ETH Workshop on Software Correctness and Reliability

Abstract Induction
Concrete Induction

ETH Zurich
October 2-3,2015

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 | o P. Cousot ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 2

Software correctness proofs

® Any formal proof of a non-trivial program requires a
reasoning by mathematical induction

® Invent an inductive argument

the hardest part AVO|d|ng the d|fﬁCU|t|eS:
® Prove the base case and inductive case (I) ﬁ nitar), meth OC|S

® Prove that the inductive argument is strong-enough,
that is, it implies the program property to be verified

Avoiding the difficulty
® Unsoundness: not for scientists

® Model-checking: finite enumeration, no induction
needed

® Deductive methods (theorem provers, proof verifiers,
SMT solvers): avoid the difficulty since the
inductive argument must be provided by the end-user

® Finitary abstractions (predicate abstraction = any finite

abstract domain): only finitely many possible
statements to be checked to be inductive

ETH Workshop on Software Corr

ectness and Reliability, Ziirich, October 2-3,2015 5) P.Cousot

Limitations of finite abstractions

® A sound and complete finite abstraction exists to
prove any property of any program:

x=0; while x<1 do x++ — {1,[0,0],[0,1],[-00,00]}

x=0; while x<2 do x++ — {L,[0,0],[0,I],[0,2],[-00,00]}

x=0; while x<n do x++ —> {L,[0,0],[0,1],[0:2],[0.3]. ..., [0;n].[-co,c0]}

® Not true for a programming language !

® Finite abstractions fail on infinitely many programs on
which infinitary abstractions do succeed

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 6) P.Cousot

Avoiding the difficulty
(Il) Refinement in finite
domains

ETH Workshop on Software Cor

rectness and Reliability, Ziirich, October 2-3,2015 7) P.Cousot

Verification/static analysis by abstract interpretation

® Define the abstraction:
Y (P
(9(2[P]), C) ——= (Z[P],C)
afP]

® Calculate the abstract semantics:
S*[P] = [Pl ({S[P]})
S*[P] 2 afPC{SP]})

exact abstraction
approximate abstraction

® Soundness (by construction):

VPel:VQed: [P C Q0 = S[P] € y[PI(Q)

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 8) P.Cousot

Refinement: good news

® Problem:how to prove a valid abstract property
a({lfp F[[P]|}) C O when ao FC F”s o but Ifp F”[P]]

to:

® |t is always possible to refine (</, C) into a most

abstract more precise abstraction (<, C') such that

(§9(D), Cy=—"

o

and o/ o F = F'o a with Ifp F/[P] T’ o o y (Q)

/

(o', L)

/

(thus proving Ifp F[[P]| € y'(Q) which implies Ifp F[P] e y(Q))

Roberto Giacobazzi, Francesco Ranzato, Francesca Scozzari: Making abstract interpretations complete. J. ACM 47(2):
361-416 (2000)

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 9 O P. Cousot

Refinement: bad news

® But, refinements of an abstraction can be intrinsically
incomplete

® The only complete refinement of that abstraction for
the collecting semantics is :

the identity (i.e. no abstraction at all)

® |n that case, the only complete refinement of the
abstraction is to the collecting semantics and any other
refinement is always imprecise

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 10 O P. Cousot

Example of intrinsic approximate refinement

® Consider executions traces (i, o) with infinite past and
future:

O-2 0-1 Oo 01 02 03 04 agi

W 2 -10 1 2 3 4 1
states time origin present time

1 |

A

past | future

Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 Il O P. Cousot

Example of intrinsic approximate refinement

® Consider the temporal specification language i
(containing LTL, CTL, CTL*, and Kozen’s p-calculus as

fragments):

Y = oOg S € p(S) state predicate
| e tep(SxS) transition predicate
| @®vr next
2 reversal
| ©1 Vo disjunction
|~ negation
| X XeX variable
| wX- ¢ least fixpoint
| vX- ¢ greatest fixpoint
| Y1 universal state closure

Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 12 O P. Cousot

Example of intrinsic approximate refinement

® Consider universal model-checking abstraction:

MCj,(¢) = o, ([9]) €
= {s € States | ¥(i,o) € Tracesy . (o

(i,0) € [9]}

o(Traces) — p(States)

i:S):>

where M is defined by a transition system

(and dually the existential model-checking abstraction)

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015

Example of intrinsic approximate refinement

® The abstraction from a set of traces to a trace of sets
is sound but incomplete, even for finite systems)

A M M A M M
. .

) (
D (G
) (

® Any refinement of this abstraction is incomplete (but to
the infinite past/future trace semantics itself))

(*) Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25
(**) Roberto Giacobazzi, Francesco Ranzato: Incompleteness of states w.r.t. traces in model checking.
Inf. Comput. 204(3): 376-407 (2006)

nd Reliability, Ziirich, October 2-3,2015

14) P Cousot

ETH Workshop on Software Correctness al

Intrinsic approximate refinement

APEQ(D) D

In general refinement does not terminate

® Examplefilter invariant abstraction:

2nd order filter: Unstable polyhedral
abstraction: ... ,

F(X)

X

XU F(X)

Counter-example
P Stable eII|p50|daI

100
o/
&
)
“

abstraction . :
guided refinement)
poset L : /7)) abstraction:
. will indefinitely
complete .. . e % % w
abstractions * refinements of a add missing points
according to the
. K> ‘ “ XUF(X)
APEGQ(D) P execution trace: = .
o Set of a b St racti o n S Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
P AIAA Infotech@ @ Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.
ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 15 P.C ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 |6) P. Cousot

In general refinement does not terminate

® Narrowing is needed to stop infinite iterated
automatic refinements:

e.g. SLAM stops refinement after 20mn, now
abandoned (despite complete success claimed in 98%
of studied cases)

® [ntelligence is needed for refinement:

e.g. human-driven refinement of Astrée ()

(*) Thomas Ball, Vladimir Levin, Sriram K. Rajamani: A decade of software model checking with
SLAM. Commun. ACM 54(7): 68-76 (2011)

(**) Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine
Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract
Interpretation. In AIAA Infotech@ @Aerospace 2010, Atlanta, Georgia. American Institute of
Aeronautics and Astronautics, 20—22 April 2010. © AIAA.

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 17) P.Cousot

Facing the difficulties:
Abstract induction

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 18

Sound software static analysis

® The mathematical induction must be performed in the
abstract

® (and imply the mathematical induction in the concrete)

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 19) P.Cousot

Abstract induction

® The inductive argument must be expressible in the
abstract domain

® |t must be strong enough to imply the program
property

® |t must be inferable in the abstract

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 20

Abstract induction in
infinite domains

Abstract Interpreters

® Transitional abstract interpreters: proceed by induction
on program steps

® Structural abstract interpreters: proceed by induction
on the program syntax

® Common main problem: over/under-approximate
fixpoints in non-Noetherian® abstract domains

(*) Iterative fixpoint computations may not converge in finitely many steps
(**) Or convergence may be guaranteed but to slow.

ilty, Ziirich, October 2-3,2015 22

Fixpoints
e Poset <D9 g 1, L=

e Transformer FeD—D

e Least fixpoint: Ifp= F = | |ocy FM(L)

F(L)

F(X) =X

Convergence criterion
® By Tarski (or variants)

FX)E X = IfptFC X

Widening

ETHWorkshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 25 5 P. Cousot

Convergence acceleration with widening

T

Ifp F

Infinite iteration

ETHWorkshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 26 5 P. Cousot

Convergence acceleration with widening

Lﬁ
Ifp F

> >

Ifp F

Accelerated iteration with widening
(e.g. with a widening based on the derivative
as in Newton-Raphson method®)

Infinite iteration

®) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33
(2010)

ETHWorkshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 27 5 P. Cousot

Extrapolation by Widening
o X0=1 (increasing iterates with widening)
X=XV F(X") when F(F(X")) Z F(X")
Xt = F(X") when F(F(X")) C F(X")
e Widening V, two independent hypotheses:

e YCLXVY (extrapolation)

® Enforces convergence of increasing iterates with
widening (to a limit X?)

ETHWorkshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 28 5 P. Cousot

The oldest widenings

® Primitive widening [1,2]

(xVy)=casxeV_,ye V. dans =]
— a g S8 -
e [al, bl]AV [a2, b2] =
?2,0=>x; ’)
[ny,my 1,y m,] =>

[sin, < n; alors —= sinon n, fsi ;

if a, < a, then ~» else a., fi,:
[__ 2 1 === === Y =
sim, > m, alors += sinon my Egi

Hen if b2 > bl then +» else bl f£il

® Widening with thresholds [3]

Vxe Ly, L Vi(Dx=xVy(j) L=x
(A RAO I
=[f0< L <, thenQ elsif I, < I, then —b — 1 else I, fi,
if u, < u, < 0 then 0 elsif u, < u, then b else u, fi]

[1] Patrick Cousot, Radhia Cousot: Véri statique de la é i des Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
[3] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 29 5 P. Cousot

Extrapolation with widening

XE F(X)

FX)TX

Software Correctness and Reliability, Ziirich, October 2-3,2015 30 5 P. Cousot

Widenings are not increasing
® A well-known fact
[1,1] € [1,2] but [1,1]V[1,2]=[1,o¢] C [1,2]1V[1,2]=[1,2]
® A widening cannot both:
® Be increasing in its first parameter

® Enforce termination of the iterates

Avoid useless over-approximations as soon as a
solution is found®

) A counter-exampleis x Vy=T

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 31 5 P. Cousot

Narrowing

Software Correctness and Reliability, Ziirich, October 2-3,2015 32 5 P. Cousot

Interpolation with narrowing
o Y0 =X’ (decreasing iterates with narrowing)
Yt =Yn A F(Y") when F(F(Y")) C F(Y")
Y= F(Y") when F(F(Y")) = F(Y")
e Narrowing A, two independent hypotheses:

e YCLX = YCLXAYLCX (interpolation)

® Enforces convergence of decreasing iterates with
narrowing (to a limit Y*)

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 33 5 P. Cousot

The oldest narrowing
* [2]
[a,.b,] A faz.bzl =
[if a, = -« then a, glse MIN (a,.a,),

if b, = +e then I:g2 else MAX (b,,b,]]

1

[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 34 5 P. Cousot

Interpolation with narrowing

XC F(X) F(X)C X

Could stop when F(X) Z X A F(F(X)) E F(X) but not the current practice.

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 35 5 P. Cousot

Duality

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 36 5 P. Cousot

Duality

° Convergence above the limit | Convergence below the limit
Increasing iteration Widening V Dual-narrowing /\
Decreasing iteration Narrowing /\ Dual widening V

Extrapolators (V, v) and interpolators (/\, E)

® Extrapolators: Vo,
S S —)
® Interpolators: A
ETH Workshop on Software Correctness and Reliabiliy, Ziirich, October 2-3,2015 37 5 P.Cousot

Extrapolators, Interpolators, and Duals

co-in-
duction
1

induct-
ion

38) P Cousot

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015

Multi-step extrapolators/interpolators

® The extrapolators/interpolators can be on
® the last two iterates
® a bounded number of previous iterates
® all previous iterates

® Examples:
® |oop unrolling
® delayed widening

® etc

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015

39) P Cousot

Dual narrowing

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 40 5 P. Cousot

Interpolation with dual narrowing

o Z0=1 (increasing iterates with dual-narrowing)

Zr = F(Z") AY? when F(F(Z") £ F(Z")
Zm = F(Z") when F(F(Z")) C F(Z")
e Dual-narrowing A, two independent hypotheses:

e XCY — XCYA XCY (interpolation)

® Enforces convergence of increasing iterates with
dual-narrowing

41

Example of dual-narrowing

o . . g labl

[a.b] A [c.d] _

b

[c.d]

® [ablAfed 2 [(c=-cFasla+c)/2]).[d=c07bs[(b+d)2])]

® The first method we tried in the late 70’s with Radhia
® Slow

® Does not easily generalize

42

Interpolation with dual-narrowing

« Refine widening/narrowing iterations Y*
* Refine a user-defined specification (Craig interpolation)

43

Craig interpolation

® Craig interpolation:

Given P = Q find I such that P = I = Q with
var(I) C var(P) n var(Q)

is a dual narrowing

44

Relationship between narrowing and dual-narrowing
o A = A
e YLX = YCLXAYLCX (narrowing)

eYCX = YCLYA XcCcX (dual-narrowing)

ETHWorkshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 45

Bounded widening

Dual-narrowing versus bounded widening
e Dual-narrowing A:

FX)cB=> F(X)cF(X) ABCB

Induction on F(X) and B
e Bounded widening Vs:

XCFX)EB= FX)C X VeF(X)CB

Induction on X, F(X),and B

Example of widenings (cont’d)
e Bounded widening (in [Z, h]):
a,b]

[c.d]

[a,b] Ve [c,d] & [cig—%, b:tcéj:2h]

Soundness

49

Soundness

® Fixpoint approximation soundness theorems can be
expressed with minimalist hypotheses ©:

® No need for complete lattices, complete partial orders
(CPOs):

® The concrete domain is a poset
® The abstract domain is a pre-order

® The concretization is defined for the abstract
iterates only.

) Patrick Cousot. Abstracting Induction by Extrapolation and Interpolation In Deepak D'Souza,Akash Lal,and Kim Guldstrand Larsen
(Eds), 1 6™ International Conference on Verification, Model Checking, and Abstract Interpretation, Mumbai, India, January 12—14,2015. Lecture
Notes in Computer Science, vol. 8931, pp. |9—42, © Springer 2015.

50

Soundness (cont'd)

® No need for increasingness/monotony hypotheses for
fixpoint theorems (Tarski, Kleene, etc)

® The concrete transformer is increasing and the limit
of the iterations does exist in the concrete domain

® No monotonicity hypotheses on the abstract
transformer (no need for fixpoints in the abstract)

® Soundness hypotheses on the extrapolators/
interpolators with respect to the concrete

® |n addition, the independent termination hypotheses on
the extrapolators/interpolators ensure convergence in
finitely many steps

51

Conclusion

52

The challenge of verification
® [nfer the inductive argument

® Without deep knowledge about the program

® Scale

Infer the abstract inductive argument

typedef enum {FALSE = O, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P =X; E[0] =X; %}
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S8[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in 29222222222222972222297272? */
+
void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {
X =0.9 %« X + 35;
filter (); INIT = FALSE; }
}
ETHWorkshop o 54

Infer the abstract inductive argument

typedef enum {FALSE = O, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P =X; E[0] =X; %}

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); %

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
+
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X =0.9 %« X + 35;

filter (); INIT = FALSE; } v
} :

Extrapolation/Interpolation

® Abstract interpretation in infinite domains is
traditionally by iteration with widening/narrowing.

® \We have shown how to use iteration with dual-
narrowing.

® These ideas of the 70's generalize Craig interpolation
from logic to arbitrary abstract domains.

® Can be used to improve precision when a fixpoint is
reached after the widening/narrowing iterations

The End, Thank You

ETH Workshop on Software Correctness and Reliability, Ziirich, October 2-3,2015 57

© P.Cousot

