Automatic Program Verification by Abstract Interpretation

Result:
- Can produce zero or very few false alarms while checking non-trivial properties (absence of Run-Time Error);
- Does scale up.

How?
- We specialize the abstract interpreter for a family of programs (which correctness proofs would be similar).
- The abstract domains are generic invariants automatically instantiated by the analyzer (to make these proofs).

Which Programs are Considered?
- Embedded avionic programs;
- Automatically generated from a proprietary graphical system control language (à la Simulink);
- Synchronous real-time critical programs:

```plaintext
declare volatile input, state, and output variables;
initialize state variables;
loop forever
    read volatile input variables,
    compute output and state variables,
    write to volatile output variables;
wait for next clock tick
end loop
```
Main Characteristics of the Programs

Difficulties:
♦ Many global variables and arrays (> 10 000);
♦ A huge loop (> 75 000 lines after simplification);
♦ Each iteration depends on the state of the previous iterations (state variables);
♦ Floating-point computations (80% of the code implements non-linear control with feed-back);
♦ Everything is interdependent (live variables analysis, slicing ineffective);
♦ Abstraction by elimination of any variable is too imprecise.

Simplicities:
♦ All data is statically allocated;
♦ Pointers are restricted to call-by-reference, no pointer arithmetics;
♦ Structured, recursion-free control flow.

Semantics
♦ The standard ISO C99 semantics:
 • arrays should not be accessed out of their bounds, …
 restricted by:
♦ The machine semantics:
 • integer arithmetics is 2's complement,
 • floating point arithmetics is IEEE 754-1985,
 • int and float are 32-bit, short is 16-bit, …
 restricted by:
♦ The user's semantics:
 • integer arithmetics should not wrap-around,
 • some IEEE exceptions (invalid operation, overflow, division by zero) should not occur, …

Goal of the Program Static Analyzer
♦ Correctness verification.
 ♦ Nothing can go wrong at execution:
 • no integer overflow or division by zero,
 • no exception, NaN, or ±∞ generated by IEEE floating-point arithmetics,
 • no out of bounds array access,
 • no erroneous type conversion.
 ♦ The execution semantics on the machine never reaches an indetermination or an error case in the standard / machine / user semantics.

Information about the Program Execution Automatically Inferred by the Analyzer
♦ The analyzer effectively computes a finitely represented, compact over-approximation of the immense reachable state space.
♦ The information is valid for any execution interacting with any possible environment (through undetermined volatiles).
♦ It is inferred automatically by abstract interpretation of the collecting semantics and convergence acceleration (∇, ∆).
Iterations to Over-Approximate the Reachable States

while (...) { ... }

memorized abstract invariants

propagated abstract invariants

Program

Iterative invariant computation

Abstract Domains

Choice of the Abstract Domains

Abstract Domain:

♦ Computer representation of a class of program properties;
♦ Transformers for propagation through expressions and commands;
♦ Primitives for convergence acceleration: \(\nabla, \Delta \).

Composition of Abstract Domains:

♦ Essentially approximate reduced product (conjunction with simplification).

Design of Abstract Domains:

♦ Know-how;
♦ Experimentation.

Interval Abstract Domain

♦ Classical domain [Cousot Cousot 76];

♦ Minimum information needed to check the correctness conditions;

♦ Not precise enough to express a useful inductive invariant (thousands of false alarms);

♦ \(\Rightarrow \) must be refined by:
 • combining with existing domains through reduced product,
 • designing new domains, until all false alarms are eliminated.
Clock Abstract Domain

Code Sample:

```
R = 0;
while (1) {
    if (I)
        R = R+1;
    else
        R = 0;
    T = (R>=n);
    wait_for_clock ();
}
```

- Output T is true iff the volatile input I has been true for the last n clock ticks.
- The clock ticks every a seconds for at most b hours, thus R is bounded.
- To prove that R cannot overflow, we must prove that R cannot exceed the elapsed clock ticks (impossible using only intervals).

Solution:
- We add a phantom variable clock in the concrete user semantics to track elapsed clock ticks.
- For each variable X, we abstract three intervals: X, X+clock, and X-clock.
- If X+clock or X-clock is bounded, so is X.

Octagon Abstract Domain

Code Sample:

```
while (1) {
    R = A-Z;
    L = A;
    if (R>V)
        ⋆
            L = Z+V;
    ⋆
}
```

- At ⋆, the interval domain gives \(L \leq \max(\max A, (\max Z + (\max V))) \).
- In fact, we have \(L \leq A \).
- To discover this, we must know at ⋆ that \(R = A-Z \) and \(R > V \).

Solution: we need a numerical relational abstract domain.

- The octagon abstract domain [Miné 03] is a good cost / precision trade-off.
- Invariants of the form \(\pm x \pm y \leq c \), with \(O(N^2) \) memory and \(O(N^3) \) time cost.
- Here, \(R = A-Z \) cannot be discovered, but we get \(L-Z \leq \max R \) which is sufficient.
- We use many octagons on small packs of variables instead of a large one using all variables to cut costs.

Ellipsoid Abstract Domain

2^d Order Filter Sample:

- Computes \(X_n = \{ \frac{\alpha X_{n-1} + \beta X_{n-2} + Y_n}{I_n} \} \)
- The concrete computation is bounded, which must be proved in the abstract.
- There is no stable interval or octagon.
- The simplest stable surface is an ellipsoid.

Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in boolean variables.

Code Sample:

```
bool B1,B2,B3;
float N,X,Y;
N = f(B1);
if (B1)
    { X = g(N); }
else
    { Y = h(N); }
```

Decision Tree:

- There are too many booleans (4 000) to build one big tree so we:
 - limit the BDD height to 3 (analysis parameter);
 - use a syntactic criterion to select variables in the BDD and the numerical parts.
Relational Domains on Floating-Point

Problems:
♦ Relational numerical abstract domains rely on a perfect mathematical concrete semantics (in \(\mathbb{R} \) or \(\mathbb{Q} \)).
♦ Perfect arithmetics in \(\mathbb{R} \) or \(\mathbb{Q} \) is costly.
♦ IEEE 754-1985 floating-point concrete semantics incurs rounding.

Solution:
♦ Build an abstract mathematical semantics in \(\mathbb{R} \) that over-approximates the concrete floating-point semantics, including rounding.
♦ Implement the abstract domains on \(\mathbb{R} \) using floating-point numbers rounded in a sound way.

Iteration Strategies for Fixpoint Approximation

Iteration Refinement: Loop Unrolling

Principle:
♦ Semantically equivalent to:
while (B) { C } \implies if (B) { C }; while (B) { C }

♦ More precise in the abstract:
 • less concrete execution paths are merged in the abstract.

Application:
♦ Isolate the initialization phase in a loop (e.g. first iteration).

Iteration Refinement: Trace Partitioning

Principle:
♦ Semantically equivalent to:
if (B) { C1 } else { C2 }; C3
\downarrow
if (B) { C1; C3 } else { C2; C3 };

♦ More precise in the abstract:
 • concrete execution paths are merged later.

Application:

```plaintext
if (B)
    { X=0; Y=1; }
else
    { X=1; Y=0; }
R = 1 / (X-Y);
```
Convergence Accelerator: Widening

Principle:
- Brute-force widening:

![Diagram of brute-force widening]

- Widening with thresholds:

![Diagram of widening with thresholds]

Examples:
- 1., 10., 100., 1000., etc. for floating-point variables;
- maximal values of data types;
- syntactic program constants, etc.

Fixpoint Stabilization for Floating-point

Problem:
- Mathematically, we look for an abstract invariant \(\text{inv} \) such that \(F(\text{inv}) \subseteq \text{inv} \).
- Unfortunately, abstract computation uses floating-point and incurs rounding: maybe \(F_\varepsilon(\text{inv}) \not\subseteq \text{inv} \)!

Solution:
- Widen \(\text{inv} \) to \(\text{inv}_\varepsilon \) with the hope to jump into a **stable zone of** \(F_\varepsilon \).
- Works if \(F \) has some **attractiveness** property that fights against rounding errors (otherwise iteration goes on).
- \(\varepsilon' \) is an analysis parameter.

Example of Analysis Session

![Image of an analysis session]

Results
Results

♦ Efficient:
 • tested on two 75,000 lines programs,
 • 120 min and 37 min computation time on a 2.8GHz PC,
 • 200 Mb memory usage.

♦ Precise:
 • 11 and 3 lines containing a warning.

♦ Exhaustive:
 • full control and data coverage (unlike checking, testing, simulation).

Conclusion

♦ Success story:
 • we succeed where a commercial abstract interpretation-based static analysis tool failed
 (because of prohibitive time and memory consumption and very large number of false alarms);

♦ Usable in practice for verification:
 • directly applicable to other similar programs
 by changing some analyzer parameters,
 • approach generalizable to other program families
 by including new abstract domains and specializing the iteration strategy.
 (Work in progress: power-on self-test for a family of embedded systems.)