
The Verification Grand Challenge
and Abstract Interpretation

Patrick Cousot

École normale supérieure, Paris, France
cousot ens fr www.di.ens.fr/~cousot

Verified Software: Theories, Tools, Experiments
Zürich, ETH, Oct. 10th–14th, 2005

— 1 —

Abstract interpretation

Abstract interpretation

--- Abstract interpretation is a mathematical theory of
sound approximation of properties of formal sys-
tems (including program specifications, semantics,
. . .)

--- Abstraction is central to the comprehension of com-
plex systems (such as software)

--- Discovering new, useful, reusable abstractions can
be a full time job

— 3 —

Applications of Abstract Interpretation (Cont’d)

--- Static Program Analysis [POPL ’77], [POPL ’78], [POPL ’79]
including Dataflow Analysis [POPL ’79], [POPL ’00], Set-
based Analysis [FPCA ’95], Predicate Abstraction
[Manna’s festschrift ’03], . . .

--- Syntax Analysis [TCS 290(1) 2002]

--- Hierarchies of Semantics (including Proofs) [POPL ’92],
[TCS 277(1–2) 2002]

--- Typing & Type Inference [POPL ’97]

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 2 — — 4 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot
http://www.di.ens.fr/
http://www.di.ens.fr/

Applications of Abstract Interpretation (Cont’d)

--- (Abstract) Model Checking [POPL ’00]

--- Program Transformation [POPL ’02]

--- Software Watermarking [POPL ’04]

--- Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

— 5 —

A successful example:
The ASTRÉE static analyzer

The ASTRÉE static analyzer

--- Verify the absence of runtime errors in C programs:
-- out-of-bound array accesses 1

-- integer division by zero

-- IEEE 754-1985 floating point operations overflows and in-
valid operations (producing Inf or NaN 2)

-- integer arithmetics or cast wrap around, . . .

--- No union, malloc, recursion, library, strings, . . .
. . . as usual in many (automatically generated) synchronous,
time-triggered, real-time, safety critical, embedded software as
found in automotive, energy and aerospace applications

— 7 —

Industrial applications
--- Nov. 2003: absence of any RTE in the primary flight control
software of the fly-by-wire system of a family of existing com-
mercial planes (generated from a proprietary specification lan-
guage), 132.000 lines

--- Mar. 2005: absence of any RTE in the primary flight con-
trol software of the fly-by-wire system of commercial plane un-
der certification (generated from a proprietary specification lan-
guage/SCADE), 500.000 lines, No false alarm (a world première)

--- Oct. 2005: 1.000.000 lines

Objectives: verification of binary code (+3 months), automatic

analysis of the origin of errors (+6 months), asynchronous com-

munication (+1 year), asynchronous processes (+2 years), . . .

1 It is completely wrong that “we don’t need a proof but a proper compiler”: discovering the error at runtime
is too late, no compiler checks these verification conditions
2 Well-written programs check for Inf/NaN inputs which must be shown statically not to propagate

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 6 — — 8 — ľ P. Cousot

http://www.di.ens.fr/
http://www.di.ens.fr/

Abstractions
Abstraction of sets of traces 3 with

--- Intervals abstract domain (basic domain necessary to check
the absence of RTE)

--- Octagons abstract domain

--- Digital filters abstract domain

--- Decision trees abstract domain

--- Control/data partitioning to handle disjunctions

--- . . .

Preprocessing to handle C macros. Abstract domains are param-

eterized to tailor cost/precision, they talk/communicate symbol-

ically through mutual queries to implement the reduced product
— 9 —

Ellipsoid Abstract Domain for Filters2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

--- Computes Xn =



¸Xn`1 + ˛Xn`2 + Yn
In

--- The concrete computation is bounded, which
must be proved in the abstract.

--- There is no stable linear invariant

--- The simplest stable surface is an ellipsoid

X U F(X)

X
F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid
3 i.e. more refined that invariants

Filter Exampletypedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

Reference
see http://www.astree.ens.fr/

— 11 —

Arithmetic-geometric progressions

--- Abstract domain: (R
+)5 4

--- Concretization (any function bounded by the arithmetic-
geometric progression):
‚ 2 (R

+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“

–x . ax+ b ‹ (–x . a0x+ b0)k
”

(M)g

Reference
see http://www.astree.ens.fr/

4 here in R

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 10 — — 12 — ľ P. Cousot

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.di.ens.fr/
http://www.di.ens.fr/

Arithmetic-Geometric Progressions (Example 1)
% cat count.c

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;

void main() {

R = 0;

while (TRUE) {

__ASTREE_log_vars((R));

if (I) { R = R + 1; }

else { R = 0; }

T = (R >= 100);

__ASTREE_wait_for_clock(());

}}

% cat count.config

__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

— 13 —

Arithmetic-geometric progressions (Example 2)

% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev()

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev();

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1

+ 1.19209290217e-07)ˆclock

- 5.87747175411e-39 /

1.19209290217e-07 <=

23.0393526881

Directions for application of
abstract interpretation

to the verification grand challenge

— 15 —

Program verification
Following E.W.D. Dijkstra:

--- Program testing: presence of bugs

-- dynamic (e.g. program monitoring, . . .)

-- static (error pattern recognition, prefix (model)-
checking, . . .)

--- Program verification: absence of bugs

-- static

The Verification Grand Challenge is on verification (???).

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 14 — — 16 — ľ P. Cousot

http://www.di.ens.fr/
http://www.di.ens.fr/

Error tracing

--- Bugs or false alarms are found during the verification
process

--- Abstract slicing can extract the part of the program
(control + data) which may be responsible for the error

--- Parametric abstraction can be used to provide counter-
examples

--- This can be hard (e.g. accumulation of rounding errors
in floating point computations for hours)

— 17 —

Program semantics

--- A program is checked with respect to its semantics (in-
ternal specification)

--- Precise formal semantics (usable for program verifica-
tion, including at the implementation level) are missing
for the most common languages (e.g. C 5)

--- No semantics is universal

--- Abstract interpretation unifies semantics according to
their level of abstraction and can be used to prove their
consistency

5 The semantics of C is –P : Program texts ´ –M : Machine ´ –S : System ´ –L : Linker ´ –C : Compiler ´
S[C;L; S;M]JP K . . . described informally

Specifications

--- Specifications translate external requirements in terms
of the program semantics

--- Specifications are erroneous

--- Specifications must be checked with respect to specifi-
cations of the specification

--- Static analysis by abstract interpretation could be use-
ful for specification verification

— 19 —

On specification satisfaction

--- Specification satisfaction can be verified in part

--- Such parts are abstractions of the specification (e.g. ab-
sence of RTE)

--- This shows the need for abstractions of specifications

--- Abstract interpretation

-- unifies specifications at various levels of abstraction

-- can be used to prove their consistency

-- can be used to specify by parts (through complex
combinations of abstractions)

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 18 — — 20 — ľ P. Cousot

http://www.di.ens.fr/
http://www.di.ens.fr/

Complex systems

--- Engineers abstract complex physical systems (e.g. using
mathematical models)

--- Computer scientists abstract complex program compu-
tations (e.g. using abstract interpretation)

--- A unification of abstraction in computer science and
engineering sciences is necessary for the full verification
of complex systems, including
-- Abstract models of a program (e.g. using abstract se-
mantics)

-- Abstract models of its environment (e.g. using physi-
cal models)

— 21 —

Proofs, abstractions and false alarms

--- A program proof involves a program-specific inductive
argument

--- A static analysis involves a program specific abstraction

--- Discovering an appropriate abstraction (e.g. by refine-
ment fixpoint iteration) is equivalent to discovering an
inductive proof

--- There is no false alarm only if the proof weakest induc-
tive argument is expressible in the abstract

Verification of program families

--- How to invent inductive arguments/abstractions avoid-
ing false alarms?

--- We can consider program families for which inductive
arguments/abstractions are similar

--- Examples:
-- Absence of runtime error in synchronous control command
programs (ASTRÉE)

-- Sorting, list processing,. . . (TVLA)

-- Scientific and signal processing applications (PIPS)

-- Numerical programs (Fluctuat)

— 23 —

Application-aware verifiers

--- General-purpose verifiers are difficult to built

--- Domain-specific verifiers can be made powerful and ef-
ficient by incorporating knowledge about programs and
specifications

--- Example (for digital filters):

-- Polynomial assertions 6, versus

-- Ellipsoidal assertions 7, versus

-- Polyhedral assertions 8, . . .

6 Too expensive
7 OK, if implemented very efficiently and used locally in the program analysis
8 Not stable

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 22 — — 24 — ľ P. Cousot

http://www.astree.ens.fr/
http://www.cs.tau.ac.il/~tvla/
http://www.cri.ensmp.fr/pips/
http://www.enseignement.polytechnique.fr/profs/informatique/Matthieu.Martel/
http://www.di.ens.fr/
http://www.di.ens.fr/

Domains of abstract assertions

--- Universal representations (e.g. terms in theorem provers
or BDDs in model-checkers) are not always efficient

--- Dedicated representations are always algorithmically more
efficient

--- We can develop reusable libraries of dedicated abstrac-
tions 9

— 25 —

Combination of abstractions

--- The modular combination of abstract domains (e.g. re-
duced product) allow universal uses of dedicated repre-
sentations

--- A domain-specific static analyzer can be built by com-
bining appropriate abstract domains

--- This is a generalization from:

-- the design of an inductive argument (e.g. invariant)
for a specific program (invariant generator), to

-- the design of an appropriate abstract domain com-
bination for a program family ((invariant generator)
generator)

9 e.g. APRON project in France: interchangeable numeric abstractions

Abstract solvers

--- Abstract solvers can take various forms:

-- Elimination

-- Iterative

-- Convergence acceleration

-- . . .

--- Progress needed on reusable, generic, parametric and
modular abstract solvers

— 27 —

Modular analyzers

--- Static analyzers are extremely complex

--- Efficient static analyzers can be designed by modular
combination of abstract domains and abstract solvers

--- This leads to a wide spectrum of domain-aware verifiers
as opposed to a universal one

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 26 — — 28 — ľ P. Cousot

http://www.di.ens.fr/
http://www.di.ens.fr/

The verified verifier (heavy version)

--- Any verifier must be qualified (e.g. verified)

--- Abstract interpretation formalizes the design and cor-
rectness of static analyzers

--- An abstract interpretation-based static analyzer is fully
formally specified and can be fully verified 10

— 29 —

The verified verifier (light version)

--- A static analyzer computes an assertion and checks that
it is inductive

--- The computation of the abstract inductive assertion
(e.g. invariant) need not be verified

--- The check that the abstract assertion is inductive must
be verified

--- This is much simpler than a complete correctness proof!

--- A verified inductiveness checker can be extracted from
the correctness proof (COQ) and run occasionally to
validate the abstract assertion (despite its inefficiency)

10 e.g. in COQ as in D. Pichardie thesis, to appear

Acceptance and dissemination of static analysis

--- Ultimate success is in effective industrial applications

--- Measured only by economic payoff criteria

--- Hard to estimate the potential cost of errors discovered
by static analysis 11

--- The public demand on software quality might increase

--- Regulation might also be necessary (e.g. for safety crit-
ical software) to raise the law to the state of the art

--- Static analysis (as available at design time) can check a
posteriori for fatal errors, which can determine respon-
sibilities in case of software failures

— 31 —

Conclusion

11 The Ariane 5.01 bug is worth billions of $ if discovered by failure after departure but 0 $ if known before!

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 30 — — 32 — ľ P. Cousot

http://www.di.ens.fr/
http://www.di.ens.fr/

Conclusion

--- Abstraction is indispensable for the Verification Grand
Challenge

--- The challenge for abstract interpretation is to extend
its scope to complex systems, from specification to im-
plementation, including engineering considerations

— 33 —

THE END, THANK YOU

References

[1] www.astree.ens.fr [3, 4, 5, 6, 7, 8, 9, 10]

[2] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs mono-
tones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques,
Université scientifique et médicale de Grenoble, Grenoble, France, 21 March 1978.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedi-
cated to Neil D. Jones, LNCS 2566, pp. 85–108. Springer, 2002.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, pp. 196–207, ACM Press, 2003.

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACJM ’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43–57 (1979).

[POPL ’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

— 35 —

[POPL ’79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL ’92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83–94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

[FPCA ’95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7th Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170–181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL ’97] P. Cousot. Types as Abstract Interpretations. In Conference Record of the 24th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 316–331, Paris, France,
1997. ACM Press, New York, U.S.A.

[POPL ’00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12–25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL ’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178–190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1–2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science 277(1–2):47–103, 2002.

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 34 — — 36 — ľ P. Cousot

www.astree.ens.fr
http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/PLDI03.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Tarski-79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL78.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL78.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Tarski-79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/FPCA95.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/FPCA95.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL97.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL00.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/TCS02-1.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/TCS02-1.shtml
http://www.di.ens.fr/
http://www.di.ens.fr/

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theo-
ret. Comput. Sci., 290:531–544, 2003.

[Manna’s festschrift ’03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification –
Theory & Practice – Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 – July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243–268. ľ Springer-Verlag, Berlin,
Germany, 2003.

[5] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyser.
ESOP 2005, Edinburgh, LNCS 3444, pp. 21–30, Springer, 2005.

[6] J. Feret. Static analysis of digital filters. ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

[7] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–
58, Springer, 2005.

[8] Laurent Mauborgne & Xavier Rival. Trace Partitioning in Abstract Interpretation Based Static Analyzers.
ESOP’05, Edinburgh, LNCS 3444, pp. 5–20, Springer, 2005.

[9] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO’2001, LNCS
2053, Springer, 2001, pp. 155–172.

[10] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP’04,
Barcelona, LNCS 2986, pp. 3—17, Springer, 2004.

[POPL ’04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.
In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

— 37 —

[DPG-ICALP ’05] M. Dalla Preda and R. Giacobazzi. Semantic-based Code Obfuscation
by Abstract Interpretation. In Proc. 32nd Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP’05 – Track B). LNCS, 2005 Springer-Verlag. July 11-15, 2005, Lisboa, Portugal. To
appear.

[EMSOFT ’01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,
and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS
2211, 469–485.

[RT-ESOP ’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
ESOP 2004, Barcelona, Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), LNCS 2986, Springer, 2004,
pp. 18–32.

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 38 — ľ P. Cousot

http://www.di.ens.fr/~cousot/COUSOTpapers/TCS03-parsing.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Zohar03.shtml
http://www.astree.ens.fr/
http://www.di.ens.fr/~feret/publication/esop2004.html
http://www.di.ens.fr/~feret/publication/vmcai2005.ps.gz
http://www.di.ens.fr/~mauborgn/publi/esop05.html
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL04.shtml
http://profs.sci.univr.it/~giaco/papers.html
http://profs.sci.univr.it/~giaco/papers.html
http://profs.sci.univr.it/~giaco/papers.html
http://www.math.unipd.it/~franz/papers/esop04.pdf
http://www.di.ens.fr/
http://www.di.ens.fr/

	ABSTRACT INTERPRETATION
	Abstract interpretation
	Applications of abstract interpretation
	Applications of abstract interpretation
	THE ASTREE STATIC ANALYZER
	The ASTRÉE static analyzer
	Industrial applications
	Abstractions
	Ellipsoid abstract domain for digital filters
	Filter example
	Arithmetic-Geometric Progression
	Arithmetic-Geometric Progression (example 1)
	Arithmetic-Geometric Progression (Example 2)
	DIRECTIONS FOR APPLICATION OF ABSTRACT INTERPRETATION TO THE VERIFICATION GRAND CHALLENGE
	Program verification
	Error tracing
	Program semantics
	Specifications
	On specification satisfaction
	Complex systems
	Proofs, abstractions and false alarms
	Verification of program families
	Application-aware verifiers
	Domains of abstract assertions
	Combination of abstractions
	Abstract solvers
	Modular analyzers
	The verified verifier (heavy version)
	The verified verifier (light version)
	Acceptance and dissemination of static analysis
	CONCLUSION
	Conclusion
	THE END
	References

