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Objective

e Infer a contract precondition from the language and
programmer assertions

Usefullness

e Anticipate errors at runtime (e.g. change to trace
execution mode before actual error does occur)

e Main motivation: use contracts for separate static
analysis of modules (in Clousot)
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Example

void A11NotNull(Ptr[] A) {

¥

int 1 = 0O;
while /* 3: x/

A[i].f = new Object();
1++;

}

i < A.length) {
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Example

Ianguage assertions
void A11NotNull(Ptr[] A) {

. %/ int i = 0;
: %/ while /* 3: %/

(assert(A !'= null); i < A.length) {

%k / assert((A !'= null) && (A[i] '= null));
: %/ A[i].f = new Object();

. x/ i++;

. %/}

. x/ }



Example

From the language assertions
void Al1NotNull(Ptr[] A) {<«

int 1 = 0O;
while /* 3: */
(assert(A !'= null); i < A.length) {

~ N
*  *
N =
* ¥
~N NN

/* 4. x/ assert((A !'= null) && (A[i] !'= null));
/* 5: %/  A[i].f = new Object();

/*x 6: *x/ i++;

/* T: x/ }

/* 8: %/ }

infer the precondition

A # null AVi € [0,A.length) : Ali] # null




Understanding the
problem




First alternative: eliminating potential errors

e The precondition should eliminate any initial state
from which a nondeterministic execution may
lead to a bad state (violating an assertion)

bad state ® ®
o o
o o o J
o bad run o good run
bad run bad run

bad state bad state



Defects of potential error elimination

® A priori correctness point of view

e Makes hypotheses on the programmer’s
Intentions
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Second alternative: eliminating definite errors

e The precondition should eliminate any initial state
from which all nondeterministic executions must
lead to a bad state (violating an assertion)

bad state

o o
o o
o o o o
o bad run o good run
OK
bad run bad run

bad state bad state



On non-termination ...

e Up to now, no human or machine could prove
(or disprove) the conjecture that the following
program always terminates

volid Collatz(int n) {
requires (n >= 1);

while (n !'= 1) {
1t (odd (n)) {

n = 3*n+1
} else {
n=n)/2



On non-termination ... (contd)

e Consider

Collatz(p);
assert(false);

e The precondition is

e assert(false) if Collatz always terminates
e assert(p >= 1) if Collatz may not terminate
®* oOr even better

assert(NecessaryConditionForCollatzNotToTerminate(p))



A compromise on non-termination

e \We do not want to have to solve the program
termination problem

e \We ignore non-terminating executions, if any

Infinite good run/o'.

bad state o o

/'/ /'/ bad state
/'/ bad run /'/ bad run
bad run bad run

bad state bad state
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Program small-step operational semantics

® Transition system

F
(X, 1, J)
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/ ! \
Set of states Transition relation Initial states

TEPAXY)  TepX)

® Blocking states
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Program partial run semantics

A LF e X | Vie[0,n—1):7(5,5i1))
n =0

#+ A U 2n finite partial runs
n=>1



Program maximal run semantics

7 A (FEeF |5, €B)
n

finite maximal runs

Jinitial states



Fixpoint maximal run semantics

~N|

= C = = o
7T = 1 AT « B U725
gfp%+ )\f-%lLJ?Q;f

where

o sequential composition of traces is §s§ss” /

O O

555’

e S35/ 21558 |FscSNEtAss €8

e Given S C ¥, welet "2 {3eX™ |5y e S}, n>1

Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47-103 (2002)
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Collecting asserts

e Alllanguage and programmer assertions are collected
by a syntactic pre-analysis of the code

A = {(cj, bj) | j € A}

where

o assert(b;) is attached to a control pointc; € I', 5 € A

* b, : well defined and visible side ettect tree



Evaluation of expressions

e Expressions € € L include Boolean expressions
(over scalar variables or quantifications over
collections)

e The value of e € [E in state s € X is |e]s

e Values include
e Booleans B = {true, false}
e Collections (arrays, sets, hash tables, etc.),

® cicC

20



Control

e Map w € 2 — [’ of states of 2/ into control points in I"

(of finite cardinality)
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Bad states and bad traces

e Erroneous/bad states
Ep = {s€ X |3 e,b)€A:mrs=cA[b]s}

e Erroneous/bad traces
éA = {§E§+‘Ei<|§|:§iE€A}

,° good run

o
//

€A bad runs

erroneous states Ea

22



Formal specification of
the contract inference
problem

23




The contract inference problem

® Effectively compute a condition Pp restricting the
initial states J such that

® no hew run is introduced

TPAﬂj g Tff
¢ 3]l eliminated runs are bad runs
Topy = T3 \Tp, € €np

so that no finite maximal good run is ever eliminated

® [rivial solution: Pap = J so that 3\ Pa = 0 hence F,}L\PA = ()

24



The strongest ®) solution
Va 2 {s]|Iss e 7t N-Ep}

bad s, bad ood °
ran ./"/Y state §un ./'/
//
” \
bad
bad
run state

(5) P is said to be stronger than ) and (Q weaker than P if and only if P C Q).
| 25



The strongest ®) solution
Va 2 {s]|Iss e 7t N-Ep}

o bad

bad ood °
run ‘/‘/ state %U?///
oK o
bad
bad
run state

It is correct to under-approximate 3 5, but incorrect to
over-approximate!

(5) P is said to be stronger than ) and (Q weaker than P if and only if P C Q).
| 26



Good and bad states

e Good states : start at least one good run
JAN —_ — — o
PBa = {s|Iss€ 7 N-Ep}

® Bad states : start only bad runs

B 2 Pa = {s|Vs§eFT:55€ )

. erroneous state



Fixpoint strongest contract
precondition
(collecting semantics)

28




Trace predicate transformers are abstractions

e Trace predicate transformers "’
Wlp[f = Aé-{s‘ngef:s§EQ}

wip ! [@] 2 AP {sse 5T |(se P)= (s5€Q))

® (Galois connection

> o wipT Q]
(p(X1), C) ——= (p(X), D)
AT - wip[T']@Q

e Bad initial states (all runs from these states are bad)
Pa =wlp[7T](En)
= {s|Vss €T :s5€ Ep}

(*) Denoted as, but different from, and enjoying properties similar to Dijkstra’s syntactic WLP predicate transformer

29




Fixpoint abstraction

Lemma 7 If (L, <, 1) is a complete lattice or a cpo, F' € L — L is increasing, (L,
C) is a poset, « € L — L is continuous (6)’(7), F € L — L commutes (resp. semi-
commutes) with F that is « o F = F o o (resp. a« o F C F o ) then a(lfpfF)

E = < C =
pr;u)F (resp. a(lfp | F) C pra(l) F).

(6) « is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for « can be restricted to the iterates of the least fixpoint of F.

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6"
POPL. pp. 269-282. ACM Press (1979)
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Fixpoint abstraction

Lemma 7 If (L, <, 1) is a complete lattice or a cpo, F' € L — L is increasing, (L,
C) is a poset, o € L — L is continuous 8" F € L — L commutes (resp. semi-

commutes) with F that is « o F = F o o (resp. a« o F C F o ) then a(lfpfF)

L — < C S
Ifp (L) E (resp. a(lfp [ F) E pra(l) F).

Example: Park theorem

(L, <) ¢ : s (L, =) (since "z <y < x = y).
<

SO _Ilfp F:gfpf — o F o —

(6) « is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for « can be restricted to the iterates of the least fixpoint of F.

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6"
POPL. pp. 269-282. ACM Press (1979)
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Fixpoint strongest contract precondition

Theorem 10 P, = gfp% AP-&p U(—B Nprelt]P) and Pa = prq% AP-=€EpN

(B U pre[t| P) where pre[t]Q = {s|3s’ € Q : (s, s') €t} and pre[t]|Q = —pre[t](—Q) =
{s|Vs' :(s, s) et=5 €Q}. (]

32



Fixpoint strongest contract precondition (proof)

Theorem 10 P, = gfp% AP-CpU(—BNprelt]P) and Pa = pr(z% AP-=€EpN
(B U pre[t]P) where pre[t]Q = {s | 3s' € Q : (s, s') € t} and pre[t]Q = —pre[t](—Q) =
{s|Vs' :(s, s) et=5 €Q}. (]
Proof sketch:
o 7t =Ifp, AT -Blu7?sT

= wip ™! [Q)]

o (P(XT), C) =————= (p(Y), 2)
AT «wip[T]Q

o wlp[ié1 u‘fz s T)(Ep) = €a U (=B N pre[t)(wlp[T])(€a)))

o EA — W|p[?+](éA) — Wlp[lfp(bg )\f-%lLJ*FQSf](@A)
— Ifp2 AP+ €a U (=B Npreft]P) = &by AP+ €aU (=B N pre[f]P)

e Pa = - Pa = fps AP-=Ex N (B U pre[t]P) (Park)
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Contract precondition
inference by abstract
Interpretation

34




Under-approximations

® Cxtremely hard not to be trivial:
® TJests
® Bounded model checking
are unsound both for Ba and Py

® All our proposed solutions:

symbolic under-approximations by program expression
propagation
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(I) Forward symbolic
execution

36



General idea

® Perform a symbolic execution [19]

® |Vlove asserts symbolically to the program entry
Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x ==0) {

/* 2: x0=0 & x=x0 & y=y0 */ X++;

/* 3: x0=0 & x=x0+1 & y=y0 */ assert (x==y) ;
+

the precondition at program point 1: is (! (x==0) | | (x+1==y)).

e Fixpoint approximation thanks to the formalization
of symbolic execution as an abstract interpretation
[8, Sect. 3.4.5] (a widening enforces convergence)

8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). These

d’Etat &s sciences mathématiques, Université scientifique et médicale de Grenoble (1978)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385—394 (1976)
37



(I1) Backward
expression propagation

38



General idea

Try to move the condition code in assertions at the
beginning of the program/method/...

This is possible under sufficient conditions:

* The checked condition has the same value on entry
and when checked in asserts

* |tis checked inan assert on all possible paths
from entry

We derive a sound backward dataflow analysis by
abstraction of the trace semantics
Too imprecise

39



Example

/¥ 1: %/ int i = O;
while /* 3: */
(asserﬂZA = null)) i < A.length) {

void Al1NotNull (Ptr[] A)f:i)

~
*
N
*

~

/* 4: x/ assert((A '= null) && (A[i] !'= null));
/* 5: x/  A[i].f = new Object();

/* 6: x/ i++;

/* T: %/ }

/* 8: x/ }

Example 13 Continuing Ex. 1, the assertion A !'= null is checked on all paths and
A is not changed (only its elements are), so the data flow analysis is able to move the
assertion as a precondition. []

40



(Ill) Backward path
condition and expression
propagation

41



General idea

® Try to move the condition code in assertions at the
beginning of the program/method/... keeping track
of the path condition

® Example:

_,0dd(x) ~» y >= 0 ..testing this

If this condition if ( odd(x) ) { ™~ condition now

IS true now

y++; is the same as
then control ,
assert(y > 0); testing the
must lead to an
} else { assert(b)

assert(b)

assert(y < 0); } condition b
where...

© P. Cousot, R. Cousot, F. Logozzo
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Example

I (x !1=0) || (x> 0)
x*/ while (x != 0) {
* / assert(x > 0);
X==;

*/ } /x 5: */

N
*
D W N -
*
~
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(IV) Forward analysis
for collections

44



General idea
e The previous analyzes for scalar variables can be

applied elementwise to collections
— much too costly

e Apply segmentwise to collections!
e Forward or backward symbolic execution might

be costly, an efficient solution is needed
— segmented forward dataflow analysis

45



Segmentation”

e Example A: [0,100] | [-100,100] |[-100,-1]
T T T T

A: <{®} [0,100], {a}7 [-100 10@] i{b}?,[-100,-1],{n}?>

=7 \

expressions lower abstract upper possible
on scalar variables bound of property of all bound of emptyness
(all have equal segment elementsin segment of segment
values) (included) segment (excluded)

7

() see POPL201 1.
46



Basic abstract domains for segments

e Modification analysis

M=E{ed) eCeC 0L 0.
¢ : all elements in the segment must be equal to
their initial value
0 : otherwise, may be different
e Checking analysis

C={L,ncT} L1lcacT lcerCT

¢ :all elements A[¢] in the segment must have
been checked in assert(b (A[2])) while equal to
their initial value (determined by
the modification analysis)

n :none of the elements have been checked yet

47
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Example : (I) program

void Al11NotNull (Ptr[] A) {

. %/ dint i = 0;
: %/ while /* 3: x/

(assert(A !'= null); i < A.length) {

%/ assert((A !'= null) && (A[i] !'= null));
: x/  A[i].f = new Object();
. *x/ i++;

. %/}

48
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Example : (lla) analysis

void Al11NotNull (Ptr[] A) {

. %/ dint i = 0;
: %/ while /* 3: x/

(assert(A !'= null); i < A.length) {

{0}0{i}te{A.length} - {O}c{i}tn{A.length}

%/ assert((A !'= null) && (A[i] !'= null));
: x/  A[i].f = new Object();

: %/ i++;

. %/}

: %/ } {0}0{i,A.length}? - {0}c{i,A.length}?

49



Example : (IIb) modification analysis

void Al1lNotNull(Ptr[] A) {
. int 1 = 0O;
2: %/ while /* 3: x/
(assert(A !'= null); i < A.length) {

|—L
%
~N

. %
X {0}0{i}re{A.length} - {0}c{itn{A.length}
4: %/ assert((A '= null) && (A[i] '= null));
5: %/ A[i].f = new Object();
6: x/ i++;
7: x/ }
8: */ } {0}0{i,A.length}? - {0}c{i,A.length}?

78
(A[1] != null)is

checked while A[ 1]

unmodified since code

entry
50



Example : (lll) result

void Al1lNotNull(Ptr[] A) {
. int 1 = 0O;
2: %/ while /* 3: x/
(assert(A !'= null); i < A.length) {

|—L
%
N~

4: x/

{0}0{i}e{A.length} - {0}c{itn{A.length}
4: */ assert((A !'= null) && (A[i] !'= null));
5: x/ A[i].f = new Object();
6: x/ i++;
7: %/ }
8: */ } {0}0{i,A.length}? = {0}c{i,A.length}?
(A[1i] != null) is all A[ 1] have been
checked while A[ 1] checkedin (A[1] !=
unmodified since code null) while unmodified

entry since code entry
51



Details of the analysis

(a) 1: {0Ye{A.length}? - {0In{A.length}?
no element yet modified (¢) and none checked (n), array may be empty
(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i=0
(¢) 3: LU ({0,i}e{A.length}? - {0,i}n{A.length}?) join
= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,iYe{A.length} - {0,i}n{A.length}
last and only segment hence array not empty (since A.length > i = 0)
(e) 5: {0,iYe{A.length} - {0,i}c{1,i+1}n{A.length}?
A[i] checked while unmodified
(f) 6: {0,i}0{1,i+1}Ye{A.length}? - {0,i}c{1,i+1In{A.length}?
A[i] appears on the left handside of an assignment, hence is potentially modified
(g) 7: {0,i-130{1,i}Ye{A.length}? - {0,i-1}c{1,iIn{A.length}?
invertible assignment i) q = ipew — 1
(h) 3: {0,iYe{A.length}? U {0,i-1}0{1,i}e{A.length}? - join
{0,iIn{A.length}? LU {0,i-1}c{1,i}In{A.length}?

= {0}e{i}7e{A.length}? LI {0}0{i}e{A.1length}? - segment unification
{0} L{i}?n{A.length}? LU {O}c{itn{A.length}?
= {0}0{i}7e{A.length}? - {0}c{i}?n{A.length}?
segmentwise join ¢ U0 =0, ¢elde=¢, L Uc=¢,nlUn=n
(i) 4: {0}0{i}7e{A.length} - {0}c{i}?n{A.length}last segment not empty
(j) 5: {0¥0{i}7e{A.length} - {0}c{i}?c{i+1}In{A.length}?
A[i] checked while unmodified
(k) 6: {0Y0{i}70{i+1}e{A.1length}? - {O0}rc{i}7c{i+1}In{A.length}?
A[i] potentially modified
(1) 7: {oyo{i-1}70{i}te{A.length}? - {0}c{i-1}7c{i}n{A.length}?
invertible assignment iglg = inew — 1
(m) 3: {0}0{i}7e{A.length}? L {0}0{i-1}0{i}e{A.length}? - join
{0}c{i}?n{A.length}? LI {O}c{i-1}c{i}tn{A.length}?
= {0}0{i}7e¢e{A.1length}? LI {0}0{i}7e{A.length}? -segment unification
{0}c{i}?n{A.length}? U {0}c{i}?n{A.length}?
= {0}0{i}7¢e{A.length}? - {0}c{i}?n{A.length}?
segmentwise join, convergence
(n) 8: {0}0{i,A.length}? - {0}c{i,A.length}?
¢ < A.length in segmentation and > in test negation so 1 = A.length.

52

Just to show
that the
analysis is
very fast!
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Precondition inference from assertions

e Our point of view that only definite (and not
potential) assertion violations should be checked in
preconditions looks original

e The analyzes for scalar and collection variables have
been chosen to be simple

e for scalability of the analyzes

e for understandability of the automatic program
annotation

e Currently being implemented
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THE END,
THANKYOU
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