

Software correctness proofs

- Any formal proof of a non-trivial program requires a reasoning by mathematical induction (e.g., following Turing, on the number of program execution steps):
- Invent an inductive argument (e.g. invariant, variant function), the hardest part
- Prove the base case and inductive case (e.g. true on loop entry and preserved by one more loop iteration)
- Prove that the inductive argument is strong-enough, that is, it implies the program property to be verified

Avoiding the difficulties: (1) finitary methods

Avoiding the difficulty

- Unsoundness: not for scientists
- Model-checking: finite enumeration, no induction needed
- Deductive methods (theorem provers, proof verifiers, SMT solvers): avoid (part of) the difficulty since the inductive argument must be provided by the end-user (⇒ still difficult, shame is on the prover)
- Finitary abstractions (predicate abstraction ≡ any finite abstract domain): only finitely many possible statements to be checked to be inductive

5

Limitations of finite abstractions

• A sound and complete finite abstraction exists to prove any property of any program:

x=0; while x<1 do x++ $\longrightarrow \{\perp, [0,0], [0,1], [-\infty, \infty]\}$ x=0; while x<2 do x++ $\longrightarrow \{\perp, [0,0], [0,1], [0,2], [-\infty, \infty]\}$...

x=0; while x<n do x++ $\longrightarrow \{\perp, [0,0], [0,1], [0,2], [0,3], ..., [0,n], [-\infty, \infty]\}$

• Not true for a programming language !

...

© P. Cousot

© P. Cousot

• Finite abstractions fail on infinitely many programs on which infinitary abstractions do succeed

Verification/static analysis by abstract interpretation

- Define the abstraction: $\langle \wp(\mathscr{D}[\![P]\!]), \subseteq \rangle \xrightarrow{\gamma[\![P]\!]} \langle \mathscr{A}[\![P]\!], \subseteq \rangle$
- Calculate the abstract semantics:

 $S^{\#}[\mathbf{P}] = \alpha[\mathbf{P}](\{S[\mathbf{P}]\})$ exact abstraction

 $S^{\#}[\![\mathbf{P}]\!] \sqsupseteq \alpha[\![\mathbf{P}]\!](\{S[\![\mathbf{P}]\!]\}) \qquad \mathsf{ap}$

approximate abstraction

• Soundness (by construction):

 $\forall \mathbf{P} \in \mathbb{L} : \forall \mathbf{Q} \in \mathscr{A} : S^{\#}[\![\mathbf{P}]\!] \sqsubseteq \mathbf{Q} \implies S[\![\mathbf{P}]\!] \in \gamma[\![\mathbf{P}]\!](\mathbf{Q})$

8

Avoiding the difficulty (II) Refinement in finite domains

ETH Workshop on Software Correctness and Reliability, Zürich, October 2-3, 2015

ETH Workshop on Software Correctness and Reliability. Zürich. October 2–3, 2015

© P. Cousot

Refinement: good news

- Problem: how to prove a valid abstract property $\alpha(\{ \text{lfp } F[[P]] \}) \sqsubseteq Q \text{ when } \alpha \circ F \sqsubseteq F^{\#} \circ \alpha \text{ but lfp } F^{\#}[[P]]$ $\not \sqsubseteq Q ? \text{ (i.e. strongest inductive argument too weak)}$
- It is always possible to refine ⟨𝔄, ⊑⟩ into a most abstract more precise abstraction ⟨𝔄', ⊑'⟩ such that

 $\langle \wp(\mathscr{D}), \subseteq \rangle \xrightarrow{\gamma'} \langle \mathscr{A}', \sqsubseteq' \rangle$

and $\alpha' \circ F = F' \circ \alpha$ with lfp $F' \llbracket P \rrbracket \sqsubseteq' \alpha' \circ \gamma (Q)$

(thus proving lfp $F[[\mathbb{P}]] \in \gamma'(Q)$ which implies lfp $F[[\mathbb{P}]] \in \gamma(Q)$) Roberto Giacobazzi, Francesco Ranzato, Francesca Scozzari: Making abstract interpretations complete. J. ACM 47(2): 361-416 (2000) ETH Workshop on Software Correctness and Reliability. Zürich. October 2-3.2015 9 0 R. Counc

Example of intrinsic approximate refinement

Consider executions traces (*i*, *σ*) with infinite past and future:

Refinement: bad news

- But, refinements of an abstraction can be intrinsically incomplete
- The only complete refinement of that abstraction for the collecting semantics is :

the identity (i.e. no abstraction at all)

• In that case, the only complete refinement of the abstraction is to the collecting semantics and any other refinement is always imprecise

Example of intrinsic approximate refinement

TH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 201

10

© P. Cousot

© P. Cousot

• Consider the temporal specification language μ^{α} (containing LTL, CTL, CTL*, and Kozen's μ -calculus as fragments):

$arphi$::= $oldsymbol{\sigma}_S$	$S\in\wp(\mathbb{S})$	state predicate	
$\mid \mathbf{\pi}_t$	$t\in\wp(\mathbb{S}\times\mathbb{S})$	transition predicate	
$ \oplus \varphi_1$		next	
$ \varphi_1 ^{\uparrow}$		reversal	
$\varphi_1 \lor \varphi_2$		disjunction	
$\neg \varphi_1$		negation	
$\mid X$	$X\in \mathbb{X}$	variable	
$\mid \boldsymbol{\mu} X \boldsymbol{\cdot} \varphi_1$		least fixpoint	
$\boldsymbol{\nu} X \boldsymbol{\cdot} \varphi_1$		greatest fixpoint	
$ert arphi arphi_1 : arphi_2$		universal state closure	

Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25 ETH Workshop on Software Correctness and Reliability. Zürich, October 2-3, 2015 12

Example of intrinsic approximate refinement

• Consider universal model-checking abstraction: $\mathrm{MC}_{M}^{\forall}(\phi) = \alpha_{M}^{\forall}(\llbracket \phi \rrbracket) \in \wp(Traces) \to \wp(States)$

 $= \{s \in States \mid \forall \langle i, \sigma \rangle \in Traces_M . (\sigma_i = s) \Rightarrow$ $\langle i, \sigma \rangle \in \llbracket \phi \rrbracket \}$

13

where M is defined by a transition system

ETH Workshop on Software Correctness and Reliability, Zürich, October 2-3, 201

(and dually the existential model-checking abstraction)

Intrinsic approximate refinement

Example of intrinsic approximate refinement

• The abstraction from a set of traces to a trace of sets is sound but incomplete, even for finite systems (*)

• Any refinement of this abstraction is incomplete (but to the infinite past/future trace semantics itself) (**)

(*) Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25

(**) Roberto Giacobazzi, Francesco Ranzato: Incompleteness of states w.r.t. traces in model checking. Inf. Comput. 204(3): 376-407 (2006) 14

In general refinement does not terminate

• Example:filter invariant abstraction:

ETH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 201

© P Couse

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aero AIAA Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20–22 April 2010. © AIAA.

16

© P. Couso

© P. Couso

In general refinement does not terminate

• Narrowing is needed to stop infinite iterated automatic refinements:

e.g. SLAM stops refinement after 20mn, now abandoned (despite complete success claimed in 98% of studied cases ^(*))

• Intelligence is needed for refinement:

e.g. human-driven refinement of Astrée (**)

Sound software static analysis

- The mathematical induction must be performed in the abstract (e.g. the inductive argument must belong to an abstract domain with a finite computer representation)
- (and imply the mathematical induction in the concrete)

Facing the difficulties: Abstract induction

Abstract induction

18

- The inductive argument must be expressible in the abstract domain (complex abstract domains favored)
- It must be strong enough to imply the program property (complex abstract domains favored
- It must be <u>inferable</u> in the abstract (simple abstract domains favored)

© P. Cousot

ETH Workshop on Software Correctness and Reliability, Zürich, October 2-3, 201

© P. Cousot

^(*) Thomas Ball, Vladimir Levin, Sriram K. Rajamani: A decade of software model checking with SLAM. Commun. ACM 54(7): 68-76 (2011)

 ^(**) Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In *AIAA Infotech@@Aerospace 2010*, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20–22 April 2010. © AIAA.
 ETH Workshop on Software Correctness and Reliability. Zürch. October 2-3,2015

Interpolation with dual narrowing

- $Z^0 = \bot$ (increasing iterates with dual-narrowing)
 - $Z^{n+1} = F(Z^n) \widetilde{\Delta} Y^{\lambda} \qquad \text{when } F(F(Z^n)) \not\sqsubseteq F(Z^n)$

 $Z^{n+1} = F(Z^n)$ when $F(F(Z^n)) \sqsubseteq F(Z^n)$

- Dual-narrowing $\widetilde{\Delta}$, two independent hypotheses:
 - $X \sqsubseteq Y \implies X \sqsubseteq Y \Delta X \sqsubseteq Y$ (interpolation)
 - Enforces *convergence* of increasing iterates with dual-narrowing

Interpolation with dual-narrowing

41

- Refine widening/narrowing iterations $Y^{\boldsymbol{\lambda}}$
- Refine a user-defined specification (Craig interpolation)

- $[a,b] \widetilde{\Delta} [c,d] \triangleq [(c = -\infty ? a : \lfloor (a+c)/2 \rfloor), (d = \infty ? b : \lceil (b+d)/2 \rceil)]$
- The first method we tried in the late 70's with Radhia
 - Slow

© P. Couso

© P. Cousot

• Does not easily generalize (e.g. to pointer analysis)

Craig interpolation

• Craig interpolation:

ETH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 201

Given $P \Longrightarrow Q$ find I such that $P \Longrightarrow I \Longrightarrow Q$ with $var(I) \subseteq var(P) \cap var(Q)$

42

is a dual narrowing (already observed by Vijay D'Silva and Leopold Haller as a narrowing [indeed inversed narrowing!])

- May not be unique
- May not terminate

44

© P Cousor

• Dual-narrowing $\widetilde{\Delta}$:

 $F(X) \sqsubseteq B \Longrightarrow F(X) \sqsubseteq F(X) \widetilde{\Delta} B \sqsubseteq B$

Induction on F(X) and B

• Bounded widening $\nabla_{\rm B}$:

ETH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 2015

 $X \sqsubseteq F(X) \sqsubseteq B \Longrightarrow F(X) \sqsubseteq X \nabla_B F(X) \sqsubseteq B$

47

Induction on X, F(X), and B

48

[a,b]

[c,d]

· · · · · **>** · · · · · **>**

 $[a,b] \nabla_{[\ell,h]} [c,d] \triangleq [\underline{c+a-2\ell}, \underline{b+d+2h}]$

Soundness

Soundness (cont'd)

- No need for increasingness/monotony hypotheses for fixpoint theorems (Tarski, Kleene, etc)
 - The concrete transformer is increasing and the limit of the iterations does exist in the concrete domain

49

- No monotonicity hypotheses on the abstract transformer (no need for fixpoints in the abstract)
- Soundness hypotheses on the extrapolators/ interpolators with respect to the concrete
- In addition, the independent termination hypotheses on the extrapolators/interpolators ensure convergence in finitely many steps

Soundness

- Fixpoint approximation soundness theorems can be expressed with minimalist hypotheses ^(*):
- No need for complete lattices, complete partial orders (CPO's):
 - The concrete domain is a poset
 - The abstract domain is a pre-order
 - The concretization is defined for the abstract iterates only.

(*) Patrick Cousot. Abstracting Induction by Extrapolation and Interpolation In Deepak D'Souza, Akash Lal, and Kim Guldstrand Larsen (Eds), *16th International Conference on Verification, Model Checking, and Abstract Interpretation, Mumbai, India, January* 12–14, 2015. Lecture Notes in Computer Science, vol. 8931, pp. 19–42, © Springer 2015.

50

ETH Workshop on Software Correctness and Reliability, Zürich, October 2-3, 2015

© P. Cousot

© P. Cousot

ETH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 201

© P. Cousot

Conclusion

The challenge of verification

- Infer the inductive argument
- Without deep knowledge about the program (e.g. very precise, quasi-inductive, quasi-strong enough specification)

• Scale

ETH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 2015

```
53
```

© P. Cousot

Infer the abstract inductive argument

```
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
  BOOLEAN INIT; float P, X;
  void filter () {
    static float E[2], S[2];
    if (INIT) { S[0] = X; P = X; E[0] = X; }
    else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4)))
                + (S[0] * 1.5)) - (S[1] * 0.7)); \}
    E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
    /* S[0], S[1] in [-1327.02698354, 1327.02698354] */
 }
 void main () { X = 0.2 * X + 5; INIT = TRUE;
    while (1) {
      X = 0.9 * X + 35; /* simulated filter input */
      filter (); INIT = FALSE; }
                                        55
ETH Workshop on Software Correctness and Reliability, Zürich, October 2–3, 2015
```

Infer the abstract inductive argument

```
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
 BOOLEAN INIT; float P, X;
 void filter () {
   static float E[2], S[2];
   if (INIT) { S[0] = X; P = X; E[0] = X; }
   else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4)))
               + (S[0] * 1.5)) - (S[1] * 0.7)); \}
   E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
   */
 }
 void main () { X = 0.2 * X + 5; INIT = TRUE;
   while (1) {
     X = 0.9 * X + 35; /* simulated filter input */
     filter (); INIT = FALSE; }
                                     54
ETH Workshop on Software Correctness and Reliability, Zürich, October 2-3, 201
                                                           © P. Cousot
```

Extrapolation/Interpolation

- Abstract interpretation in infinite domains is traditionally by iteration with widening/narrowing.
- We have shown how to use iteration with dualnarrowing.
- These ideas of the 70's generalize Craig interpolation from logic to arbitrary abstract domains.
- Can be used to improve precision when a fixpoint is reached after the widening/narrowing iterations

56

