LPOP 2020

Logic in program analysis and verification

Patrick Cousot

NYU, New York

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Sunday, Nov 15", 2020

¢ “Logic in program analysis and verification” -1/17 - © P. Cousot, NYU, New York, Sunday, Nov 15”', 2020

http://cs.nyu.edu/~pcousot

Subject of discussion

= For program specification and verification, logic is a natural choice.
= However, for static analysis, logic is rarely used, even as a user interface.
= We briefly discuss the weaknesses of logic from this static analysis perspective.

¢ “Logic in program analysis and verification” -2/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Which logic for specification?

¢ “Logic in program analysis and verification” -3/17 - © P. Cousot, NYU, New York, Sunday, Nov 151 2020

Specification

= decidable logics (such as Presburger arithmetic [12]):
= validity can be mechanically checked

= incomplete (the invariant of a program that computes the multiplication * using
iteration and addition + is not expressible)

= first-order logic:

= undecidable (user-interaction is needed for proofs)

= incomplete (no recursion mechanism, transitive closure is not expressible [11])
= higher-order logic:

= necessary to discuss the relative completeness go Hoare logic

= necessary to discuss the soundness of static analyzers (e.g. hyperproperties in
©(©(S)) where S is the semantic domain)

¢ “Logic in program analysis and verification” - 4/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Which logic for property repre-
sentation in a static analyzer?

verification” -5/17 - © P. Cousot, NYU, New York, Sunday, Nov 15”', 2020

Internal representation of abstract properties

= great advantage: uniform representation by (the abstract syntax) of a formula in
the logic
= many operations have simple implementations (e.g. connectives)
= exploited in the static analysis of Prolog [10]
= great disadvantage: uniformity
= no (useful) normal form
= efficient algorithms require specific representations (e.g. matrices+systems of
generators for linear equalities or inequalities [8])
= algorithmically, syntax-based representation uniformity is not tenable

¢ “Logic in program analysis and verification” -6/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Abstract domains

¢ “Logic in program analysis and verification”

-7/17 -

© P. Cousot, NYU, New York, Sunday, Nov 151 2020

Abstract domains

= order-theoretic/algebraic concept of properties (representation + operations)
= hard to translate in logic (e.g. how to express “to be a number between a and b")
= the semantics is formally defined by concretization to sets

= operations (e.g. logical connectives, transformers) are (predictable and efficient)
algorithms

= in logic, the failure of theorem provers or SMT solvers may be very hard to explain

[9]

¢ “Logic in program analysis and verification” -8/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Combinations of abstract domains

= the uniformity of representation of properties is lost with abstract domains
= combinations of abstract domains handle non-uniform representations

= communication of shared information between abstract domains

= example: the reduced product [3] for conjunction

= the combination of theories in SMT solvers is a reduced product [5] (the shared
information is equalities and disqualifies for Nelson-Oppen [13])

¢ “Logic in program analysis and verification” -9/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Induction

% “Logic in program analysis and verification’

-10/17 -

© P. Cousot, NYU, New York, Sunday, Nov 151 2020

Proofs by induction

= infering inductive arguments in proofs is the basis for verification and analysis of
programs

= asking the users for induction hypotheses makes verification simpler than program
analysis [6]

= hardly scale up (invariants are much larger than programs [4])

= induction in logic is predefined

= no mechanism in logic to specify how to automate approximate induction or
co-induction

= the complexity of an object and its logical denotation may be completely
unrelated.

% “Logic in program analysis and verification” -11/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Extrapolation and interpolation

= induction tailored to a level of abstraction [1]

= often based on geometric considerations (e.g. widenings extrapolate in the
direction of growth)

= finitary abstract domains are not expressive [2] (e.g. liquid types [14])

= the evolution of the iterates is monitored for induction [7]

% “Logic in program analysis and verification” -12/17 - © P. Cousot, NYU, New York, Sunday, Nov 1541 2020

Conclusion

= |ogic reduces the representations of properties and formal reasonings to purely

syntactic manipulations (copy/paste :)
= this is great for logicians to reason about proofs (# making proofs)

= mathematicians do not use logics to make proofs

© P. Cousot, NYU, New York, Sunday, Nov 151 2020

—13/17 -

% “Logic in program analysis and verification”

Conclusion

= |ogic reduces the representations of properties and formal reasonings to purely

syntactic manipulations (copy/paste :)
= this is great for logicians to reason about proofs (# making proofs)

= mathematicians do not use logics to make proofs

266

= computer scientists do, maybe that's the problem

% “Logic in program analysis and verification” - 13/17 - © P. Cousot, NYU, New York, Sunday, Nov 15”‘, 2020

The End, Thank you

% “Logic in program analysis and verification” —14/17 - © P. Cousot, NYU, New York, Sunday, Nov 151 2020

Bibliography |

[1] Patrick Cousot.
Abstracting induction by extrapolation and interpolation.
In VMCAI, volume 8931 of Lecture Notes in Computer Science, pages 19-42. Springer, 2015.

[2] Patrick Cousot and Radhia Cousot.
Comparing the Galois connection and widening/narrowing approaches to abstract interpretation.
In PLILP, volume 631 of Lecture Notes in Computer Science, pages 269—-295. Springer.

[3] Patrick Cousot and Radhia Cousot.
Systematic design of program analysis frameworks.
In POPL, pages 269-282. ACM Press, 1979.

[4] Patrick Cousot, Radhia Cousot, Jéréme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival.
Why does Astrée scale up?
Formal Methods in System Design, 35(3):229-264, 2009.

[5] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne.
Theories, solvers and static analysis by abstract interpretation.
J. ACM, 59(6):31:1-31:56, 2012.

[6] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato.
Program analysis is harder than verification: A computability perspective.
In CAV (2), volume 10982 of Lecture Notes in Computer Science, pages 75-95. Springer, 2018.

[7] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato.
AZi: abstract? interpretation.
Proc. ACM Program. Lang., 3(POPL):42:1-42:31, 2019.

[8] Patrick Cousot and Nicolas Halbwachs.
Automatic discovery of linear restraints among variables of a program.
In POPL, pages 84-96. ACM Press, 1978.

% “Logic in program analysis and verification” —15/17 - © P. Cousot, NYU, New York, Sunday, Nov 15”], 2020

Bibliography Il

[9] Leonardo Mendonca de Moura and Grant Olney Passmore.
The strategy challenge in SMT solving.
In Automated Reasoning and Mathematics, volume 7788 of Lecture Notes in Computer Science, pages 15-44. Springer, 2013.

[10] lIsabel Garcia-Contreras, José F. Morales, and Manuel V. Hermenegildo.
Incremental analysis of logic programs with assertions and open predicates.
In LOPSTR, volume 12042 of Lecture Notes in Computer Science, pages 36-56. Springer, 2019.

[11] Erich Gradel.
On transitive closure logic.
In CSL, volume 626 of Lecture Notes in Computer Science, pages 149-163. Springer, 1991.

[12] Christoph Haase.
A survival guide to Presburger arithmetic.
ACM SIGLOG News, 5(3):67-82, 2018.

[13] Greg Nelson and Derek C. Oppen.
Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245-257, 1979.

[14] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala.
Liquid types.
In PLDI, pages 159-169. ACM, 2008.

o =) = =
% “Logic in program analysis and verification” - 16/17 - © P. Cousot, NYU, New York, Sunday, Nov 151 2020

