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Subject of discussion

= For program specification and verification, logic is a natural choice.
= However, for static analysis, logic is rarely used, even as a user interface.
= We briefly discuss the weaknesses of logic from this static analysis perspective.
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Which logic for specification?

¢ “Logic in program analysis and verification” -3/17 - © P. Cousot, NYU, New York, Sunday, Nov 151 2020



Specification

= decidable logics (such as Presburger arithmetic [12]):
= validity can be mechanically checked

= incomplete (the invariant of a program that computes the multiplication * using
iteration and addition + is not expressible)

= first-order logic:

= undecidable (user-interaction is needed for proofs)

= incomplete (no recursion mechanism, transitive closure is not expressible [11])
= higher-order logic:

= necessary to discuss the relative completeness go Hoare logic

= necessary to discuss the soundness of static analyzers (e.g. hyperproperties in
©(©(S)) where S is the semantic domain)
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Which logic for property repre-
sentation in a static analyzer?
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Internal representation of abstract properties

= great advantage: uniform representation by (the abstract syntax) of a formula in
the logic
= many operations have simple implementations (e.g. connectives)
= exploited in the static analysis of Prolog [10]
= great disadvantage: uniformity
= no (useful) normal form
= efficient algorithms require specific representations (e.g. matrices+systems of
generators for linear equalities or inequalities [8])
= algorithmically, syntax-based representation uniformity is not tenable
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Abstract domains
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Abstract domains

= order-theoretic/algebraic concept of properties (representation + operations)
= hard to translate in logic (e.g. how to express “to be a number between a and b")
= the semantics is formally defined by concretization to sets

= operations (e.g. logical connectives, transformers) are (predictable and efficient)
algorithms

= in logic, the failure of theorem provers or SMT solvers may be very hard to explain

[9]
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Combinations of abstract domains

= the uniformity of representation of properties is lost with abstract domains
= combinations of abstract domains handle non-uniform representations

= communication of shared information between abstract domains

= example: the reduced product [3] for conjunction

= the combination of theories in SMT solvers is a reduced product [5] (the shared
information is equalities and disqualifies for Nelson-Oppen [13])
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Induction
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Proofs by induction

= infering inductive arguments in proofs is the basis for verification and analysis of
programs

= asking the users for induction hypotheses makes verification simpler than program
analysis [6]

= hardly scale up (invariants are much larger than programs [4])

= induction in logic is predefined

= no mechanism in logic to specify how to automate approximate induction or
co-induction

= the complexity of an object and its logical denotation may be completely
unrelated.
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Extrapolation and interpolation

= induction tailored to a level of abstraction [1]

= often based on geometric considerations (e.g. widenings extrapolate in the
direction of growth)

= finitary abstract domains are not expressive [2] (e.g. liquid types [14])

= the evolution of the iterates is monitored for induction [7]
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Conclusion

= |ogic reduces the representations of properties and formal reasonings to purely

syntactic manipulations (copy/paste :)
= this is great for logicians to reason about proofs (# making proofs)

= mathematicians do not use logics to make proofs
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Conclusion

= |ogic reduces the representations of properties and formal reasonings to purely

syntactic manipulations (copy/paste :)
= this is great for logicians to reason about proofs (# making proofs)

= mathematicians do not use logics to make proofs

266

= computer scientists do, maybe that's the problem
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The End, Thank you
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