patriot
Mars orbiter

Mars Global Surveyor

Example 1: Overflow

Computers are finite

- Scientists reason on continuous, infinite mathematical structures (e.g. \mathbb{R})
- Computers can only handle discrete, finite structures

Overflows

- Numbers are encoded onto a limited number of bits (binary digits)
- Some operations may overflow (e.g. integers: $32 \text{ bits} \times 32 \text{ bits} = 64 \text{ bits}$)
- Using different number sizes ($32, 64, \ldots$ bits) can also be the source of overflows
Modular integer arithmetics...

- Todays, computers avoid integer overflows thanks to modular arithmetic
- Example: integer 2’s complement encoding on 8 bits

Modular arithmetics is not very intuitive (cont’d)

In C:

```c
#include <stdio.h>
int main () {
    int x,y;
    x = -2147483647 / -1;
    y = ((-x) -1) / -1;
    printf("x = %i, y = %i\n",x,y);
    return 0;
}
```

```bash
% gcc modulo-c.c
% ./a.out
```

Emacs [a] cleaning

```
x = 2147483647, y = -2147483648
```

Static Analysis with ASTRÉE

```c
#include <stdio.h>
type main () {
    int x,y;
    x = -2147483647 / -1;
    y = ((-x) -1) / -1;
    _ASTREE_log_vars((x,y));
    return 0;
}
```

```bash
% astree -exec-fn main -unroll 0 modulo.c
```

```
Astrée signals the overflow and goes on with an unknown value.
```

Float Arithmetics does Overflow

In C:

```c
#include <stdio.h>
void main () {
    double x,y;
    x = 1.0e+256 * 1.0e+256;
    y = 1.0e+256 * -1.0e+256;
    _ASTREE_log_vars((x,y));
    return 0;
}
```

```bash
% gcc overflow.c
% ./a.out
```

```
x = inf, y = -inf
```

Astrée signals the overflow and goes on with an unknown value.
The Ariane 5.01 maiden flight

– June 4th, 1996 was the maiden flight of Ariane 5
– The launcher was destroyed after 40 seconds of flight because of a software overflow.

A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5. This caused an uncaught overflow, making the launcher uncontrollable.

The estimated cost of an overflow

– 500 000 000 $;
– Including indirect costs (delays, lost markets, etc):
 2 000 000 000 $;
– The financial results of Arianespace were negative in 2000, for the first time since 20 years.
– At the origin of the development of PolySpace Verifier, (now part of The MathWorks) ⁹

The cost of development of the PolySpace Verifier was 10.000.000 $ (Daniel Pilaud ipse dixit).

PolySpace Verifier
Example 2: Rounding

Rounding

- Computations returning reals that are not floats, must be rounded
- Most mathematical identities on \mathbb{R} are no longer valid with floats
- Rounding errors may either compensate or accumulate in long computations
- Computations converging in the reals may diverge with floats (and ultimately overflow)

Mapping many to few

- Reals are mapped to floats (floating-point arithmetic) $\pm d_0d_1d_2 \ldots d_{p-1} \beta^e$ (^)

 - For example on 6 bits (with $p = 3$, $\beta = 2$, $e_{\text{min}} = -1$, $e_{\text{max}} = 2$), there are 32 normalized floating-point numbers. The 16 positive numbers are

 $\begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \end{array}$

[^]: $d_0 \neq 0$,
 - p is the number of significative digits,
 - β is the basis (2), and
 - e is the exponent ($e_{\text{min}} \leq e \leq e_{\text{max}}$)

Example of rounding error

```c
/* float-error.c */
int main () {
    float x, y, z, r;
    x = 1.000000019e+38;
    y = x + 1.0e21;
    z = x - 1.0e21;
    r = y - z;
    printf("%f\n", r);
}
% gcc float-error.c
% ./a.out
0.000000

/* double-error.c */
int main () {
    double x; float y, z, r;
    /* x = ldexp(1.,50)+ldexp(1.,26); */
    x = 1125899973951488.0;
    y = x + 1;
    z = x - 1;
    r = y - z;
    printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000
```

$(x + a) - (x - a) \neq 2a$
Example of rounding error

/* float-error.c */
int main () {
 float x, y, z, r;
 x = 1.0000000019e+38;
 y = x + 1.0e21;
 z = x - 1.0e21;
 r = y - z;
 printf("%f\n", r);
}
% gcc float-error.c
% /a.out
0.000000

(x + a) - (x - a) ≠ 2a

/* double-error.c */
int main () {
 double x, y, z, r;
 /* x = ldexp(1.,50)+ldexp(1.,26); */
 x = 1125899973951488.0;
 y = x + 1;
 z = x - 1;
 r = y - z;
 printf("%f\n", r);
}
% gcc double-error.c
% /a.out
0.000000

Explanation of the huge rounding error

(1) Floats
Reals

(2) Doubles
Reals
Floats

Static analysis with ASTRÉE

% cat -n double-error.c
2 int main () {
 3 double x; float y, z, r;
 4 /* x = ldexp(1.,50)+ldexp(1.,26); */
 5 x = 1125899973951488.0;
 6 y = x + 1;
 7 z = x - 1;
 8 r = y - z;
 9 __ASTREE_log_vars((r));
}
% gcc double-error.c
% /a.out
134217728.000000
% astree -exec-fn main -print-float-digits 10 double-error.c |& grep "r in ">
direct = <float-interval: r in [-134217728, 134217728] >

10 ASTRÉE makes a worst-case assumption on the rounding (+∞, −∞, 0, nearest) hence the possibility to get -134217728.

Example of accumulation of small rounding errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
 3 int i; double x; x = 0.0;
 4 for (i=1; i<=1000000000; i++) {
 5 x = x + 1.0/10.0;
 6 }
 7 printf("x = %.16f\n", x);
 8 }
% gcc rounding-c.c
% /a.out
x = 99999998.745418

since (0.1)_{10} = (0.000110110011001100...)_2
Static analysis with ASTRÉE

% cat -n rounding.c
1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock();
7 }
8 }
%
% cat rounding.config
-ASTREE_max_clock((1000000000));
% astree -exec-fn main -config-sem rounding.config -unroll 0 rounding.c
& egrep "(x in)|(|\|x\|)|(WARN)" | tail -2
-\|x\| <= 1.**((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1
<= 200000040.938

The Patriot missile failure

- “On February 25th, 1991, a Patriot missile ... failed to track and intercept an incoming Scud (*)”.
- The software failure was due to accumulated rounding error (!)

(*) This Scud subsequently hit an Army barracks, killing 28 Americans.
(!) “Time is kept continuously by the system’s internal clock in tenths of seconds”
“Because the system had been on so long, the resulting inaccuracy in the time calculation caused the range gate to shift so much that the system could not track the incoming Scud”

The NASA’s Climate Orbiter Loss on September 23, 1999

- A metric confusion error led to the loss of NASA’s $125 million, Lockheed Martin built Mars Climate Orbiter on September 23, 1999

-- “People sometimes make errors,” said Edward Weiler, NASA’s Associate Administrator for Space Science in a written statement. “The problem here was not the error, it was the failure of NASA’s systems engineering, and the checks and balances in our processes to detect the error. That’s why we lost the spacecraft.”

11 Erroneous information was transmitted from the Mars Climate Orbiter spacecraft team in Colorado and the mission navigation team in California. One engineering team used metric units while the other used English units! The navigation mishap pushed the spacecraft dangerously close to the planet’s atmosphere where it presumably burned and broke into pieces.
Is the metric system better?

```c
while (1) {
    /* x in meters */
    x = x * 100.0;
    /* x in centimeters */
    ...
    x = x / 100.0;
    /* back to x in meters */
    ...
}
```

Scaling in general can be the source of cumulated rounding errors.

Static Analysis with ASTRÉE

```bash
% cat -n scale.c
1 int main () {
2     float x; x = 0.70000001;
3     while (1) {
4         x = x / 3.0;
5         x = x * 3.0;
6         __ASTREE_log_vars((x));
7         __ASTREE_wait_for_clock();
8     }
9 }
```

% gcc scale.c

% ./a.out

```
x = 0.699999988079071
```

% cat scale.config

```
__ASTREE_max_clock((1000000000));
```

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c

```
direct = <float-interval: x in [0.69999986887, 0.700000047684] >
```

Static Analysis with ASTRÉE

```
% cat -n scale.c
1 int main () {
2     float x; x = 0.70000001;
3     while (1) {
4         x = x / 3.0;
5         x = x * 3.0;
6         __ASTREE_log_vars((x));
7         __ASTREE_wait_for_clock();
8     }
9 }
```

% gcc scale.c

% ./a.out

```
x = 0.699999988079071
```

% cat scale.config

```
__ASTREE_max_clock((1000000000));
```

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c

```
direct = <float-interval: x in [0.69999986887, 0.700000047684] >
```

NASA’s Mars Global Surveyor (MGS) Loss in Nov. 2006

- The latest theory is that a software error caused the failure.
- In June 2006, ground controllers uploaded software to the wrong location.\(^\text{12}\)
- "Basically, the computer got confused," said Doug McCuistion, NASA's director of Mars Exploration in Washington, DC, US. But he cautions, "This is a preliminary thought."

\(^{12}\) The error could have caused the solar array to move to the wrong spot when NASA commanded it to move on 2 November. The spacecraft told ground controllers that it was having a problem with the motor that moves the array. The spacecraft later went into a “safe” mode, where it awaited further instructions from Earth. In this mode, the spacecraft may have pointed one side of itself towards the Sun, overheating one of the coolers for a battery. This in turn could have caused a battery failure, meaning the spacecraft would not have enough power to survive.

Bugs Now Show-Up in Everyday Life

- Bugs now appear frequently in everyday life (banks, cars, telephones, ...)

- Example (HSBC bank ATM\(^\text{13}\) at 19 Boulevard Sébastopol in Paris, failure on Nov. 21\(^\text{st}\) 2006 at 8:30 am):

\(^{13}\) cash machine, cash dispenser, automatic teller machine.
2. What can be done about bugs?

Warranty

Excerpt from an GPL open software licence:

NO WARRANTY. ... BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

You get nothing for free!

Consequences of the Absence of Legal Warranty on Software

- No one is legally responsible for bugs
- So, no one cares about software validity
- Bugs can even be the source of revenues (customers must buy the next version to get around bugs in software)
- End-users cannot put any pressure on computer scientists responsible for errors at the origin of catastrophes
- The general public might lose confidence in software-based technology

14 Contrary e.g. to car users. 15 this is one of the explanations for the success of open software
Why is there no Legal Warranty on Software

- The state of the art is that all bugs cannot be eliminated at a reasonable price
- The law cannot enforce more than “best professional practice”

Improving the State of the Art

- The only hope is therefore to improve the state of the art of developing bug-free software
- The state of the art can be enforced by quality norms to be followed by professionals (such as DO178B)
- The law will then follow such “best professional practices”

Software Engineering

- Software engineering has focused on methods for designing larger and larger, more and more complex computer applications (e.g. OO languages)
- Software quality has definitely not followed this dramatic progression
- Contrary to other disciplines, software engineering offers very few tools (either intellectual tools such as specification and programming languages or instruments such as macro-assemblers, interpreters, compilers, make, code repositories, software managing platforms, etc).

Process-based Software Qualification

- The state of the art in software qualification is development process-based (e.g. DO178B level A)
 - the software has been produced using qualified tools (simulators, test execution tool, coverage tools, reporting tools, etc.)
 - the software has been tested according to well-established processes (code reviews, unit testing, integration testing, system testing, etc.)
 - the software qualification has been documented and approved by certification authorities
Example: DO-178B

- DO-178B (Software Considerations in Airborne Systems and Equipment Certification) is a standard for software development published by RTCA, Incorporated (Radio Technical Commission for Aeronautics).
- The standard dating Dec. 1, 1992, was developed by RTCA and EUROCAE (European Organisation for Civil Aviation Equipment).
- The FAA (Federal Aviation Administration)\(^\text{16}\) accepts use of DO-178B for certifying software in avionics.

\(^\text{16}\) In Europe, EASA (European Aviation Safety Agency), JAA (Joint Aviation Authorities) and CAA (Civil Aviation Authority).

Example: DO-178B (Cont’d)

- The ARP4761 safety assessment process and hazard analysis examining the effects of a failure condition in the system determines software levels;
- Depending on the software levels a number of objectives must be satisfied, some with independence (the person(s) who verify an objective must not be the developers of the item in question)
- In some cases, an automated tool may be equivalent to independence \(^\text{17}\)

\(^\text{17}\) RTCA/DO-178B “Software Considerations in Airborne Systems and Equipment Certification”, p.82

Example: DO-178B (Cont’d)

A Catastrophic Failure may cause a crash
B Hazardous Failure has a large negative impact on safety or performance, or reduces the ability of the crew to operate the plane due to physical distress or a higher workload, or causes serious or fatal injuries among the passengers.
C Major Failure is significant, but has a lesser impact (e.g. passenger discomfort but no injuries).
D Minor Failure is noticeable, but has a lesser impact than a Major failure (e.g. causing passenger inconvenience or a routine flight plan change).
E No effect Failure has no impact on safety.

Example: DO-178B (Cont’d)

<table>
<thead>
<tr>
<th>Processes</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Plan for software aspects of certification (PSAC), Software development plan (SDP), Software verification plan (SVP), ...</td>
</tr>
<tr>
<td>Development</td>
<td>Software design description (SDD), Source code, Executable object code, ...</td>
</tr>
<tr>
<td>Verification</td>
<td>Software verification results (SVR): Reviews, Tests, Code coverage analysis, ...</td>
</tr>
<tr>
<td>Configuration management</td>
<td>Software life cycle environment configuration index (SECI), ...</td>
</tr>
<tr>
<td>Quality assurance</td>
<td>Software conformity review (SCR), ...</td>
</tr>
<tr>
<td>Certification liaison</td>
<td>a Designated Engineering Representative (DER) working for e.g. FAA in an airplane manufacturing company.</td>
</tr>
</tbody>
</table>
The Waterfall Software Development Process

The following phases are followed perfectly in order\(^\text{18}\):
1. Requirements specification
2. Design
3. Construction (aka: coding or implementation)
4. Integration
5. Testing and debugging (aka: validation)
6. Installation
7. Maintenance

The Spiral Lifecycle Software Development Process

- **Iterative development of software prototypes**, each one using the waterfall model.
- **Iteration until the customer is satisfied** that the refined prototype represents the final product desired.

The V Software Development Process

The V-Model or VEE-Model was developed by the German administration\(^\text{20}\):

- **A decomposition of requirements phase** (\(\downarrow\)):
 - Requirements analysis, System Design, Architecture Design, Module Design, Coding,
- **A validation phase** (\(\uparrow\)):
- In practice, design, implementation, and testing are mixed.

Guarantees Offered by Software Qualification

- Process-based software qualification is **taxonomic and organizational** but has **no scientific rigor**
- Process-based software qualification offers high (self)-confidence but no correctness guarantee
- Malfunctioning software can be/has been easily qualified
- No significative progress of Software Engineering this last decade despite many variants of the “Software Qualification Models”.

\(^{21}\) Students write reports containing the three parts of the hamburger model: top bun = introduction, patty I, patty II, patty III, bottom bun = conclusion. The same structure was proposed for building design, hardware development!
A Strong Need for Software Better Quality

- Poor software quality is not acceptable in safety and mission critical software applications.

- The present state of the art in software engineering does not offer sufficient quality guarantees

Tool-Based Software Design Methods

- New tool-based software design methods will have to emerge to face the unprecedented growth and complexification of critical software

 - E.g. FCPC (Flight Control Primary Computer)
 - A220: 20 000 LOCs,
 - A340: 130 000 LOCs (V1), 250 000 LOCs (V2),
 - A380: 1.000.000 LOCs

Product-based Software Qualification

- An avenue is therefore opened for formal methods which are product-based

 The software is shown to satisfy a specification

- Main approaches:
 - theorem-proving & proof checking
 - model-checking
 - static analysis

Bug Finding versus Bug Absence Proving

- Bug-finding methods: unit, integration, and system testing, dynamic verification, bounded model-checking, error pattern mining, ...
 → Helpful but very partial

- Absence of bug proving methods: formally prove that the semantics of a program satisfies a specification
 → Successful in the small but must scale up in the large
Success Story 1: the B-Method

- 80,000 LOCs C safety-control software embedded in trains of the Paris Métro Line 14 was specified and proved correct using Abrial's B-method [10, 11].
- No bug found in operation in the parts proved in B.
- Not required for the future automatization of the metro line A in Paris (high cost does not compete at call-time with lightweight informal methods).

Reference

Success Story 2: PolySpace Verifier

- The PolySpace Verifier of PolySpace Technologies (now part of The MathWorks) aims at proving the absence of runtime errors in Ada and C/C++ code at compile-time (without requiring code modification or execution or test cases).
- Typical run-time errors detected:
 - Overflows and underflows
 - Division by zero and other arithmetic errors

Success Story 3: aiT WCET Analyzers

- Out-of-bounds array accesses
- Read-only accesses to uninitialized data
- Illegally dereferenced pointers
- Dangerous type conversions
- Dead code
- Mostly successful in the embedded software industry
- Many false alarms (typically 10% of the runtime-checks cannot be proved valid at compile time), mostly useful for bug-finding
- Certification is only partial (but without any bug omission)

Success Story 3: aiT WCET Analyzers

- The aiT WCET Analyzers of AbsInt, statically compute tight bounds for the worst-case execution time (WCET) of tasks in real-time systems
- Analyze binary executables and take the intrinsic cache and pipeline behavior into account
- Widely used in the embedded software industry (like Airbus France)
Problems with Formal Methods

- **Formal specifications** (abstract machines, temporal logic, ...) are costly, complex, error-prone, difficult to maintain, not mastered by casual programmers
- **Formal semantics** of the specification and programming language are inexistant, informal, unrealistic or complex
- **Formal proofs** are partial (static analysis), do not scale up (model checking) or need human assistance (theorem proving & proof assistants)
- **High costs** (for specification, proof assistance, etc).

Disadvantages of Static Analysis and Remedies

- **Imprecision** (acceptable in some applications like WCET or program optimization)
- **Incomplete** for program verification
- **False alarms** are due to unsuccessful automatic proofs in 5 to 15% of the cases
 - specialization to specific program properties
 - specialization to specific families of programs
 - possibility of refinement

Avantages of Static Analysis

- **Formal specifications** are implicit (no need for explicit, user-provided specifications)
- **Formal semantics** are approximated by the static analyzer (no user-provided models of the program)
- **Formal proofs** are automatic (no required user-interaction)
- **Costs** are low (no modification of the software production methodology)
- **Scales up** to 100,000 to 1,000,000 LOCs
- **Large diffusion** in embedded software production industries

The Impact of Tools

- Research is presently changing the state of the art (e.g. ASTRÉE)
- We can check for the absence of large categories of bugs (may be not all of them but a significant portion of them, such as runtime errors)
- The verification can be made automatically by mechanical tools
- Some bugs can be found completely automatically, without any human intervention
- Whence responsibilities can be established a posteriori, by reanalyzing the failed software
Towards a New State of the Art

- The state of the art will change towards complete automation, at least for common categories of bugs
- Whence the standards will change (by adjusting to the new state of the art)
- Whence the law will change (by adjusting to the new standards)
- So responsibilities can be established (at least for automatically detectable bugs)
- To ensure at least partial software verification.

3. Informal Introduction to Abstract Interpretation

Mathematics and computers can help

- Software behavior can be mathematically formalized → semantics
- Computers can perform semantics-based program analyses to realize verification → static analysis
 - but computers are finite so there are intrinsic limitations → undecidability, complexity
 - which can only be handled by semantics approximations → abstract interpretation

Abstract Interpretation

There are two fundamental concepts in computer science (and in sciences in general):

- Abstraction : to reason on complex systems
- Approximation : to make effective undecidable computations

These concepts are formalized by abstract interpretation

References

Applications of Abstract Interpretation

- Static Program Analysis [CC77a], [CH78], [CC79] including Dataflow Analysis; [CC79], [CC00], Set-based Analysis [CC95], Predicate Abstraction [Cou03], ...
- Grammar Analysis and Parsing [CC03];
- Hierarchies of Semantics and Proof Methods [CC92b], [Cou02];
- Typing & Type Inference [Cou97];
- (Abstract) Model Checking [CC00];
- Program Transformation (including program optimization, partial evaluation, etc) [CC02b];

All these techniques involve sound approximations that can be formalized by abstract interpretation.
Safety property

Test/Debugging is Unsafe

Bounded Model Checking is Unsafe

Over-Approximation
Over-Approximation (Cont’d)

- In general the set of traces of interest is neither computer-representable nor computable (by undecidability).
- Abstract interpretation exploits the facts that an over-approximation of the program set of traces is sound: when considering more possibilities, no actual execution can ever be omitted.
- The theory is used to design sound approximations of the mathematical structures involved in the formal description of this set of traces.

Abstract Interpretation is Sound

Correctness Proof

The correctness proof has two phases.
- In the first analysis phase, the program trace semantics is computed iteratively.
- The verification phase then checks that none of these execution traces can reach a state in which a runtime error can occur.

Soundness Requirement: Erroneous Abstraction

28 From a purely mathematical point of view, the set of all execution traces can in principle be formally constructed starting from initial states, then extending iteratively the partial traces from one state to the next one according to the program transition steps until termination on final or error states or passing to the limit for infinite traces (corresponding to non-terminating executions).

29 This situation is always excluded in static analysis by abstract interpretation.
Soundness Requirement: Erroneous Abstraction

This situation is always excluded in static analysis by abstract interpretation.

The Most Abstract Sound Abstraction

Imprecision \Rightarrow False Alarms

Global Interval Abstraction \Rightarrow False Alarms
Local Interval Abstraction \rightarrow False Alarms

$\mathbf{x}(t)$

Forbid zone

Imprecise trajectory abstraction by intervals

Possible trajectories

Refinement by Partitionning

$\mathbf{x}(t)$

Forbid zone

Possible trajectories

Intervals with Partitionning

$\mathbf{x}(t)$

Forbid zone

Possible trajectories

Refinement of intervals

Iterator and Abstract Domains
Examples of Objects

An object is a pair:
- an origin (a reference point \times);
- a finite set of black pixels (on a white background).
Operations on objects: constants

- constant objects;
 for example:

\[\text{petal} = \]

Operations on objects: rotation

- rotation \(r[a](o) \) of objects \(o \) (of some angle \(a \) around the origin):

Example 1 of rotation

\[\text{petal} = r[45](\text{petal}) = \]

Example 2 of rotation

\[\text{flower} = r[-45](\text{flower}) = \]
Operations on objects: union

- **union** $o_1 \cup o_2$ of objects o_1 and o_2 = superposition at the origin;

 for example:

 corolla = petal $\cup r[45](\text{petal}) \cup r[90](\text{petal}) \cup r[135](\text{petal}) \cup r[180](\text{petal}) \cup r[225](\text{petal}) \cup r[270](\text{petal}) \cup r[315](\text{petal})$

Operations on objects: add a stem

- **stem**(o) adds a stem to an object o (up to the origin, with new origin at the root);

Flower

flower = stem(corolla)

Fixpoints

- corolla = lfp F

 $F(X) = \text{petal} \cup r[45](X)$
Contraints

- A corolla is the \(\subseteq \)-least object \(X \) satisfying the two constraints:
 - A corolla contains a petal:
 \[\text{petal} \subseteq X \]
 - and, a corolla contains its own rotation by 45 degrees:
 \[r[45](X) \subseteq X \]
- Or, equivalently\(^{31}\):
 \[F(X) \subseteq X, \quad \text{where} \quad F(X) = \text{petal} \cup r[45](X) \]

\(^{31}\) By Tarski's fixpoint theorem, the least solution is \(\text{lfp} \leq F \).

Iterates to fixpoints

- The iterates of \(F \) from the infimum \(\emptyset \) are:
 \[
 \begin{align*}
 X^0 & = \emptyset, \\
 X^1 & = F(X^0), \\
 \cdots & , \\
 X^{n+1} & = F(X^n), \\
 \cdots & , \\
 \text{lfp} \leq F & = X^\omega = \bigcup_{n \geq 0} X^n.
 \end{align*}
 \]

The bouquet

- bouquet = \(r[-45](\text{flower}) \cup \text{flower} \cup r[45](\text{flower}) \)
- The bouquet:
Upper-approximation

- An upper-approximation of an object is a object with:
 - same origin;
 - more pixels.

Examples of upper-approximations of flowers

Abstract objects

- an abstract object is a mathematical/computer representation of an approximation of a concrete object;

Abstract domain

- an abstract domain is a set of abstract objects plus abstract operations (approximating the concrete ones);
Abstraction

– an abstraction function \(\alpha \) maps a concrete object \(o \) to an approximation represented by an abstract object \(\alpha(o) \).

Example 1 of abstraction

Comparing abstractions

– larger pen diameters: more abstract;
– different pen shapes: may be non comparable abstractions.
Concretization

- a concretization function γ maps an abstract object \overline{o} to the concrete object $\gamma(\overline{o})$ that is represents (that is to its concrete meaning/semantics).

Example of concretization

Galois connection 1/4

- α is monotonic.

 \[\begin{array}{c}
 \alpha \\
 \subseteq \\
 \implies \\
 \subseteq \\
 \end{array} \]

Galois connection 2/4

- γ is monotonic.

 \[\begin{array}{c}
 \gamma \\
 \subseteq \\
 \implies \\
 \subseteq \\
 \end{array} \]
Galois connection 3/4

- for all concrete objects x, $\gamma \circ \alpha(x) \supseteq x^{32}$.

\[
\text{flower} \quad \alpha(\text{flower}) \quad \gamma(\alpha(\text{flower}))
\]

Galois connection 4/4

- for all abstract objects y, $\alpha \circ \gamma(y) \subseteq y$.

\[
\text{abstract flower} \quad \gamma(\text{abstract flower}) \quad \alpha(\gamma(\text{abstract flower}))
\]

Galois connections

$$
\langle \mathcal{D}, \subseteq \rangle \stackrel{\gamma}{\longrightarrow} \langle \mathcal{D}, \subseteq \rangle
$$

iff

$$
\forall x, y \in \mathcal{D} : x \subseteq y \implies \alpha(x) \subseteq \alpha(y)
\land \forall \bar{x}, \bar{y} \in \mathcal{D} : \bar{x} \subseteq \bar{y} \implies \gamma(\bar{x}) \subseteq \gamma(\bar{y})
\land \forall y \in \mathcal{D} : \alpha(\gamma(y)) \subseteq y
$$

iff

$$
\forall x \in \mathcal{D}, y \in \mathcal{D} : \alpha(x) \subseteq y \iff x \subseteq \gamma(y)
$$

Abstract ordering

- $x \subseteq y$ is defined as $\gamma(x) \subseteq \gamma(y)$.

\[
\subseteq \quad \text{since} \quad \subseteq
\]
Specification of abstract operations

- $\overline{\text{op}/0} \triangleq \alpha(\text{op}/0)$
- $\overline{\text{op}/1}(y) \triangleq \alpha(\text{op}/1(\gamma(y)))$
- $\overline{\text{op}/2}(y, z) \triangleq \alpha(\text{op}/2(\gamma(y), \gamma(z)))$
- \ldots

0-ary

unary

binary

Abstract rotations

- $\overline{r[a]}(y) \triangleq \alpha(r[a](\gamma(y)))$

Abstract rotations

- $\overline{r[a]}(y) \triangleq \alpha(r[a](\gamma(y)))$

$= r[a](y)$

\[45^\circ\]
A commutation theorem on abstract rotations

\[\alpha(\tau[a](x)) \]
\[= \alpha(\gamma(\alpha(\tau[a](x)))) \quad ^{33} \]
\[= \alpha(\gamma(\tau[a](\alpha(x)))) \quad ^{34} \]
\[= \alpha(\tau[a](\gamma(\alpha(x)))) \quad ^{35} \]
\[= \tau[a](\alpha(x)) \quad ^{36} \]

33 In a Galois connection: \(\alpha \circ \gamma \circ \alpha \)

34 Rotation is the same before or after abstraction

35 Rotation is the same before or after concretization

36 Def. \(\tau[a] \)

Abstract union

\[x \sqcup y \triangleq \alpha(\gamma(x) \cup \gamma(y)) \]

Abstract stems

\[\text{stem}(y) \triangleq \alpha(\text{stem}(\gamma(y))) \]

\[\gamma(\text{abstract corolla}) \]

\[\text{stem}(\gamma(\text{abstract corolla})) \]

\[\alpha(\text{stem}(\gamma(\text{abstract corolla}))) \]

Abstract bouquet:

\[\text{abstract bouquet} \]
\[= \alpha\left(\gamma\left(\begin{array}{c}
\text{stem} \\
\gamma(\text{corolla})
\end{array} \right) \cup \gamma\left(\begin{array}{c}
\text{stem} \\
\gamma(\text{corolla})
\end{array} \right) \cup \gamma\left(\begin{array}{c}
\text{stem} \\
\gamma(\text{corolla})
\end{array} \right) \right) \]
Abstract bouquet: (cont’d)

\[\alpha(\star \cup \star \cup \star) = \alpha(\star)\]

A theorem on the abstract bouquet

\[\text{abstract flower} = \alpha(\text{concrete flower})\]
\[\text{abstract bouquet} = \alpha^{-45}(\text{abstract flower}) \sqcup \alpha(\text{concrete flower}) \sqcup \alpha^{-45}(\text{concrete flower})\]
\[= \alpha^{-45}(\alpha^{-45}(\text{concrete flower})) \sqcup \alpha^{-45}(\alpha^{-45}(\text{concrete flower}))\]

Abstract fixpoint

\[-\text{abstract corolla} = \alpha(\text{concrete corolla}) = \alpha\left(\text{lfp}^\subseteq F\right)\]
\[\text{where } F(X) = \text{petal} \cup \alpha^{-45}(X)\]
Abstract transformer \mathcal{F}

- $\alpha(\mathcal{F}(X))$

 \[
 \alpha(\text{petal} \cup \mathcal{r}[45](X)) \\
 = \alpha(\text{petal}) \cup \alpha(\mathcal{r}[45](X)) \\
 = \alpha(\text{petal}) \cup \mathcal{r}[45](\alpha(X)) \\
 = \text{abstract petal} \cup \mathcal{r}[45](\alpha(X)) \\
 = \mathcal{F}(\alpha(X))
 \]

by defining

\[
\mathcal{F}(X) = \text{abstract petal} \cup \mathcal{r}[45](X)
\]

and so:

- abstract corolla $= \alpha(\text{concrete corolla}) = \alpha(\text{lfp} \subseteq \mathcal{F}) = \text{lfp} \subseteq \mathcal{F}$

Abstract interpretation of the (graphic) language

- Similar, but by syntactic induction on the structure of programs of the language;

On abstracting properties of graphic objects

- A **graphic object** is a set of (black) pixels (ignoring the origin for simplicity);
- So a **property of graphic objects** is a set of graphic objects that is a set of sets of (black) pixels (always ignoring the set of origins for simplicity);
- Was there something wrong?
On abstracting properties of graphic objects

– No, because we implicitly used the following implicit looseness abstraction:

\[\langle \rho(\mathcal{P}), \subseteq \rangle \xrightarrow{\gamma_0} \langle \rho(\mathcal{P}), \subseteq \rangle \]

where:

\(\mathcal{P} \) is a set of pixels (e.g. pairs of coordinates)

\[\alpha_0(X) = \bigcup X \]

\[\gamma_0(Y) = \{ G \in \mathcal{P} \mid G \subseteq Y \} \]

– Yes, but see image processing by morphological filtering:

It can be entirely formalized by abstract interpretation.

4. Elements of Abstract Interpretation

Semantics
Semantics

- The semantics $S[p]$ of a software and hardware system $p \in P$ is a formal model of the execution of this system p.
- A semantic domain D is a set of such formal models, so

$$\forall p \in P : S[p] \in D$$

[70x177]To be more precise one might consider $D[p], p \in P$.

Example: Operational Semantics

- The operational semantics describes all possible program executions as a set of maximal execution traces

States and Traces

- States in Σ, describe an instantaneous snapshot of the execution.
- Traces are finite or infinite sequences of states in Σ, two successive states corresponding to an elementary program step.
- In that case
 - $\Sigma^n \triangleq \{0, n\} \rightarrow \Sigma$ traces of length $n = 1, \ldots, +\infty$.
 - $T \triangleq \bigcup_{n=1}^{+\infty} \Sigma^n$ all possible traces
 - $D \triangleq \wp(T)$ semantic domain

Properties and Specifications
Properties and Specifications

- A specification is a required property of the semantics of the system.
- The interpretation of a property is therefore a set of semantic models that satisfy this property.
- Formally, the set of properties is \(\mathcal{P} \triangleq \mathcal{P}(\mathcal{D}) \).

Example: Properties of a Trace Semantics

- \(\mathcal{T} \)
- \(\mathcal{D} \triangleq \mathcal{P}(\mathcal{T}) \) (sets of traces)
- \(\mathcal{P} \triangleq \mathcal{P}(\mathcal{D}) \triangleq \mathcal{P}(\mathcal{P}(\mathcal{T})) \) (sets of sets of traces)

The Complete Lattice of Semantic Properties

The semantic properties have a complete lattice (indeed Boolean lattice) structure:

\[
(\mathcal{P}(\mathcal{D}), \subseteq, \emptyset, \mathcal{D}, \cup, \cap, \neg)
\]

The implication/set inclusion \(\subseteq \) is a partial order:
- reflexive: \(\forall X \in \mathcal{P}(\mathcal{D}) : X \subseteq X \)
- antisymmetric:
 \[
 \forall X, Y \in \mathcal{P}(\mathcal{D}) : X \subseteq Y \land Y \subseteq X \implies X = Y
 \]
- transitive:
 \[
 \forall X, Y, Z \in \mathcal{P}(\mathcal{D}) : X \subseteq Y \land Y \subseteq Z \implies X \subseteq Z
 \]

The join/union \(\cup \) is the least upper bound (lub):
- \(\cup \) is an upper bound: \(\forall (X_i \in \mathcal{P}(\mathcal{D}), i \in \Delta) : \forall j \in \Delta : X_j \subseteq \bigcup_{i \in \Delta} X_i \)
- \(\cup \) is the least one: \(\forall (X_i \in \mathcal{P}(\mathcal{D}), i \in \Delta) : \forall Y \in \mathcal{P}(\mathcal{D}) : (\forall j \in \Delta : X_j \subseteq Y) \implies \left(\bigcup_{i \in \Delta} X_i \subseteq Y \right) \)
The meet/union \cap is the greatest lower bound (glb):
- \cap is a lower bound: $\forall (X_i \in \wp(D), i \in \Delta) : \forall j \in \Delta :
\bigcap_{i \in \Delta} X_i \subseteq X_j$
- \cap is the greatest one: $\forall (X_i \in \wp(D), i \in \Delta) : \forall Y \in \wp(D) :
\left(\forall j \in \Delta : Y \subseteq X_j \right) \Rightarrow (Y \subseteq \bigcap_{i \in \Delta} X_i)$

The infimum/empty set is \varnothing such that
- $\forall X \in \wp(D) : \varnothing \subseteq X$
- $\varnothing = \bigcap \wp(D) = \bigcup \varnothing$

The supremum is D such that
- $\forall X \in \wp(D) : X \subseteq D$
- $D = \bigcup \wp(D) = \bigcap \varnothing$

The complement $\neg X = D \setminus X$ satisfies
- $X \cap \neg X = \varnothing$
- $X \cup \neg X = D$

and is unique

Lattice Theory
- Lattice theory was introduced by Garrett Birkhoff [13]
- Weakens set theory while keeping essential results

Reference
Partial Order

\[\langle L, \sqsubseteq \rangle \]

- \(L \) is a set
- The relation \(\sqsubseteq \) on \(L \) is a reflexive, antisymmetric and transitive

The lub/glb might not exist for finite subsets of \(L \).

Complete Lattices

\[\langle L, \sqsubseteq, \bot, \top, \lor, \land \rangle \]

- \(\langle L, \sqsubseteq \rangle \) is a partial order
- The lub \(\bigvee X \) does exist for all subsets \(X \) of \(L \)
- It follows that the glb \(\bigwedge X \triangleq \bigcap \{ y \mid \forall x \in X : y \sqsubseteq x \} \)
 does exist for all subsets \(X \) of \(L \)
- It follows that \(L \) has an infimum \(\bot = \cap L = \cup \emptyset \) and a supremum \(\top = \cup L = \cap \emptyset \)

The complement may not exist for all elements of \(L \) and may not be unique. Any finite lattice is complete.

Lattices

\[\langle L, \sqsubseteq, \lor, \land \rangle \]

- \(\langle L, \sqsubseteq \rangle \) is a partial order
- The lub \(x \lor y \) exists for all \(x, y \in L \) (whence for any finite subset of \(L \))
- The glb \(x \land y \) exists for all \(x, y \in L \) (whence for any finite subset of \(L \))

The lub/glb might not exist for infinite subsets of \(L \).

Examples of (Complete) Lattices
Duality Principle

- The dual of \(\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap, \sqcap \rangle \) is \(\langle L, \sqsupseteq, \top, \bot, \sqcap, \sqcup, \sqcap \rangle \)
- If a statement is true in lattice theory, its dual is also true
- Hence, there is no need for a dual of abstract interpretation theory \(^\text{40}\)!

\(^{40}\) Despite numerous counter-examples, see e.g. E.M. Clarke, O. Grumberg, and D.E. Long, Model Checking and Abstraction, TOPLAS 16:5(1512–1542), 1994.

Collecting Semantics

- The strongest property of a system \(p \in \mathcal{P} \) is its semantics \(\{S[p]\} \), called the collecting semantics \(C[p] \triangleq \{S[p]\} \).

Verification

- The satisfaction of a specification \(P \in \mathcal{P} \) by a system \(p \) (more precisely by the system semantics \(S[p] \)) is

\[S[p] \subseteq P \]

- Satisfaction can equivalently be defined as the proof that

\[C[p] \subseteq P \]

i.e. the strongest program property implies its specification.
Undecidability

- The proof that \(C[p] \subseteq P \) is not mechanizable (Gödel, Turing).

Abstraction

To prove

\[C[p] \subseteq P \]

one can use a sound over-approximation of the collecting semantics

\[C[p] \subseteq C[P] \]

and a sound under-approximation of the property

\[P \subseteq P \]

and make the correctness proof in the abstract

\[C[p] \subseteq P \]

Abstract Domain

- For automated proofs, \(C[p] \) and \(P \) must be computer-representable

- Hence, they are not chosen in the mathematical concrete domain

\[\langle P, \subseteq \rangle \]

but in a computer-representable abstract domain

\[\langle P, \subseteq \rangle \]
Concretization Function

- The abstract to concrete correspondence is given by a concretization function
 \[\gamma \in \overline{P} \mapsto P \]
 providing the meaning \(\gamma(P) \) of abstract properties \(P \).

- For abstract reasonings to be valid in the concrete, \(\gamma \) should preserve the abstract implication
 \[\forall Q_1, Q_2 \in \overline{P} : (Q_1 \sqsubseteq Q_2) \implies (\gamma(Q_1) \subseteq \gamma(Q_2)) \]

Soundness of the Abstraction

- The soundness of the abstract over-approximation of the collecting semantics is now
 \[C[p] \subseteq \overline{\gamma(C[p])} \]

- The soundness of the abstract under-approximation of the property is now
 \[\gamma(P) \subseteq P \]

Abstract Proofs

- Then, the abstract proof
 \[C[p] \subseteq P \]
 implies
 \[\gamma(C[p]) \subseteq \gamma(P) \]
 and by soundness of the abstraction
 \[C[p] \subseteq \gamma(C[p]) \quad \text{and} \quad \gamma(P) \subseteq P \]
 we have proved correctness in the concrete
 \[C[p] \subseteq P . \]

Galois Connections
Best Abstraction

- If we want to over-approximate a disk in two dimensions by a polyhedron there is no best (smallest) one, as shown by Euclid.

- However if we want to over-approximate a disk by a rectangular parallelepiped which sides are parallel to the axes, then there is definitely a best (smallest) one.

Best Abstraction (Cont’d)

- In case of best over-approximation, there is an abstraction function

\[\alpha \in \mathcal{P} \mapsto \overline{P} \]

such that

- for all \(P \in \mathcal{P} \), \(\alpha(P) \in \overline{P} \) is an abstract over-approximation of \(P \), so

\[P \subseteq \gamma(\alpha(P)) \]

and,

\[\forall Q \in \overline{P} : P \subseteq \gamma(Q) \implies \alpha(P) \subseteq Q \]

(whence \(\gamma(\alpha(P)) \subseteq \gamma(Q) \) by monotony of \(\gamma \)).

Best Abstraction and Galois Connection

- It follows in that case of existence of a best abstraction, that the pair \(\langle \alpha, \gamma \rangle \) is a Galois connection [14].

\[\forall P \in \mathcal{P} : \forall Q \in \overline{P} : P \subseteq \gamma(Q) \iff \alpha(P) \subseteq Q \]

written

\[\langle \mathcal{P}, \subseteq \rangle \xleftarrow{\gamma} \xrightarrow{\alpha} \langle \overline{P}, \subseteq \rangle \]

Reference

Galois Connection Preserve Existing Joins

If
\[
\text{poset} \rightarrow \langle L, \sqsubseteq \rangle \xleftarrow{\gamma} \langle L, \sqsupseteq \rangle \xrightarrow{\alpha} \text{poset}
\]
and \(\bigsqcup_i X_i \) exists in \(\langle L, \sqsubseteq \rangle \) then
\[
\alpha(\bigsqcup_i X_i) = \bigsqcup_i \alpha(X_i)
\]
Reciprocally, if \(\alpha \) preserves existing joins then it has a unique adjoint \(\gamma \) satisfying Eq. (1)

Examples of Abstractions I

I.1 — Traditional View of Program Properties

- In the operational trace semantics example \(D \triangleq \wp(\mathcal{T}) \) so properties are
\[
\mathcal{P} \triangleq \wp(\wp(\mathcal{T}))
\]
where \(\mathcal{T} \) is the set of traces.
- The traditional view of program properties as set of traces [15], [16] is an abstraction.

References

I.1 — Example of Program Properties

- An example of program property is
\[
P_{01} \triangleq \{ \sigma_0 \mid \sigma \in \mathcal{T} \}, \{ \sigma_1 \mid \sigma \in \mathcal{T} \} \in \mathcal{P}
\]
specifying that executions of the system always terminate with 0 or always terminate with 1.
- This cannot be expressed in the traditional view of program properties as set of traces [15], [16].
I.1 — Looseness Abstraction

- This traditional understanding of a program property is given by the looseness abstraction
 \[\alpha_\cup \in \wp(\wp(\mathcal{T})) \mapsto \wp(\mathcal{T}), \]
 \[\alpha_\cup(P) \triangleq \bigcup P \]
 with concretization
 \[\gamma_\cup \in \wp(\mathcal{T}) \mapsto \wp(\wp(\mathcal{T})), \]
 \[\gamma_\cup(Q) \triangleq \wp(Q). \]

- An example is \(\alpha_\cup(P_{01}) = \{\sigma_0, \sigma_1 \mid \sigma \in \mathcal{T}\} \) specifying that execution always terminate, either with 0 or with 1.

I.2 — Transition Abstraction

- The transition abstraction
 \[\alpha_\tau \in \wp(\mathcal{T}) \mapsto \wp(\Sigma \times \Sigma) \]
 collects transitions along traces.
 \[\alpha_\tau(\sigma_0 \ldots \sigma_n) \triangleq \{\sigma_i \rightarrow \sigma_{i+1} \mid 0 \leq i < n\}, \]
 \[\alpha_\tau(\sigma_0 \ldots \sigma_i \ldots) \triangleq \{\sigma_i \rightarrow \sigma_{i+1} \mid i \geq 0\}, \]
 and
 \[\alpha_\tau(T) \triangleq \bigcup \{\alpha(\sigma) \mid \sigma \in T\}. \]

- The concretization \(\gamma_\tau \in \wp(\Sigma \times \Sigma) \mapsto \wp(\mathcal{T}) \) is
 \[\gamma_\tau(\tau) \triangleq \bigcup_{n=1}^{+\infty} \{\sigma \in [0,n] \mapsto \Sigma \mid \forall i < n : (\sigma_i, \sigma_{i+1}) \in \tau\}. \]

I.2 — Transition System Abstraction

- The abstraction may also collect initial states
 \[\alpha_\iota(\mathcal{T}) \triangleq \{\sigma_0 \mid \sigma \in \mathcal{T}\} \]
 so \(\alpha_{\iota\tau}(T) \triangleq \langle \alpha_\iota(T), \alpha_\tau(T) \rangle. \)

- We let
 \[\gamma_{\iota\tau} \triangleq \gamma_{\iota}(\tau) \cap \gamma_{\tau}(\iota) \]
 where \(\gamma_{\iota}(\iota) \triangleq \{\sigma \in \mathcal{T} \mid \sigma_0 \in \iota\} \)
 \(\langle \alpha_{\iota\tau}, \gamma_{\iota\tau} \rangle \) is a Galois connection.
I.2 — Transition System Abstraction (Cont’d)

- The transition system abstraction \[17\] underlies small-step operational semantics.
- This is an approximation since traces can express properties not expressible by a transition system (like fairness of parallel processes).

References

I.3 — Input-Output Abstraction

- The input-output abstraction \[\alpha_{io} \in \mathcal{P}(T) \mapsto \mathcal{P}(\Sigma \times (\Sigma \cup \{\perp\}))\]
 collects initial and final states of traces (and maybe \(\perp\) for infinite traces to track nontermination).

\[
\begin{align*}
\alpha_{io}(\sigma_0 \ldots \sigma_n) &= (\sigma_0, \sigma_n), \\
\alpha_{io}(\sigma_0 \ldots \sigma_i \ldots) &= (\sigma_0, \perp), \\
\text{and} \quad \alpha_{io}(T) &= \{\alpha_{io}(\sigma) \mid \sigma \in T\}.
\end{align*}
\]
I.3 — Input-Output Abstraction (Cont’d)

- The input-output abstraction α_{io} underlies
 - denotational semantics, as well as big-step operational, predicate transformer and axiomatic semantics extended to nontermination [21], and
 - interprocedural static analysis using relational procedure summaries [18], [19], [20].

References

I.4 — Reachability Abstraction

- The reachability abstraction collects states along traces.

\[\alpha_T \in \wp(T) \Rightarrow \wp(\Sigma)\]

\[\alpha_T(T) \triangleq \{\sigma_i \mid \exists n \in [0, +\infty] : \sigma \in \Sigma^n \cap T \land i \in [0, n]\}\]

\[\subseteq \{s' \in \Sigma \mid \exists s \in i : \langle s, s' \rangle \in \tau^*\}\]

where $\alpha_{i,T}(T) = \langle \nu, \tau \rangle$ is the transition abstraction and τ^* is the reflexive transitive closure of τ.

\[\text{I.4 — Reachability Abstraction (System Invariant)}\]

\[\text{EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007} \quad \text{— 187 —} \quad \copyright \text{ P. Cousot} \]

\[\text{EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007} \quad \text{— 188 —} \quad \copyright \text{ P. Cousot} \]

\[\text{EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007} \quad \text{— 189 —} \quad \copyright \text{ P. Cousot} \]
I.4 — Invariants

- Expressed in logical form, the reachability abstraction \(\alpha \) provides a system invariant
 \[\alpha(C[p]) \]
 that is the set of all states that can be reached along some execution of the system \(p \) [22], [23].

References

I.4 — Floyd’s Proof Method

Floyd’s method [24] to **prove a reachability property**

\[\alpha_r(T) \subseteq P \]

consists in finding an **invariant** \(I \) stronger than \(P \), i.e.

\[I \subseteq P \]

which is **inductive**, i.e.

\[\iota \subseteq I \quad \text{and} \quad \tau[I] \subseteq I \]

where \(\tau[I] \equiv \{s' \mid \exists s \in I : \langle s, s' \rangle \in \tau\} \) is the right-image transformer for the transition system \(\langle \iota, \tau \rangle = \alpha_{r}(T) \).

References

I.4 — Floyd’s Proof Method (Cont’d)

- This induction principle has many equivalent variants [25], all underlying different static analysis methods (the equivalence may not be preserved by abstraction).
- In particular backward analyzes are based on
 \[\langle \tau^{-1}, \alpha_{\varphi}(T) \rangle \]
 where \(\tau^{-1} \) is the inverse of \(\tau \)
 and \(\alpha_{\varphi}(T) = \{ \sigma_{n-1} \mid n < +\infty \wedge \sigma \in T \cap \Sigma^n \} \)
 collects final states.

References

Example of Absence of Best Abstraction

- \(\mathbb{Z} \): set of integers
- \(\varphi(\mathbb{Z}) \): integer properties \[^{42}\]
 - \{\(\bot, \top, \hat{\bot}, \hat{\top} \}\}: abstract signs, with
 \[
 \gamma(\bot) = \emptyset \quad \gamma(\top) = \mathbb{Z} \\
 \gamma(\hat{\bot}) = \{n \in \mathbb{Z} \mid n \geq 0\} \quad \gamma(\hat{\top}) = \{n \in \mathbb{Z} \mid n \leq 0\}
 \]
- 0 has no best abstraction (can be either \(\hat{\bot} \) or \(\hat{\top} \))

[^42]: e.g. possible values of an integer variable at runtime

In Absence of Best Abstraction (Cont’d)

- Among the possible choices, one may be locally preferable, e.g.
 - \(0 + \hat{\bot}, 0 \) should be abstracted to \(\hat{\bot} \) (since \(\hat{\bot} + \hat{\bot} = \hat{\bot} \) while \(\hat{\bot} + \hat{\bot} = \mathbb{Z} \))
 - \(0 + \hat{\top}, 0 \) should be abstracted to \(\hat{\top} \) (since \(\hat{\top} + \hat{\top} = \hat{\top} \) while \(\hat{\top} + \hat{\top} = \mathbb{Z} \))
What to do in Absence of Best Abstraction

1. **Close the abstract domain by intersection** (Moore family)
 e.g. \(\{ \bot, +, 0, \cdot, \top \} \): abstract signs (with \(\gamma(0) = \{0\} \) so \(0 + + = + \) and \(0 + \cdot = \cdot \))
 \(\Rightarrow \) In general, there are infinitely many possible choices so the Moore closure is quite complex.

2. **Try all possible choices** and locally keep the best one.
 \(\Rightarrow \) Make arbitrary choices.

43 e.g. polyhedra can be closed in convex sets much harder to represent in machines
44 In general impossible due to combinatorial explosion
45 Using a concretization function \(\gamma \) this choice can be made locally, while with an \(\alpha \) it is made globally, once for all, see P. Cousot & R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computation, 2(4):511—547, Aug. 1992.

Effective computable approximations of an [in]finite set of points;

\(\langle x, y \rangle \in \{ (19, 77), (20, 07), \ldots \} \)

Effective computable approximations of an [in]finite set of points; Signs

\[
\begin{align*}
\begin{cases}
 x \geq 0 \\
 y \geq 0
\end{cases}
\end{align*}
\]

Non-relational

Best abstraction (with 0).

Effective computable approximations of an [in]finite set of points; Intervals

\[\begin{align*}
x & \in [19, 77] \\
y & \in [20, 07]
\end{align*} \]

Non-relational

Best abstraction.

Effective computable approximations of an [in]finite set of points; Octagons

\[\begin{align*}
1 & \leq x \leq 9 \\
x + y & \leq 77 \\
1 & \leq y \leq 9 \\
x - y & \leq 99
\end{align*} \]

Weakly relational

Best abstraction.

Effective computable approximations of an [in]finite set of points; Polyhedra

\[\begin{align*}
19x + 77y & \leq 2004 \\
20x + 03y & \geq 0
\end{align*} \]

Relational

No best abstraction.

Effective computable approximations of an [in]finite set of points; Simple congruences

\[\begin{align*}
x & = 19 \text{ mod } 77 \\
y & = 20 \text{ mod } 99
\end{align*} \]

Non-relational

Best abstraction.

Effective computable approximations of an (in)finite set of points; Linear congruences

\begin{align*}
1x + 9y & = 7 \mod 8 \\
2x - 1y & = 9 \mod 9
\end{align*}

Relational

Best abstraction.

Properties of Abstractions

An abstraction is sound \[26\] if the proof in the abstract implies the concrete property

\[C[p] \subseteq P \quad \implies \quad C’[p] \subseteq P . \]

Abstract interpretation provides an effective theory to design sound abstractions.

References

Completeness of Abstractions

An abstraction is **complete** [27] if the fact that the system is correct can always be proved in the abstract

\[C[p] \subseteq P \implies \overline{C}[p] \subseteq \overline{P}. \]

Refinement of Abstractions

- False alarms can always be avoided by **refinement** of the abstraction [28].

References

Example of Refined Abstraction (Static Analysis)

No error is reachable in the abstract whence in the concrete ⇒ the proof succeeds in the abstract!

References

Incompleteness of the Refinement of Abstractions

– This refinement is not effective (i.e. the algorithm does not terminate in general).
– For example in model-checking any abstraction of a trace logic may be incomplete [29].

Adequation of Abstractions

– The reachability abstraction is sound and complete for invariance/safety proofs [53].
– That means that if \(S \subseteq \Sigma \) is a set of safe states so that \(\gamma_r(S) \) is a set of safe traces then the safety proof \(C[p] \subseteq \gamma_r(S) \) can always be done as \(\alpha_r(C[p]) \subseteq S \).
– This is the fundamental remark of Floyd [30] that it is not necessary to reason on traces to prove invariance properties.

References

53 Again, assuming \(T = \gamma_r(\alpha_r(T)) \)

Adequation of Abstractions (Cont’d)

– This does not mean that this abstraction is adequate, that is, informally, the most simple way to do the proof.
– For example Burstall’s intermittent assertions may be simpler than Floyd’s invariant assertions [31]
– or, in static analysis trace partitioning may be more adequate that state-based reachability analysis [32].

References

Combinations of Abstractions

Reference

Combinations of Abstractions

Reference

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 — 219 — © P. Cousot

Reduced Product of Abstract Domains

To combine abstractions

\[
\langle \mathcal{D}_1, \subseteq \rangle \xrightarrow{\gamma_1}{\alpha_1} \langle \mathcal{D}^1_1, \subseteq_1 \rangle \quad \text{and} \quad \langle \mathcal{D}_2, \subseteq \rangle \xrightarrow{\gamma_2}{\alpha_2} \langle \mathcal{D}^2_2, \subseteq_2 \rangle
\]

the reduced product is

\[
\alpha(X) \triangleq \cap\{\langle x, y \rangle \mid X \subseteq \gamma_1(x) \land X \subseteq \gamma_2(y)\}
\]

such that \(\subseteq \triangleq \subseteq_1 \times \subseteq_2 \) and

\[
\langle \mathcal{D}, \subseteq \rangle \xrightarrow{\gamma_1 \times \gamma_2}{\alpha} \langle \alpha(\mathcal{D}), \subseteq \rangle
\]

Example: \(x \in [1, 9] \land x \mod 2 = 0 \) reduces to \(x \in [2, 8] \land x \mod 2 = 0 \)

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 — 220 — © P. Cousot

Reduction in Astrée

- The computation of an abstract transformer \(\mathcal{F}_1 \) for an abstract domain \(\mathcal{D}_1 \) can use an abstract invariant computed by another abstract domain \(\mathcal{D}_2 \)
- The two abstract domains communicate symbolically through a channel \(^{54} \)
- A fixed communication order is used (so reduction cannot prevent to widening/narrowing convergence enforcement)

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 — 221 — © P. Cousot

Transformers

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 — 222 — © P. Cousot
Semantic Transformer

- The concrete/semantic transformer F describes the effect of program commands: if P describes behaviors before/after a command, then $F(P)$ describes behaviors after/before this command $F \in \mathcal{P}^{\text{mon}} \Rightarrow P$

- Assumed to be monotonic: $\forall P, P' \in \mathcal{P} : (P \subseteq P') \implies (F(P) \subseteq F(P'))$

- Intuition: the more behaviors before/after a command, the more after/before the command

Abstract Transformer

- The abstract transformer \overline{F} is $\overline{F} \in \overline{\mathcal{P}} \mapsto \overline{P}$

- Might not be monotonic (because of non-monotonic widening/narrowing, see later)

Sound Abstract Transformer

- The abstract transformer \overline{F} overapproximates the concrete transformer F (for all abstract properties \overline{P} considered in the concrete $\gamma(\overline{P})$):

$$\forall \overline{P} \in \overline{\mathcal{P}} : F(\gamma(\overline{P})) \subseteq \gamma(F(\overline{P}))$$

- We speak of (exact) abstraction when

$$\forall \overline{P} \in \overline{\mathcal{P}} : F(\gamma(\overline{P})) = \gamma(F(\overline{P}))$$

Best Abstract Transformer

Given $\langle \subseteq, \mathcal{P} \rangle$, $\langle \subseteq, \overline{\mathcal{P}} \rangle$, $\gamma \in \overline{\mathcal{P}} \mapsto \mathcal{P}$ and $F \in \mathcal{P}^{\text{mon}} \mapsto \mathcal{P}$, $\overline{F} \in \overline{\mathcal{P}} \mapsto \overline{\mathcal{P}}$ is the best approximation of F iff

(1) \overline{F} is an over approximation of F:

$$\forall P \in \mathcal{P}, \overline{P} \in \overline{\mathcal{P}} : (P \subseteq \gamma(\overline{P})) \implies (F(P) \subseteq \gamma(F(\overline{P})))$$
(2) F is the most precise over approximation of F: if
\[\forall P \in \mathcal{P}, \bar{P} \in \bar{\mathcal{P}} : (P \subseteq \gamma(\bar{P})) \implies (F(P) \subseteq \gamma(G(\bar{P}))) \]
then
\[\forall P \in \bar{\mathcal{P}} : F(\bar{P}) \subseteq \bar{\gamma}(\bar{P}) \].

Given γ, the best abstract transformer might not exist!

Existence of a Best Abstract Transformer for Galois Connections

If
\[(\mathcal{P}, \subseteq) \xrightarrow{\alpha} (\bar{\mathcal{P}}, \subseteq) \]
then the best overapproximation of $F \in \mathcal{P} \xrightarrow{\text{incr}} \bar{\mathcal{P}}$ is
\[F \triangleq \alpha \circ F \circ \gamma \].

Proof
- $P \subseteq \gamma(\bar{P})$ \[\implies F(P) \subseteq F(\gamma(\bar{P})) \] \text{(monotony of F)}
 \[\implies \alpha(F(P)) \subseteq \alpha(F(\gamma(\bar{P}))) \] \text{(monotony of α)}
 \[\implies F(P) \subseteq \gamma(\alpha \circ F \circ \gamma(\bar{P})) \] \text{def. Galois connection}
 proving $\alpha \circ F \circ \gamma$ to be an abstract overapproximation of F.
- If G is an abstract overapproximation of F:
 \[\forall P \in \mathcal{P}, \bar{P} \in \bar{\mathcal{P}} : (P \subseteq \gamma(\bar{P})) \implies (F(P) \subseteq \gamma(G(\bar{P}))) \]
then
\[\implies F(\gamma(\bar{P})) \subseteq \gamma(G(\bar{P})) \] \text{for $P = \gamma(\bar{P})$}
\[\implies \alpha \circ F \circ \gamma(\bar{P}) \subseteq G(\bar{P}) \] \text{def. Galois connection}
 proving $\alpha \circ F \circ \gamma$ to be the best abstract overapproximation of F.

Fixpoints
Fixpoint

- A fixpoint of F is X such that $X = F(X)$
- May not exist, may have [ininitely] many
- May have a least one $\text{lfp} \subseteq F$ for a partial order \subseteq:
 - $F(\text{lfp} \subseteq F) = \text{lfp} \subseteq F$ \quad \text{fixpoint}
 - $X = F(X) \implies \text{lfp} \subseteq F \subseteq X$ \quad \text{least one}

Fixpoint Theorem I (Tarski)

- The set of fixpoints of a monotone operator $F \in L^{\mon} \Rightarrow L$ on a complete lattice $(L, \subseteq, \bot, \top, \sqcap, \sqcup)$ is a complete lattice55
- The least fixpoint is the least post-fixpoint:

$$\text{lfp} \subseteq F = \bigcap \{ x \in L \mid F(x) \subseteq x \}$$

55 Hence, not empty!

Fixpoint Induction

$$(\text{lfp} \subseteq F \subseteq P) \iff (\exists I : F(I) \subseteq I \land I \subseteq P)$$

Soundness \Leftarrow : $I \in \{ x \in L \mid F(x) \subseteq x \}$ so $\text{lfp} \subseteq F = \bigcap \{ x \in L \mid F(x) \subseteq x \} \subseteq I \subseteq P$

Completeness \Rightarrow : choose $I = \text{lfp} \subseteq F$

Examples:
- Floyd’s invariance proof method
- Static analysis: any postfixpoint overapproximates the least fixpoint

Fixpoint Theorem II (Kleene)

- The transfinite iterates of F on a poset (L, \subseteq)
 - $X^0 = \bot$
 - $X^{\eta+1} \triangleq F(X^\eta)$ \quad $\eta + 1$ successor ordinal
 - $X^\lambda \triangleq \bigcup_{\eta < \lambda} X^\eta$ \quad λ limit ordinal
- If F is monotone and the lubs \sqcup do exist56 then the iterates are increasing, ultimately stationnary, with limit $\text{lfp} \subseteq F$

So $\text{lfp} \subseteq F$ can always be computed iteratively.

56 e.g. in a complete lattice or a cpo for which lubs of increasing chains do exist.
Example: Reflexive Transitive Closure (Cont’d)

\[\tau^* \in \wp(\Sigma \times \Sigma) \]

Reflexive transitive closure

\[\tau^\ast \]

Example: Reflexive Transitive Closure (Cont’d)

\[\tau^* = 1_{\Sigma} \cup \tau \circ \tau^* \]

fixpoint \(^{57}\)

\[\text{least one} \]

so \[\tau^* = \text{lfp} F \] where \[F(X) = 1_{\Sigma} \cup \tau \circ X \]

\(^{57}\) \[L = \{ (x, x) \mid x \in \Sigma \} \]

\[r_1 = r_2 = \{ (x, z) \mid \exists y : (x, y) \in r_1 \land (y, z) \in r_2 \} \]
Example: Reflexive Transitive Closure (Cont’d)

\[\tau^* = \text{lfp} \subseteq F \quad \text{where} \quad F(X) = 1_{\Sigma} \cup \tau \circ X \]

and

\[t^0 = 1_{\Sigma} = \{ \langle x, x \rangle \mid x \in \Sigma \}, \]

\[t^{n+1} = t^n \circ t = t \circ \tau^n \]

Proof

\[X^0 = \emptyset \quad \text{basis} \]

\[X^1 = \tau^0 \cup X^0 \circ \tau = \tau^0 \]

\[X^2 = \tau^0 \cup X^1 \circ \tau = \tau^0 \cup \tau^0 \circ \tau = \tau^0 \cup \tau^1 \]

\[\ldots \ldots \]

\[X^n = \bigcup_{0 \leq i < n} \tau^i \quad \text{(induction hypothesis)} \]

Example: Reflexive Transitive Closure (Cont’d)

\[\tau^* = \text{lfp} \subseteq \lambda X. \tau^0 \cup X \circ \tau \]

Proof

\[X^0 = \emptyset \quad \text{basis} \]

\[X^1 = \tau^0 \cup X^0 \circ \tau = \tau^0 \]

\[X^2 = \tau^0 \cup X^1 \circ \tau = \tau^0 \cup \tau^0 \circ \tau = \tau^0 \cup \tau^1 \]

\[\ldots \ldots \]

\[X^n = \bigcup_{0 \leq i < n} \tau^i \quad \text{(induct on hypotheses)} \]

Example: Reflexive Transitive Closure (Cont’d)

\[X^{n+1} = \tau^0 \cup X^n \circ \tau \quad \text{induction} \]

\[= \tau^0 \cup \left(\bigcup_{0 \leq i < n} \tau^i \circ \tau \right) \]

\[= \tau^0 \cup \bigcup_{1 \leq i < n+1} (\tau^{i-1}) \circ \tau \]

\[= \tau^0 \cup \bigcup_{1 \leq j < n+1} \tau^j \circ \tau \]

\[= \tau^0 \cup \tau \]

\[\ldots \ldots \]

\[X^\omega = \bigcup_{n \geq 0} X^n \quad \text{limit} \]

\[= \bigcup_{n \geq 0} \bigcup_{0 \leq i < n} \tau^i \]

\[= \bigcup_{n \geq 0} \tau^n \]

\[= \tau^* \]
Exact Fixpoint Abstraction

- \(F \in L \mapsto L \) monotonic on the complete lattice \((L, \subseteq, \perp, \top, \sqcup, \sqcap) \)
- \(\overline{F} \in \overline{L} \mapsto \overline{L} \) monotonic on \((\overline{L}, \subseteq, \overline{\top}, \overline{\bot}, \sqcup, \sqcap) \)
- \(\langle L, \subseteq \rangle \not\xrightarrow{\alpha} \langle \overline{L}, \subseteq \rangle \) Galois connection
- \(\alpha \circ F = \overline{F} \circ \alpha \) Commutation

implies

\[
\alpha(\text{lfp} \subseteq F) = \text{lfp} \subseteq \overline{F}
\]
Proof

Let X^δ, $\delta \in \mathcal{O}$ stationary at rank ϵ and Y^δ, $\delta \in \mathcal{O}$ stationary at ϵ' be the iterates for F and \overline{F}:

- $\alpha(X^0) = \alpha(\bot) = \overline{\bot} = Y^0$
- $\alpha(X^\delta) = Y^\delta$

Since $\bot \subseteq \gamma(\overline{\bot})$ so

$\Rightarrow \overline{F}(\alpha(X^\delta)) = \overline{F}(Y^\delta)$

$\alpha(F(X^\delta)) = F(Y^\delta)$

$\Rightarrow \alpha(X^{\delta+1}) = Y^{\delta+1}$

Example of Exact Fixpoint Abstraction: Reachable States

- $\alpha(X^\delta) = Y^\delta$, $\delta < \lambda$, λ limit ordinal

$\Rightarrow \bigsqcup_{\delta < \lambda} \alpha(X^\delta) = \bigsqcup_{\delta < \lambda} Y^\delta$

Induction hypothesis

$\Rightarrow \alpha(\bigsqcup_{\delta < \lambda} X^\delta) = \bigsqcup_{\delta < \lambda} Y^\delta$

$\Rightarrow \alpha(X^\lambda) = Y^\lambda$

Def. iterates

$\alpha(lfp F) = \alpha(X^\epsilon) = \alpha(X^{\max(\epsilon, \epsilon')}) = Y^{\max(\epsilon, \epsilon')} = Y^{\epsilon'} = lfp F$

Example: Transition System

- (Σ, τ)

Transition system
Example: Reachable States

- $\mathcal{I} \subseteq \Sigma$
- $\mathcal{R} \triangleq \{ s' \mid \exists s \in \mathcal{I} : \tau^*(s, s') \}$

Initial states
Reachable states

![Diagram of reachable states]

Example: Post-Image

$$\text{post}[^{\tau}] \mathcal{I} = \{ s' \mid \exists s \in \mathcal{I} : \langle s, s' \rangle \in \tau \}$$

We have $\text{post}[\bigcup_{i \in \Delta} \tau^i] \mathcal{I} = \bigcup_{i \in \Delta} \text{post}[\tau^i] \mathcal{I}$ so $\alpha = \lambda \tau \cdot \text{post}[\tau] \mathcal{I}$ is the lower adjoint of a Galois connection.

![Diagram of post-image]

Example: Postimage Galois Connection

Given $\mathcal{I} \in \wp(\Sigma)$,

$$\langle \wp(\Sigma \times \Sigma), \subseteq \rangle \xrightarrow{\gamma} \langle \wp(\Sigma), \subseteq \rangle$$

where

$$\gamma(R) \triangleq \{ \langle s, s' \rangle \mid (s \in \mathcal{I}) \Rightarrow (s' \in R) \}$$

![Diagram of postimage Galois connection]
Example: Reachable States (Cont’d)

Reachability is an abstraction of the transitive closure:

\[\alpha \in \wp(\Sigma \times \Sigma) \mapsto \wp(\Sigma) \]

\[\alpha(t) \triangleq \text{post}[t]I \triangleq \{ s' \mid \exists s \in I : t(s, s') \} \]

\[R = \alpha(\tau^*) \]

\[= \alpha(\text{lfp} F) \quad \text{where} \quad F(X) = 1_\Sigma \cup \tau \circ X \]

Example: Discovering \(F \) by calculus

\[\alpha \circ F \]

\[\alpha \circ (\lambda X \cdot \tau^0 \cup X \circ \tau) \]

\[= \lambda X \cdot \alpha(\tau^0 \cup X \circ \tau) \]

\[= \lambda X \cdot \text{post}[\tau^0]I \cup \text{post}[X \circ \tau]I \]

We go on by cases.
\[
\text{post}(\tau^0|\mathcal{I})
= \{ s' : \exists s \in \mathcal{I} : (s, s') \in \tau^0 \}
= \{ s' : \exists s \in \mathcal{I} : (s, s') \in \{ (s, s') : s \in S \} \}
= \{ s' : \exists s \in \mathcal{I} \}
= \mathcal{I}
\]

\[
\text{post}[X \circ \tau]\mathcal{I}
= \{ s' : \exists s \in \mathcal{I} : (s, s') \in (X \circ \tau) \}
= \{ s' : \exists s \in \mathcal{I} : (s, s') \in \{ (s, s'') : \exists s'' : (s, s'') \in X \land (s', s'') \in \tau \} \}
= \{ s' : \exists s'' \in S : (s, s'') \in X \land (s', s'') \in \tau \}
= \{ s' : \exists s'' \in S : s'' \in \{ s'' : \exists s \in \mathcal{I} : (s, s'') \in X \} \land (s', s'') \in \tau \}
= \{ s' : \exists s'' \in S : s'' \in \text{post}[X]\mathcal{I} \land (s', s'') \in \tau \}
= \text{post}[\tau](\text{post}[X]\mathcal{I})
= \text{post}[\tau](\alpha(X))
\]

\[
\alpha \circ F^i = \alpha \circ (\lambda X \cdot \tau^0 \cup X \circ \tau) = \ldots
= \lambda X \cdot \text{post}[\tau^0]\mathcal{I} \cup \text{post}[X \circ \tau]\mathcal{I}
= \lambda X \cdot \mathcal{I} \cup \text{post}[\tau](\alpha(X))
= \lambda X \cdot F(\alpha(X))
\]

by defining:
\[
F = \lambda X \cdot \mathcal{I} \cup \text{post}[\tau](X)
\]

proving:
\[
\text{post}[\tau^*](\mathcal{I}) = \text{lfp}(\lambda X \cdot \mathcal{I} \cup \text{post}[\tau](X))
\]

Example: iteration

![Diagram showing the iteration process](EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 — 262 — P. Cousot)
Fixpoint Approximation

- \(F \in L \mapsto L \) monotonic on the complete lattice \((L, \subseteq, \perp, T, \sqcup, \sqcap) \)
- \(\overline{F} \in \overline{L} \mapsto \overline{L} \) on \((\overline{L}, \subseteq) \)
- \(\gamma \in \overline{L} \mapsto L \), monotonic, such that \(F \circ \gamma \subseteq \gamma \circ \overline{F} \)

implies

\[\overline{F}(X) \subseteq X \Rightarrow \text{lfp} \subseteq F \subseteq \gamma(X) \]

Proof

\[
\begin{align*}
F(X) & \subseteq X \\
\implies & \gamma(\overline{F}(X)) \subseteq \gamma(X) \\
\implies & F(\gamma(X)) \subseteq \gamma(X) \\
\implies & \text{lfp} \subseteq F \subseteq \gamma(X) \\
\text{\(\gamma \) monotone} & \quad F \circ \gamma \subseteq \gamma \circ F \\
\text{Tarski} &
\end{align*}
\]

Example: Sign Analysis

1) Reachable states of \(X \) in

\[
\begin{align*}
X_0 &= Z \\
X_1 &= \{100\} \cup X_3 \\
X_2 &= X_1 \cap \{z \in \mathbb{Z} \mid z > 0\} \\
X_3 &= \{z - 1 \mid z \in X_2\} \\
X_4 &= X_1 \cap \{z \in \mathbb{Z} \mid z \leq 0\} \\
\end{align*}
\]

of the form:

\[
\bar{X} = F(X) \\
\tilde{X} = (X_0, X_1, \ldots, X_4)
\]
Example: Sign Analysis (Cont’d)

2) Overapproximation by the sign of X in

$0: X := 100;$
$1: \text{while } X > 0 \text{ do}$
$2: \quad X := X - 1;$
$3: \quad \text{od};$

$4: \quad \overline{X} = \{X_0, X_1, \ldots, X_4\}$

$X_0 = \top$
$X_1 = + \sqcup X_3$
$X_2 = X_1 \sqcap +$
$X_3 = X_2 \ominus 1$
$X_4 = X_1 \sqcap -$

Widening/Narrowing

3) Iterative resolution

of the form

$\overline{X} = \overline{F}(\overline{X})$

where

$\overline{X} = (X_0, X_1, \ldots, X_4)$

Iterate	0	1	2	3
X_0 | \top | \top | \top | \top
X_1 | \top | \top | \top | \top
X_2 | \top | \top | \top | \top
X_3 | \top | \top | \top | \top
X_4 | \top | \top | \top | \top

Convergence Problem

- The iterates of a monotone transformer $\overline{F} \in \mathcal{L} \mapsto \mathcal{L}$ on a cpo $(\mathcal{L}, \sqsubseteq)$ may not converge
- The interval analysis of

\[
x := 1; \text{ while true do } x := x + 2 \text{ od}
\]

consists in solving

$X = [1, 1] \sqcup (X + [2, 2])$.

Iteratively,

$\emptyset, [1, 1], [1, 3], \ldots, [1, 2n + 1], \ldots$
Convergence Hypotheses

- We can assume \mathcal{L}
 - to be finite \(^{58}\), or
 - to satisfy the ascending chain condition (ACC)
 (so $X^0 = \bot, \ldots, X^{n+1} = \mathcal{F}(X^n)$, \ldots which is ascending is finite)
- This is provably less precise than using \mathcal{L} not satisfying the ACC

\(^{58}\) As in Boolean model-checking

Enforcing Convergence

- The convergence of the iterates
 $X^0 = \bot, \ldots, X^{n+1} = \mathcal{F}(X^n), \ldots$
 of a monotone transformer $\mathcal{F} \in \mathcal{L} \mapssto \mathcal{L}$ on a cpo $(\mathcal{L}, \sqsubseteq)$
 can be forced to converge to an over-approximation of $\operatorname{lfp}_\mathcal{L} \mathcal{F}$ using a widening
 - $X^0 = \bot$
 - $X^{n+1} = X^n \downarrow \mathcal{F}(X^n)$ if $\mathcal{F}(X^n) \not\sqsubseteq X^n$
 - $X^{\ell+1} = X^\ell$ convergence to X^ℓ if $\mathcal{F}(X^\ell) \sqsubseteq X^\ell$

Interval Abstract Domain

The interval abstract domain does not satisfy the ACC

Convergence acceleration with widening
Definition of the Widening

- The widening overapproximates:
 \[x \sqsubseteq x \triangledown y \quad y \sqsubseteq x \triangledown y \]

- The widening enforces convergence:
 for all increasing chains
 \[x^0 \sqsubseteq x^1 \sqsubseteq \ldots, \]
 the increasing chain defined by
 \[y^0 = x^0, \ldots, y^{i+1} = y^i \triangledown x^{i+1}, \ldots \]
 is not strictly increasing.

Example of Widening for the Interval Abstract Domain

- \(\mathcal{L} = \{ \bot \} \cup \{ [\ell, u] \mid \ell \in \mathbb{Z} \cup \{-\infty\} \land u \in \mathbb{Z} \cup \{+\infty\} \land \ell \leq u \} \)

- The widening extrapolates unstable bounds to infinity:
 \[
 \bot \triangledown X = X \\
 X \triangledown \bot = X \\
 [\ell_0, u_0] \triangledown [\ell_1, u_1] = \begin{cases}
 \text{false} & \text{if } \ell_1 < \ell_0 \text{ then } -\infty \text{ else } \ell_0, \\
 \text{false} & \text{if } u_0 > u_1 \text{ then } +\infty \text{ else } u_0
 \end{cases}
 \]

Example of Iteration with Widening

- \(x := 1; \text{ while } (x \leq 1000) \text{ do } x := x + 2 \text{ od } \)
- \(X = ([1,1] \sqcup (X + [2,2])) \cap [-\infty,1000] = \overline{F}(X) \)
- \(X^0 = \bot, \)
- \(X^1 = X^0 \triangledown (([1,1] \sqcup (X^0 + [2,2])) \cap [-\infty,1000]) = \bot \triangledown [1,1] = [1,1] \)
- \(X^2 = X^1 \triangledown (([1,1] \sqcup (X^1 + [2,2])) \cap [-\infty,1000]) = [1,1] \triangledown [3,3] = [1, +\infty] \)

Convergence\(^{59}\) accelerated to \(X^\ell = [1, +\infty], \ell = 2 \)

Soundness and Convergence of the Iterates with Widening

- **Soundness:** convergence to \(X^\ell \) such that \(\overline{F}(X^\ell) \sqsubseteq X^\ell \)
 so \(\text{fixp}^E = \cap \{ Y \mid \overline{F}(Y) \sqsubseteq Y \} \sqsubseteq X^\ell \)
- **Convergence:** \(X^0 = \bot, \ldots, X^{i+1} = X^i \triangledown \overline{F}(X^i), \ldots \)
 is not strictly increasing.

\(^{59}\) Tarski’s fixpoint theorem
Widening is not Monotone

- Not monotone.
- For example $[0, 1] \subseteq [0, 2]$ but $[0, 1] \triangledown [0, 2] = [0, +\infty]$
- The limit X^ℓ depends upon the iteration strategy!

Widening Cannot Be Monotone

Proof by contradiction:
- Let \triangledown be a widening operator
- Define $x \triangledown y = \begin{cases} y & \text{if } y \subseteq x \\ x & \text{else} \end{cases}$
- Assume $x \triangledown y = F(x)$ (during iteration)
 then: $x \triangledown y = x \triangledown y \supseteq y$ (soundness)
 $y \triangledown y = y$ (monotony hypothesis)
 $x \triangledown y = y$ (termination)

$\Rightarrow x \triangledown y = y$, by antisymmetry!
$\Rightarrow x \triangledown F(x) = F(x)$ during iteration \Rightarrow convergence cannot be enforced with monotone widening (so widening by finite abstraction is less powerful!)

Improving a Fixpoint Overapproximation

- If $X = F(X)$ and $X \subseteq F(Y) \subseteq Y$ then
- $X = F(X) \subseteq F^n(Y) \subseteq F^{n-1}(Y) \subseteq \ldots \subseteq Y$ ind. hyp.
- Hence $X = F(X) \subseteq F^n(Y) \subseteq F^{n-1}(Y) \subseteq \ldots \subseteq F(Y) \subseteq Y$
- So $X = F(X) \subseteq F^{n+1}(Y) \subseteq F^n(Y) \subseteq \ldots \subseteq F(Y) \subseteq Y$
- Proving $X = F(X) \subseteq \bigcap_{n \geq 0} F^n(Y)$
 by def. \sqsubseteq and $F^0(Y) = Y$

Convergence Problem, Again

- The decreasing iterates $F^n(Y)$, $n \geq 0$ may not converge
- We can assume
 - \mathcal{L} to be finite\(^{61}\), or
 - to satisfy the descending chain condition (DCC)
 (so $X^0 = Y$, \ldots, $X^{n+1} = F(X^n)$, \ldots which is descending is finite)
- This is provably less precise than using \mathcal{L} not satisfying the DCC

\(^{61}\) As in Boolean model-checking
Enforcing Convergence

- The convergence of the iterates (where $F(X^\ell) \subseteq X^\ell$)
 \[Y^0 = X^\ell, \ldots, Y^{n+1} = F(Y^n), \ldots, \]
 of a monotone $F \in L \rightarrow L$ on a cpo (L, \sqsubseteq) can be
 forced to converge to an over-approximation of $Fp \subseteq F$
 using a narrowing
 - $Y^0 = X^\ell$
 - $Y^{n+1} = y^n \triangle F(Y^n)$ if $F(Y^n) \neq Y^n$
 - $Y^{n+1} = Y^n$ convergence to Y^n if $F(Y^n) = Y^n$

Definition of the Narrowing

- A narrowing operator \triangle is such that:
 - $\forall x, y : x \sqsubseteq y \implies x \sqsubseteq x \triangle y \sqsubseteq y$;
 - for all decreasing chains
 \[x^0 \sqsubseteq x^1 \sqsubseteq \ldots \]
 the decreasing chain defined by
 \[y^0 = x^0, \ldots, y^{i+1} = y^i \triangle x^{i+1}, \ldots \]
 is not strictly decreasing.

Example of Narrowing for the Interval Abstract Domain

- The narrowing improves infinite bounds only:
 \[\sqcap \triangle X = \sqcap \]
 \[[\ell_0, u_0] \triangle [\ell_1, u_1] = [(\ell_0 = -\infty ? \ell_1 : \ell_0)^\omega, \]
 \[(u_0 = +\infty ? u_1 : u_0)] \]

Example of Iteration with Narrowing

- $x := 1$; while $(x \leq 1000)$ do $x := x + 2$ od
 - $X = ([1, 1] \cup (X + [2, 2])) \cap [-\infty, 1000] = F(X)$
 - $Y^0 = X^\ell = [1, +\infty]$
 - $Y^1 = Y^0 \Delta ([1, 1] \cup (Y^0 + [2, 2])) \cap [-\infty, 1000]) = [1, +\infty] \Delta [1, 1000] = [1, 1000]$
 - $F(Y^1) = ([1, 1] \cup (Y^1 + [2, 2])) \cap [-\infty, 1000] = Y^1 = [1, 1000]$
 convergence accelerated to $Y^\eta = [1, +1000]$, $\eta = 1$
Soundness of the Iterates with Narrowing

- If $\lfp F \subseteq Y^0 = X^\ell$ (with $F(X^\ell) \subseteq X^\ell$)
- $\Rightarrow \lfp F \subseteq F(Y^0) = F(X^\ell) \subseteq X^\ell = Y^0$ (monotony)
- If $\lfp F \subseteq F(Y^n) \subseteq Y^n \subseteq X^\ell$
- $\Rightarrow \lfp F \subseteq F(Y^{n+1}) \subseteq F(Y^n) \subseteq Y^n \subseteq X^\ell$

ind. hyp.

- $\Rightarrow \lfp F \subseteq F(Y^n) \subseteq Y^n \Delta F(Y^n) = Y^{n+1} \subseteq Y^n \subseteq X^\ell$

def. iterates with Δ

- $\Rightarrow \lfp F \subseteq F(Y^{n+1}) \subseteq F(Y^n) \subseteq Y^n \subseteq X^\ell$

monotony

- $\Rightarrow \lfp F \subseteq F(Y^{n+1}) \subseteq Y^n \Delta F(Y^n) = Y^{n+1} \subseteq X^\ell$

def. Δ & transitivity

One can stop at any iteration, all overapproximate $\lfp F!$

Convergence of the Iterates with Narrowing

- The decreasing chain defined by $Y^0 = X^\ell, \ldots, Y^{i+1} = Y^i \Delta F(Y^i), \ldots$

is not strictly decreasing \Rightarrow convergence.

Widening/Narrowing May be Too Imprecise

- $x:=1; \text{ while } (x <> 1000) \text{ do } x:=x+2 \text{ od}$
- $X = ([1,1] \cup (X+[2,2])) \cap [-\infty,999] \cup [1001, +\infty] = [1,1] \cup (X + [2,2])$
- Iteration with widening: $[1, +\infty)$
- Iteration with narrowing: $[1, +\infty] \Delta ([1,1] \cup ([1, +\infty] + [2,2])) = [1, +\infty] \text{ no improvement!}$

\Rightarrow Need to widen to threshold 1000!

Improving the Widening: Cutpoints

- Widen only at loop cutpoints (only once around each loop)
- ASTRÉE proceeds by structural induction on the program abstract syntax (so inner loops are stabilized first)
Improving the Widening: Thresholds

- Extrapolate to thresholds in $T \supseteq (-\infty, +\infty)$:

$$[\ell_0, u_0] \triangledown [\ell_1, u_1] = \begin{cases} f \ell_1 \geq \ell_0 & \text{then } \ell_0, \\ \max \{ \ell \in T \mid \ell \leq \ell_1 \}, & \text{else} \\ f \ u_1 < u_0 & \text{then } u_0 \\ \min \{ u \in T \mid u_1 \leq u \}, & \text{else} \end{cases}$$

- ASTRÈE’s widening thresholds (parametrizable): -1, 0, 1, 2, 3, 4, 5, 17, 41, 32767, 32768, 65535, 65536;

Improving the Widening: Delays

- Do not widen an interval (more generally an abstract predicate) at each iteration, but delay the widening to given numbers of changes

- ASTRÈE’s widening delays (parametrizable): 3, 6, 9, 10, 12, ..., 150, 150 + 1 * Z

Example with Widening/Warrowing at Cut-points:

```
{ i := _O_; j := _O_ }  
i := 1;  
{ i := [1,+oo]; j := [1,+oo] }  
while (i < 1000) do  
{ i := [1,999]; j := [1,+oo] }  
j := 1;  
{ i := [1,+oo]; j := [1,+oo] }  
while (j < i) do  
{ i := [2,+oo]; j := [1,1073741822] }  
j := (j + 1)  
{ i := [2,+oo]; j := [2,+oo] }  
end;  
{ i := [1000,+oo]; j := [1,+oo] }  
i := (i + 1);  
{ i := [2,+oo]; j := [1,+oo] }  
end;  
{ i := [1000,+oo]; j := [1,+oo] }  
```

Improving the Widening: History-based Widening

- Do not widen/narrow an abstract predicate which was computed for the first time since the last widening/narrowing;

- Otherwise, do not widen/narrow the abstract values of variables which were not “assigned to” 63 since the last widening/narrowing.

63 more precisely which did not appear in abstract transformers corresponding to an assignment to these variables.
Example with History-Based Widening/Narrowing:

\[
\begin{align*}
\{ & i: 0, j: 0 \} \\
& i := 1; \\
& \{ i: [1,1000]; j: [1,999] \} \\
& \quad \text{while } (i < 1000) \text{ do} \\
& \quad \{ i: [1,999]; j: [1,999] \} \\
& \quad \quad j := 1; \\
& \quad \{ i: [1,999]; j: [1,999] \} \\
& \quad \quad \text{while } (j < i) \text{ do} \\
& \quad \quad \quad \{ i: [2,999]; j: [1,998] \} \\
& \quad \quad \quad j := (j + 1) \\
& \quad \quad \{ i: [2,999]; j: [2,999] \} \\
& \quad \text{od;} \\
& \{ i: [1,999]; j: [1,999] \} \\
& i := (i + 1); \\
& \{ i: [2,1000]; j: [1,999] \} \\
& \text{od} \\
& \{ i: [1000,1000]; j: [1,999] \}
\end{align*}
\]

Iteration with Widening/Narrowing

-- The iteration with **widening** starts from below the least fixpoint and stabilizes above to a postfixpoint;
-- The iteration with **narrowing** starts from above the least fixpoint and stabilizes above;
-- The iteration with **dual widening** starts from above the greatest fixpoint and stabilizes below to a prefixpoint;
-- The iteration with **dual narrowing** starts from below the greatest fixpoint and stabilizes below;
Widening/Narrowing and their Duals

<table>
<thead>
<tr>
<th>Operation</th>
<th>Start</th>
<th>Stabilize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widening ∇</td>
<td>below</td>
<td>above</td>
</tr>
<tr>
<td>Narrowing Δ</td>
<td>above</td>
<td>above</td>
</tr>
<tr>
<td>Dual widening ∇</td>
<td>above</td>
<td>below</td>
</tr>
<tr>
<td>Dual narrowing Δ</td>
<td>below</td>
<td>below</td>
</tr>
</tbody>
</table>

Whence that’s four different notions.

On Monotony

- The abstract transformer \overline{F} need not be monotone.
- So it can contain ∇ and Δ
- The monotony is required only for concrete transformers (which is the case since predicate transformers are monotonic)

Non-Existence of Finite Abstractions

Let us consider the infinite family of programs parameterized by the mathematical constants n_1, n_2 ($n_1 \leq n_2$):

$$X := n_1; \text{ while } X \leq n_2 \text{ do } X := X + 1; \text{ od}$$

- An Interval analysis with widening/narrowing will discover the loop invariant $X \in [n_1, n_2]$;
- The abstract domain must contain all such intervals to avoid false alarm for all programs in the family;

\Rightarrow No single finite abstract domain will do for all programs!

References

5. Static Analysis

- Static code analysis is the analysis of computer system
 - by direct inspection of the source or object code describing this system
 - with respect to a semantics of this code (no user-provided model)
 - without executing programs as in dynamic analysis.

- The static code analysis is performed by an automated tool, as opposed to program understanding or program comprehension by humans.

Verification by Static Analysis

- The proof

 \[C[p] \subseteq P \]

 is done in the abstract

 \[C[p] \subseteq P^\parallel \]

 which involves the static analysis of \(p \) that is the effective computation of the abstract semantics

 \[C[p] \]

 as formalized by abstract interpretation \([35], [36]\).
Example 1: CBMC

- CBMC is a **Bounded Model Checker** for ANSI-C programs (started at CMU in 1999).
- Allows verifying array bounds (buffer overflows), pointer safety, exceptions and user-specified assertions.
- Aimed for embedded software, also supports dynamic memory allocation using `malloc`.
- Done by unwinding the loops in the program and passing the resulting equation to a SAT solver.
- **Problem (a.o.): does not scale up!**

Example 2: **ASTRÉE**

- ASTRÉE is an abstract interpretation-based **static analyzer** for ANSI-C programs (started at ENS in 2001).
- Allows verifying array bounds (buffer overflows), pointer safety, exceptions and user-specified assertions.
- Aimed for embedded software, does not support dynamic memory allocation.
- Done by abstracting the reachability fixpoint equations for the program operational semantics.
- **Advantage (a.o.): does scale up!**
Design of a Static Analyzer

1. Design of the **concrete semantics** of programs
2. Definition of **properties of programs** (collecting semantics)
3. Definition of **properties to be verified** (specification)
4. Choice of **abstractions** and their combinations
5. Design of the **abstract semantics** of programs (iterator and abstract properties)
6. Design of the **abstract semantics overapproximation** (iteration acceleration)
7. Design of the abstract **specification verification algorithm** (proof)

Model versus Property and Program versus Language-based Abstraction

Property-based Abstraction

- Property-based abstraction over approximate the collecting semantics in the abstract
 - $C[p] = \{S[p]\} \in \mathcal{P}$ collecting semantics
 - $\langle P, \subseteq \rangle \xrightarrow{\gamma} \langle P^\#, \subseteq^\# \rangle$ abstraction
 - $C^#[p] \in \mathcal{P}^#$ abstract semantics
 - $C[p] \subseteq \gamma(C^#[p])$ soundness
 \[\Rightarrow\] an abstract proof ($C^#[p] \subseteq^# P^#$) is valid in the concrete ($C[p] \subseteq \gamma(P^#)$).

Model-based Abstraction

- Let $\langle \iota, \tau \rangle$ be a transition system model of a software or hardware system $p \in P$ (so that $S[p] \triangleq \gamma_\tau(\langle \iota, \tau \rangle)$.
- A **model-based abstraction** is an abstract transition system $\langle \iota^#, \tau^# \rangle$ which over-approximates $\langle \iota, \tau \rangle$ (so that, up to concretization, $\iota \subseteq \iota^#$ and $\tau \subseteq \tau^#$).
- The set of reachable abstract states for $\langle \iota^#, \tau^# \rangle$ over-approximate the reachable concrete states of $\langle \iota, \tau \rangle$.
- Hence the **model-based abstractions** yields sound abstractions of the concrete reachability states.

Is the model-based abstraction “adequate”?
Limitations of Model-based Abstractions

Some abstractions defined by a Galois connection of sets of (reachable) states are not be model-based abstractions, in particular when the abstract domain is not a representable as a powerset of states, e.g.

Octagons [38] Polyhedra [37]

References

Program-based versus Language-based Abstraction

- Static analysis has to define an abstraction $\alpha[p]$ for all programs $p \in P$ of a language P.
- This is different from defining an abstraction specific to a given program (or model).

References

False Alarms

- Static analysis being undecidable, it relies on incomplete language-based abstractions.
- A false alarm is a case when a concrete property holds but this cannot be proved in the abstract for the given abstraction.

False Alarm

- An example in reachability analysis is when no inductive invariant can be expressed in the abstract.

References

Abstract Domains

Synchronous, time-triggered, real-time, safety critical, embedded software written or automatically generated in the C programming language for Astrée.
Abstract Domain

An abstract domain defines

- The **computer representation of abstract properties** (corresponding to given concrete properties)
- The **abstract operations** requested by the iterator (including lattice operations \sqsubseteq, \ldots, operations involved in the abstract transformer F, convergence acceleration ∇, etc)

An Abstract Domain in **ASTRÉE**

```
module type INTEGER =
  sig
    type t
    val zero: t
    val one: t
    val is_zero: t -> bool
    val max: t -> t -> t
    val min: t -> t -> t
    val add: t -> t -> t
    val sub: t -> t -> t
    val mul: t -> t -> t
    val div: t -> t -> t
    val rem: t -> t -> t
    val neg: t -> t
    val sgn: t -> int
    val abs: t -> t
    val compare: t -> t -> int
    val print: Format.formatter -> t -> unit
    val pred: t -> t
    val succ: t -> t
    val equal: t -> t -> bool
    val widen: t -> t
    val widen_sequence: t list
    val quick_widen: t list
    val shift_left: t -> int -> t
    val shift_right: t -> int -> t
    val shift_right_logical: t -> int -> t
    val to_int: t -> int
    val of_int: int -> t
    val logand: t -> t -> t
    val logor: t -> t -> t
    val logxor: t -> t -> t
    val lognot: t -> t
    val to_string: t -> string
  end
```

More precisely, interface with the iterator.

Design of Abstractions

- The design of a **sound and precise language-based abstraction** is difficult.
- First from a mathematical point of view, one must discover the appropriate set of abstract properties that are needed to **represent the necessary inductive invariants**.
- Of course mathematical completion techniques could be used [42] but because of undecidability, they do not terminate in general.

References

Design of Abstractions (Cont’d)

- Second, from a computer-science point of view, one must find an appropriate computer representation of abstract properties and abstract transformers.
- Universal representations (e.g. using symbolic terms, automata or BDDs) are in general inefficient
- The discovery of appropriate computer representations is far from being automatized.

Local versus Global Abstractions

- A simple approach to static analysis is to use the same global abstraction everywhere in the program, which hardly scales up.
- More sophisticated abstractions, as used in ASTRÉE are not uniform, different local abstractions being in different program regions [43].

References

Multiple versus Single Abstractions

- Because of the complexity of abstractions, it is simpler to design a precise abstraction by composing many elementary abstractions which are simple to understand and implement.
- These abstractions could hardly be encoded efficiently using a universal representation of program properties as found in theorem provers, proof assistants or model-checkers.

6. The ASTRÉE Static Analyzer

www.astree.ens.fr/ Nov. 2001—Nov. 2007
Programs Analyzed by ASTRÉE

- **Application Domain:** large safety critical embedded real-time synchronous software for non-linear control of very complex control/command systems.

- **C programs:**
 - with
 - basic numeric datatypes, structures and arrays
 - pointers (including on functions),
 - floating point computations
 - tests, loops and function calls
 - limited branching (forward goto, break, continue)
 - without
 - dynamic memory allocation
 - recursive function calls
 - unstructured/backward branching
 - conflicting side effects
 - C libraries, system calls (parallelism)

Such limitations are quite common for embedded safety-critical software.
The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
 - read volatile input variables,
 - compute output and state variables,
 - write to output variables;
 __ASTREE_wait_for_clock ();
end loop

Task scheduling is static:
- **Requirements:** the only interrupts are clock ticks;
- Execution time of loop body less than a clock tick, as verified by the aiT WCET Analyzers [FHL +01].

Concrete Operational Semantics

- **International norm of C (ISO/IEC 9899:1999)**
- **restricted by implementation-specific behaviors** depending upon the machine and compiler (e.g. representation and size of integers, IEEE 754-1985 norm for floats and doubles)
- **restricted by user-defined programming guidelines** (such as no modular arithmetic for signed integers, even though this might be the hardware choice)
- **restricted by program specific user requirements** (e.g. assert, execution stops on first runtime error\(^70\))

\(^{70}\) semantics of C unclear after an error, equivalent if no alarm

Challenging aspects

- **Size:** 100/1000 kLOC, 10/150 000 global variables
- **Floating point computations**
 including interconnected networks of filters, non linear control with feedback, interpolations...
- **Interdependencies among variables:**
 - Stability of computations should be established
 - Complex relations should be inferred among numerical and boolean data
 - Very long data paths from input to outputs

Different Classes of Run-time Errors

1. **Errors terminating the execution**\(^71\). ASTRÉE warns and continues by taking into account only the executions that did not trigger the error.
2. **Errors not terminating the execution with predictable outcome**\(^72\). ASTRÉE warns and continues with worst-case assumptions.
3. **Errors not terminating the execution with unpredictable outcome**\(^73\). ASTRÉE warns and continues by taking into account only the executions that did not trigger the error.

\(^{71}\) floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
\(^{72}\) e.g. overflows over signed integers resulting in some signed integer.
\(^{73}\) e.g. memory corruptions.

\(\Rightarrow\) **ASTRÉE is sound with respect to C standard, unsound with respect to C implementation, unless no false alarm.**
Trace semantics

- From this small-step semantics we derive a discrete-time complete trace semantics74;
- This trace semantics is abstracted into many different abstract properties as implemented by various abstract domains defining compat finite representations of specific properties;
- ASTRÉE computes a weak reduced product for these abstractions75.

74 possibly limited, for synchronous control/command programs, to a maximum number of clock ticks __ASTREE_wait_for_clock(), as specified by a configuration file.
75 for efficiency, only a number of useful reductions are performed amongst all possible ones, via communications between abstract domains.

Implicit Specification: Absence of Runtime Errors

- No violation of the norm of C (e.g. array index out of bounds, division by zero)
- No implementation-specific undefined behaviors (e.g. maximum short integer is 32767, NaN)
- No violation of the programming guidelines (e.g. static variables cannot be assumed to be initialized to 0)
- No violation of the programmer assertions (must all be statically verified).

Specification Proved by ASTRÉE

Characteristics of ASTRÉE
Characteristics of the ASTRÉE Analyzer (Cont'd)

Sound: – ASTRÉE is a **bug eradicator**: finds all bugs in a well-defined class (runtime errors)

– ASTRÉE is **not a bug hunter**: finding some bugs in a well-defined class (e.g. by bug pattern detection like FindBugs™, PREfast or PMD)

– ASTRÉE is **exhaustive**: covers the whole state space (≠ MAGIC, CBMC)

– ASTRÉE is **comprehensive**: never omits potential errors (≠ UNO, CMC from coverity.com) or sort most probable ones to avoid overwhelming messages (≠ Splint)

Static: compile time analysis (≠ run time analysis Rational Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of programs (≠ PROMELA in SPIN or Alloy in the Alloy Analyzer)

Automatic: no end-user intervention needed (≠ ESC Java, ESC Java 2), or PREfast (annotate functions with intended use)

Characteristics of the ASTRÉE Analyzer (Cont’d)

Multiabstraction: uses many numerical-symbolic abstract domains (≠ symbolic constraints in Bane or the canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains with widening/narrowing (≠ model checking based analyzers such as Bandera, Bogor, Java PathFinder, Spin, VeriSoft)

Efficient: always terminate (≠ counterexample-driven automatic abstraction refinement BLAST, SLAM)

Extensible/Specializable: can easily incorporate new abstractions (and reduction with already existing abstract domains) (≠ general-purpose analyzers PolySpace Verifier)

Domain-Aware: knows about control/command (e.g. digital filters) (as opposed to specialization to a mere programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs by options and directives in the code
Characteristics of the **ASTRÉE** Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric directives in the code can be programmed (to be specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-CAML modules from a collection each implementing an abstract domain

Precise: very few or no false alarm when adapted to an application domain — it is a VERIFIER!

Abstract Semantics

- **Reachable states** for the concrete trace operational semantics (with partial history)
- **Volatile environment** is specified by a *trusted* configuration file.

Requirements:

- **Soundness:** absolutely essential
- **Precision:** few or no false alarm (full certification)
- **Efficiency:** rapid analyses and fixes during development

The ASTRÉE Abstract Interpreter

ASTRÉE’s Architecture

C-preprocessor
$$\downarrow$$
C99 parser
$$\downarrow$$
Link editor
$$\downarrow$$
Intermediate code generation and typing
$$\downarrow$$
Constant propagation and simplification
$$\downarrow$$
Local and global dependence analysis
$$\downarrow$$
Abstract Interpreter
The Abstract Interpreter

Iterator

Trace partitionning

Memory model and aliases

Reduced product of numerical abstract domains

Intervals Octagons Decision trees ...

The Iterator

– Flow through all possible program executions, following the program syntactic structure
– Example: loops

Handling Functions

– No recursion \(\Rightarrow\) functions can be handled without any abstraction
– we get a flow and context sensitive static analysis using an abstract stack for control/parameters/local variables (isomorphic to the concrete execution stack)
\(\Rightarrow\) the analysis is extremely precise.

Handling Simple Variables

– In a given context, the abstraction of variable properties \(\varphi(\mathcal{X} \mapsto \mathcal{V})\) for fixed variables in \(\mathcal{X}\) is given
 - everywhere by non-relational abstract domains (abstracting \(\varphi(\mathcal{V})\) by bitstring, set of values, simple congruence, interval, etc);
 - in chosen contexts, as a component of a relational abstract domains (octagons, etc).
and subject to widening/narrowing and interdomain reductions.
– \(\mathcal{X} \mapsto \alpha(\varphi(\mathcal{V}))\) is represented by a balanced tree.
\(\Rightarrow\) the parametrization of the analysis allows for a fine tuning of the cost/precision balance.
Handling Arrays

The array T of size n can be handled

- as a collection of separate variables ($T[0], T[1], \ldots, T[n-1] \in \mathcal{X}$) handled individually as simple variables;
- as a single smashed variable $T \in \mathcal{X}$ which concrete values include all possible values of $T[0], T[1], \ldots$, and $T[n-1]$;

⇒ the parameterized analysis can be extremely precise when needed.

Handling Pointers

- No dynamic memory allocation ⇒ the heap and aliases can be handled without any abstraction (using an abstract heap isomorphic to the concrete heap);
- A pointer is a basis plus an integer offset (abstracted separately by a set of bases $\subseteq \mathcal{X}$ and an auxiliary integer variable in \mathcal{X} for the offset).

⇒ the analysis is extremely precise (but maybe for pointers to smashed array elements).

Memory Model

The union type, pointer arithmetics and pointer transtyping is handled by allowing aliasing at the byte level [44]:

```
union {
    struct { uint8 al,ah,b1,bh; } b;
    struct { uint16 ax,bx; } w;
} r;
```

- A box (auxiliary variable) in \mathcal{X} for each offset and each scalar type
- intersection semantics for overlapping boxes

Reference

Iteration Refinement: Loop Unrolling

Principle:

- Semantically equivalent to:

  ```
  while (B) { C } \longrightarrow \text{ if } (B) \{ C \}; \text { while } (B) \{ C \}
  ```

- More precise in the abstract: less concrete execution paths are merged in the abstract.

Application:

- Isolate the initialization phase in a loop (e.g. first iteration).
Iteration Refinement: Trace Partitioning

Principle:
- Semantically equivalent to:
 \[
 \text{if (B) \{ C1 \} else \{ C2 \}; C3} \\
 \downarrow \\
 \text{if (B) \{ C1; C3 \} else \{ C2; C3 \};}
 \]
- More precise in the abstract: concrete execution paths are merged later.

Application:
```
if (B)
{ X=0; Y=1; }
ellse
{ X=1; Y=0; }
R = 1 / (X-Y);
```
cannot result in a division by zero

Control Partitioning for Case Analysis

```
/* trace_partitionning.c */
void main() {
  float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
  float c[4] = {0.0, 2.0, 2.0, 0.0};
  float d[4] = {-20.0, -20.0, 0.0, 20.0};
  float x, r;
  int i = 0;
... found invariant \( -100 \leq x \leq 100 \) ...
while (i < 3) && (x > t[i+1]) {
  i = i + 1;
} r = (x - t[i]) * c[i] + d[i];
```

Delivering abstract unions in tests and loops is more precise for non-distributive
abstract domains (and much less expensive than disjunctive completion).

Principle:

Convergence Accelerator: Widening

- Brute-force widening:

- Widening with thresholds:

Examples:
- 1., 10., 100., 1000., etc. for floating-point variables;
- maximal values of data types;
- syntactic program constants, etc.

Fixpoint Stabilization for Floating-point

Problem:
- Mathematically, we look for an abstract invariant \(\text{inv} \) such that
 \(F(\text{inv}) \subseteq \text{inv} \).
- Unfortunately, abstract computation uses floating-point and
 incurs rounding: maybe \(F(\text{inv}) \not\subseteq \text{inv} \!\!\).

Solution:
- Widen \(\text{inv} \) to \(\text{inv}' \) with the hope to jump into a stable zone of \(F(\text{inv}) \).
- Works if \(F \) has some \text{attractiveness} property that fights against
 rounding errors (otherwise iteration goes on).
- \(\epsilon' \) is an analysis parameter.
Examples of Abstractions in ASTRÉE

Examples of Abstractions (Cont’d)

- Set of complete traces $\xrightarrow{\alpha}$ set of reachable partial traces of a loop for $1, 2, \ldots, n$ and $> n$ iterations $\xrightarrow{\alpha} \ldots$
- Set of complete traces $\xrightarrow{\alpha}$ for each trace, a map of discrete time i in the trace to the value X_i of a variable X at that time i along that trace $\xrightarrow{\alpha}$ a map of discrete time i in the traces to the maximum value \bar{X}_i of a variable X at that time i in all traces

\footnotesize 79 is a parameter of Astrée

General-Purpose Abstract Domains: Intervals and Octagons

Intervals:
$$\begin{align*}
1 \leq x & \leq 9 \\
1 \leq y & \leq 20
\end{align*}$$
Octagons $[\text{Min01}]:$
$$\begin{align*}
1 \leq x & \leq 9 \\
x + y & \leq 77 \\
1 \leq y & \leq 20 \\
x - y & \leq 04
\end{align*}$$

Difficulties: many global variables, arrays (smashed or not), IEEE 754 floating-point arithmetic (in program and analyzer) [CC77a, Min01, Min04a]
Floating-point linearization \cite{Min04a, Min04b}

- Approximate arbitrary expressions in the form $[a_0, b_0] + \sum_k ([a_k, b_k] \times V_k)$
- Example:
 \[
 Z = X - (0.25 \times X) \approx (0.7549 \cdots, 0.7500 \cdots) + (2.35 \cdots \times [-1, 1])
 \]
- Allows simplification even in the interval domain
 if $X \in [-1, 1]$, we get $|Z| \leq 0.750 \ldots$ instead of $|Z| \leq 1.25 \ldots$
- Allows using a relational abstract domain (octagons)
- Example of good compromise between cost and precision

Symbolic abstract domain \cite{Min04a, Min04b}

- Interval analysis: if $x \in [a, b]$ and $y \in [c, d]$ then $x - y \in [a - d, b - c]$ so if $x \in [0, 100]$ then $x - x \in [-100, 100]!!$
- The symbolic abstract domain propagates the symbolic values of variables and performs simplifications;
- Must maintain the maximal possible rounding error for float computations (overestimated with intervals);

```c
#define F 0
#define T 1

void main() {
  unsigned int X, Y;
  while (1) {
    ... B = (X == 0);
    ... if (!B) {
      Y = 1 / X;
    ...}
  }
}
```

The boolean relation abstract domain is parameterized by the height of the decision tree (an analyzer option) and the abstract domain at the leaves.

Ellipsoid Abstract Domain for Filters

- Computes $X_n = \{ \alpha X_{n-1} + \beta X_{n-2} + Y_n \}$
- The concrete computation is bounded, which must be proved in the abstract.
- There is no stable interval or octagon.
- The simplest stable surface is an ellipsoid.
Filter Example [Fer04]

```c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
    static float E[2], S[2];
    if (INIT) { S[0] = X; P = X; E[0] = X; }
    else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
                  + (S[0] * 1.5)) - (S[1] * 0.7)); }
    E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
    /* S[0], S[1] in [-1327.02698354, 1327.02698354] */
}
void main () { X = 0.2 * X + 5; INIT = TRUE;
    while (1) {
        X = 0.9 * X + 35; /* simulated filter input */
        filter (); INIT = FALSE; }
}
```

Arithmetic-Geometric Progressions (Example 1)

```c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {
    R = 0;
    while (TRUE) {
        __ASTREE_log_vars((R));
        if (I) { R = R + 1; }
        else { R = 0; }
        T = (R >= 100);
        __ASTREE_wait_for_clock();
    }
    __ASTREE_volatile_input((I [0,1]));
    __ASTREE_max_clock((3600000));
    % astree -exec-fn main -config-sem count.config |grep '|R|'
    |R| <= 0. + clock *1. <= 3600001.
```

Arithmetic-Geometric Progressions

- Abstract domain: \((R^+)^5\)
- Concretization:

\[\gamma \in (R^+)^5 \rightarrow \wp(N \rightarrow R) \]

\[\gamma(M, a, b, a', b') = \{ f | \forall k \in N : |f(k)| \leq (\lambda x \cdot ax + b \circ (\lambda x \cdot a'x + b'))^k (M) \} \]

i.e. any function bounded by the arithmetic-geometric progression.

(Automatic) Parameterization

- All abstract domains of ASTREE are parameterized, e.g.
 - variable packing for octagones and decision trees,
 - partition/merge program points,
 - loop unrollings,
 - thresholds in widenings, …;
- End-users can either parameterize by hand (analyzer options, directives in the code), or
- choose the automatic parameterization (default options, directives for pattern-matched predefined program schemata).
Example of Abstract Domain in ASTRÉE: The Arithmetic-Geometric Progression Abstract Domain

Reference

Objective

- In automatically generated programs using floating point arithmetics, some computations may diverge because of rounding errors.
- To prove the absence of floating point number overflows, we use non polynomial constraints:
 - we bound rounding errors at each loop iteration by a linear combination of the loop inputs;
 - we get bounds on the values depending exponentially on the program execution time.
- The abstract domain is both precise (no false alarm) and efficient (linear in memory / $\ln(n)$ in time).

Arithmetic-Geometric Progressions: Motivating Example

```c
# cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev( )
{ X=E;
  if (FIRST) { P = X; }
  else
    { P = (P - (((2.0 * P) - A) - B)
      * 4.491048e-03));
    }
  B = A;
  if (SWITCH) {A = P;}
  else {A = X;}
}

void main()
{ FIRST = TRUE;
  while (TRUE) {
    dev( );
    FIRST = FALSE;
    __ASTREE_wait_for_clock();
  }
}
```

```plaintext
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));
|P| <= (15. + 5.87747175411e-39 / 1.19209290217e-07) * (1 + 1.19209290217e-07)ˆclock
- 5.87747175411e-39 / 1.19209290217e-07 <= 23.0393526881
```

Running example (in \mathbb{R})

```plaintext
1: \( X := 0; k := 0; \)
2: \( \text{while} \ (k < 1000) \{ \)
3: \( \text{if} \ (? \) \( \{ X \in [-10;10]; \)
4: \( X := X/3; \)
5: \( X := 3 \times X; \)
6: \( k := k + 1; \)
7: \} 
```
Interval analysis: first loop iteration

1: \(X := 0; k := 0; \)

2: \(\text{while } (k < 1000) \{ \)

3: \(\text{if } (?) \{ X \in [-10; 10]; \)

4: \(|X| \leq 10 \)

5: \(X := X/3; \)

6: \(|X| \leq \frac{10}{3} \)

7: \(k := k + 1; \)

Interval analysis: Invariant

1: \(X := 0; k := 0; \)

2: \(\text{while } (k < 1000) \{ \)

3: \(\text{if } (?) \{ X \in [-10; 10]; \)

4: \(|X| \leq 10 \)

5: \(X := 3 \times X; \)

6: \(|X| \leq 10 \)

7: \}

Including rounding errors [Miné–ESOP’04]

1: \(X := 0; k := 0; \)

2: \(\text{while } (k < 1000) \{ \)

3: \(\text{if } (?) \{ X \in [-10; 10]; \)

4: \(X := X/3 + [-\varepsilon_1; \varepsilon_1] \times X + [-\varepsilon_2; \varepsilon_2]; \)

5: \(X := 3 \times X + [-\varepsilon_3; \varepsilon_3] \times X + [-\varepsilon_4; \varepsilon_4]; \)

6: \(k := k + 1; \)

7: \}

Interval analysis

Let \(M \geq 0 \) be a bound:

1: \(X := 0; k := 0; \)

2: \(\text{while } (k < 1000) \{ \)

3: \(\text{if } (?) \{ X \in [-10; 10]; \)

4: \(|X| \leq \max(M, 10) \)

5: \(X := X/3 + [-\varepsilon_1; \varepsilon_1] \times X + [-\varepsilon_2; \varepsilon_2]; \)

6: \(|X| \leq (1 + a) \times \max(M, 10) + b \)

7: \}

with \(a = 3 \times \varepsilon_1 + \frac{5}{4} + \varepsilon_1 \times \varepsilon_3 \) and \(b = \varepsilon_2 \times (3 + \varepsilon_3) + \varepsilon_4 \).
Ari.-geo. analysis: first iteration

1: \(X := 0; k := 0; \)
2: \(X = 0, k = 0 \)
3: \(\text{while } (k < 1000) \{ \)
4: \(|X| \leq 10 \)
5: \(X := X/3 + [-\varepsilon_1; \varepsilon_1].X + [-\varepsilon_2; \varepsilon_2]; \)
6: \(k := k + 1; \)
7: \(\}\) with \(f = [v \mapsto (1 + 3 \times \varepsilon_1 + \frac{3}{2} + \varepsilon_1 \times \varepsilon_3) \times v + \varepsilon_2 \times (3 + \varepsilon_3) + \varepsilon_4] \).

Ari.-geo. analysis: Invariant

1: \(X := 0; k := 0; \)
2: \(X = 0, k = 0 \)
3: \(\text{while } (k < 1000) \{ \)
4: \(|X| \leq f^{(k)}(10) \)
5: \(X := X/3 + [-\varepsilon_1; \varepsilon_1].X + [-\varepsilon_2; \varepsilon_2]; \)
6: \(k := k + 1; \)
7: \(\}\) with \(f = [v \mapsto (1 + 3 \times \varepsilon_1 + \frac{3}{2} + \varepsilon_1 \times \varepsilon_3) \times v + \varepsilon_2 \times (3 + \varepsilon_3) + \varepsilon_4] \).

Analysis session

Arithmetic-geometric progressions (in \(\mathbb{R} \))

An arithmetic-geometric progression is a 5-tuple in \((\mathbb{R}^+)^5 \).

An arithmetic-geometric progression denotes a function in \(\mathbb{N} \to \mathbb{R}^+ \):

\[\beta_{\alpha}(M, a, b, a', b')(k) \triangleq [v \mapsto a \times v + b] \left([v \mapsto a' \times v + b']^{(k)}(M) \right) \]

Thus,
- \(k \) is the loop counter;
- \(M \) is an initial value;
- \([v \mapsto a \times v + b]\) describes the current iteration;
- \([v \mapsto a' \times v + b']^{(k)}\) describes the first \(k \) iterations.

A concretization \(\gamma_{\mathbb{R}} \) maps each element \(d \in (\mathbb{R}^+)^5 \) to a set \(\gamma_{\mathbb{R}}(d) \subseteq (\mathbb{N} \to \mathbb{R}^+) \) defined as:

\[\{ f | \forall k \in \mathbb{N}, |f(k)| \leq \beta_{\mathbb{R}}(d)(k) \} \]
Monotonicity

Let \(d = (M, a, b, a', b') \) and \(d = (M, a, b, a', b') \) be two arithmetic-geometric progressions.

If:
- \(M \preceq M \),
- \(a \preceq a \), \(a' \preceq a' \),
- \(b \preceq b \), \(b' \preceq b' \).

Then:
\[
\forall k \in \mathbb{N}, \beta_R(d)(k) \leq \beta_R(d)(k).
\]

Disjunction

Let \(d = (M, a, b, a', b') \) and \(d = (M, a, b, a', b') \) be two arithmetic-geometric progressions.

We define:
\[
d \triangleq (M, a, b, a', b')
\]
where:
- \(M \triangleq \max(M, M) \),
- \(a \triangleq \max(a, a) \),
- \(a' \triangleq \max(a', a') \),
- \(b \triangleq \max(b, b) \),
- \(b' \triangleq \max(b', b') \).

For any \(k \in \mathbb{N} \), \(\beta_R(d \uplus_R d)(k) \geq \max(\beta_R(d)(k), \beta_R(d)(k)) \).

Conjunction

Let \(d \) and \(d \) be two arithmetic-geometric progressions.

1. If \(d \) and \(d \) are comparable (component-wise), we take the smaller one:
\[
d \cap_R d \triangleq \text{Inf}_{\leq}(d; d).
\]
2. Otherwise, we use a parametric strategy:
\[
d \cap_R d \in \{d; d\}.
\]

For any \(k \in \mathbb{N} \), \(\beta_R(d \cap_R d)(k) \geq \min(\beta_R(d)(k), \beta_R(d)(k)) \).

Assignment

We have:
\[
\beta_R(M, a, b, a', b')(k) = a \times (M + b' \times k) + b \quad \text{when } a' = 1
\]
\[
\beta_R(M, a, b, a', b')(k) = a \times \left((a')^k \times \left(M - \frac{b'}{1-a'}\right) + \frac{b}{1-a'}\right) + b \quad \text{when } a' \neq 1.
\]

Thus:
1. for any \(a, a', M, b, b', \lambda \in \mathbb{R}^+ \),
\[
\lambda \times (\beta_R(M, a, b, a', b')(k)) = \beta_R(\lambda \times M, a, \lambda \times b, a', \lambda \times b')(k);
\]
2. for any \(a, a', M, b, b', M, b', b' \in \mathbb{R}^+ \), for any \(k \in \mathbb{N} \),
\[
\beta_R(M, a, b, a', b')(k) + \beta_R(M, a, b, a', b')(k) = \beta_R(M + M, a, b, a', b')(k).
\]
Projection I/II

\[\beta_k(M, a, b, a', b')(k) = a \times (M + b' \times k) + b \]
\[\beta_k(M, a, b, a', b')(k) = a \times \left((a')^k \times \left(M - \frac{b'}{1 - a'} \right) + \frac{b'}{1 - a'} \right) + b \]

when \(a' = 1 \)
\[\beta_k(M, a, b, a', b')(k) = a \times \left((a')^k \times \left(M - \frac{b'}{1 - a'} \right) + \frac{b'}{1 - a'} \right) + b \]
when \(a' \neq 1 \).

Thus, for any \(d \in (\mathbb{R}^+)^5 \), the function \([k \mapsto \beta_R(d)(k)] \) is:
- either monotonic,
- or anti-monotonic.

Projection II/II

Let \(d \in (\mathbb{R}^+)^5 \) and \(k_{\text{max}} \in \mathbb{N} \).

\[\text{bound}(d, k_{\text{max}}) \triangleq \max(\beta_R(d)(0), \beta_R(d)(k_{\text{max}})) \]

For any \(k \in \mathbb{N} \) such that \(0 \leq k \leq k_{\text{max}} \)

\[\beta(d)(k) \leq \text{bound}(d, k_{\text{max}}). \]

Incrementing the loop counter

We integrate the current iteration into the first \(k \) iterations:
- the first \(k + 1 \) iterations are chosen as the worst case among the first \(k \) iterations and the current iteration;
- the current iteration is reset.

Thus:

\[\text{next}_R(M, a, b, a', b') \triangleq (M, 1, 0, \max(a, a'), \max(b, b')). \]

For any \(k \in \mathbb{N}, d \in (\mathbb{R}^+)^5 \), \(\beta_R(d)(k) \leq \beta_R(\text{next}_R(d))(k + 1) \).

About floating point numbers

Floating point numbers occur:
1. **in the concrete semantics:**
 Floating point expressions are translated into real expressions with interval coefficients [Miné—ESOP’04].
 So the abstract domains can handle real numbers.
2. **in the abstract domain implementation:**
 For efficiency purpose, each real primitive is implemented in floating point arithmetics: each real is safely approximated by an interval with floating point number bounds.
Example application

- **Primary flight control software** of the Airbus A340 family/A380 fly-by-wire system

- C program, automatically generated from a proprietary high-level specification (à la Simulink/Scade)
- A340 family: 132,000 lines, 75,000 LOCs after preprocessing, 10,000 global variables, over 21,000 after expansion of small arrays, now $\times 2$
- A380: $\times 3/7$

Digital Fly-by-Wire Avionics

The electrical flight control system is placed between the pilot's controls (sidesticks, rudder pedals) and the control surfaces of the aircraft, whose movement they control and monitor.
Benchmarks (Airbus A340 Primary Flight Control Software)

- V1[^2], 132,000 lines, **75,000 LOCs** after preprocessing
- Comparative results (commercial software):
 4,200 (false?) alarms, 3.5 days;
- Our results:
 0 alarms,
 40mn on 2.8 GHz PC, 300 Megabytes
 → A world première in Nov. 2003!

[^2]: “Flight Control and Guidance Unit” (FCGU) running on the “Flight Control Primary Computers” (FCPC).

The three primary computers (PCPC) and two secondary computers (PCSC) which form the A340 and A330 electrical flight control system are placed between the pilot’s controls (sidesticks, rudder pedals) and the control surfaces of the aircraft, whose movement they control and monitor.

(Airbus A380 Primary Flight Control Software)

- Now at 1,000,000 lines!
- 0 alarms (Nov. 2004), after some additional parametrization and simple abstract domains developments
 34h,
 8 Gigabyte
 → A world grand première!

The main loop invariant for the A340 V1

A textual file over 4.5 Mb with
- 6,900 boolean interval assertions ($x \in [0; 1]$)
- 9,600 interval assertions ($x \in [a; b]$)
- 25,400 clock assertions ($x + \text{clk} \in [a; b] \land x - \text{clk} \in [a; b]$)
- 19,100 additive octagonal assertions ($a \leq x + y \leq b$)
- 19,200 subtractive octagonal assertions ($a \leq x - y \leq b$)
- 100 decision trees
- 60 ellipse invariants, etc ...

involving over **16,000** floating point constants (only **550** appearing in the program text) × **75,000 LOCs**.

Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:
- **Abstract transformers** (not best possible) → improve algorithm;
- **Automatized parametrization** (e.g. variable packing)
 → improve pattern-matched program schemata;
- **Iteration strategy** for fixpoints → fix widening[^3];
- **Inexpressivity** i.e. indispensable local inductive invariant are inexpressible in the abstract → add a **new abstract domain** to the reduced product (e.g. filters).

[^3]: This can be very hard since at the limit only a precise infinite iteration might be able to compute the proper abstract invariant. In that case, it might be better to design a more refined abstract domain.
7. Conclusion

- The behaviors of computer systems are too large and complex for enumeration (state/combinatorial explosion);
- Abstraction is therefore necessary to reason or compute behaviors of computer systems;
- Making explicit the rôle of abstract interpretation in formal methods might be fruitful;
- In particular to apply formal methods to complex industrial applications [46].

References

