Work in Progress Towards Liveness Verification for Infinite Systems
 by Abstract Interpretation

Patrick Cousot

cims.nyu.edu/~pcousot/

Joint work with Radhia Cousot www.di.ens.fr/~rcousot/

Limitations of "abstract and model-check" for liveness

- For unbounded transition systems, finite abstractions are
- Incomplete for termination;
- Unsound for non-termination;

- And so the limitation is similar for liveness, no counter-example to infinite program execution
- One is only interested in liveness in the finite abstract (or the concrete is bounded) \rightarrow decidable
- Or, model-checking is used for checking the termination proof inductive argument (e.g. given variant functions) \rightarrow decidable

Ittai Balaban, Amir Pnueli, Lenore D. Zuck: Ranking Abstraction as Companion to Predicate Abstraction. FORTE 2005: 1-12

- Of very limited interest:
- Program executions are unbounded \rightarrow undecidable
- The hardest problem for liveness proofs is to infer the inductive argument, then the proof is "easy"

Origin of the limitations

- Model-checking is impossible because counterexamples are unbounded infinite

- We need automatic verification not checking
- This requires
- Infinitary abstractions
- of well-founded relations / well-orders
- and effectively computable approximations
i.e. Abstract Interpretation

Analysis and verification

 with well-founded relations and well-ordersMaximal trace operational semantics

- A transition system: $\langle\Sigma, \tau\rangle$

- Maximal trace operational semantics: set of
- Finite traces:

- Infinite traces:

Well-founded relations / Well-orders

- Well-founded relation:

A relation $r \in \wp(\mathfrak{X} \times \mathfrak{X})$ on a set \mathfrak{X} is well-founded if and only $i f^{3}$ there is no infinite descending chain $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ of elements $x_{i}, i \in \mathbb{N}$ of \mathfrak{X} such that $\forall n \in \mathbb{N}:\left\langle x_{n+1}, x_{n}\right\rangle \in r$ (or equivalently $\left\langle x_{n}, x_{n+1}\right\rangle \in r^{-1}$).

- Well-order:

A well-order (or well-order or well-ordering) is a poset $\langle\mathfrak{X}, \sqsubseteq\rangle$, which is well-founded and total.

[^0]
Relevance to Termination Proof

- Program termination is

$\left\langle\Sigma, \tau^{-1}\right\rangle$ is well-founded

i.e. no infinite execution $\left(\left(\tau^{-1}\right)^{-1}=\tau\right)$

Relevance to LTL verification

- $\mathrm{P} \bigcup \mathrm{Q}$ for transition system $\langle\Sigma, \tau\rangle$
if and only if
$\left\langle\{\mathrm{x} \in \Sigma \mid \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})\},\left\{\langle\mathrm{y}, \mathrm{x}\rangle \in \tau^{-1}|\neg \mathrm{Q}(\mathrm{x}) \wedge \neg \mathrm{Q}(\mathrm{y})\rangle\right.\right.$
is well-founded invariant variant

General idea of the abstraction

- Combine two abstractions:
- Abstraction of a relation to its well-founded part (to get a necessary condition for wellfoundedness)
- Asbtraction of this well-founded part to a wellorder (to get a sufficient condition for wellfoundedness)

relation
well-founded
well-order on
part founded part

Abstraction of relations to their well-founded
 part

Relations

- We encode relations by a domain and a set of connections between elements of the domains (some may be unconnected)

$$
\begin{aligned}
\mathfrak{R}(\mathfrak{X}) & \triangleq\{\langle D, r\rangle \mid D \in \wp(\mathfrak{X}) \wedge r \in \wp(D \times D)\} \\
\mathfrak{w}(\mathfrak{X}) & \triangleq\{\langle D, r\rangle \in \mathfrak{R}(\mathfrak{X}) \mid r \in \mathfrak{w} \mathfrak{f}(D)\}
\end{aligned}
$$

$\mathfrak{w}(\mathfrak{X})$ is the set of well-founded relations on subsets of the set \mathfrak{X}.

- Well-founded relations do not form a lattice for \subseteq :

Well-founded part of a relation

- Example of well-founded part of a relation:

- Formally

$$
\begin{aligned}
\alpha^{\mathfrak{w f}}(r) & \triangleq\langle\boldsymbol{\delta}(r), r \cap(\mathfrak{X} \times \boldsymbol{\delta}(r))\rangle \quad \text { where } \\
\boldsymbol{\delta}(r) & \triangleq\left\{x \in \mathfrak{X} \mid \nexists\left\langle x_{i} \in \mathfrak{X}, i \in \mathbb{N}\right\rangle: x=x_{0} \wedge \forall i \in \mathbb{N}: x_{i} r^{-1} x_{i+1}\right\} \\
\gamma^{\mathfrak{w} \mathfrak{f}}(\langle D, w\rangle) & \triangleq w \cup(\mathfrak{X} \times \neg D)
\end{aligned}
$$

Partial order on relations

- Formalize the intuition of over-approximation of well-founded relations in $\mathfrak{w}(\mathfrak{X})$

- Formal definition:

$$
\begin{aligned}
\langle D, w\rangle \stackrel{\oplus}{ }\left\langle D^{\prime}, w^{\prime}\right\rangle & \triangleq \gamma^{\mathfrak{w} \mathfrak{f}}(\langle D, w\rangle) \subseteq \gamma^{\mathfrak{w f}}\left(\left\langle D^{\prime}, w^{\prime}\right\rangle\right) \\
& =D^{\prime} \subseteq D \wedge w \cap\left(D^{\prime} \times D^{\prime}\right) \subseteq w^{\prime} \wedge w \cap\left(\neg D^{\prime} \times D^{\prime}\right)=\emptyset
\end{aligned}
$$

Best abstraction of the well-founded part

- Any relation can be abstracted to its most precise well-founded part

$$
\langle\wp(\mathfrak{X} \times \mathfrak{X}), \subseteq\rangle \underset{\alpha^{\mathfrak{w} \mathfrak{f}}}{\stackrel{\gamma^{\mathfrak{w} \mathfrak{f}}}{\leftrightarrows}}\langle\mathfrak{w}(\mathfrak{X}), \stackrel{\Phi}{\underline{ }}\rangle
$$

- The best abstraction provides a necessary and sufficient condition for well-foundedness
- An $\underset{\oplus}{\oplus}$-over-approximation of this best abstraction yields a sufficient condition for well-foundedness

$$
\text { if } \alpha^{\mathfrak{w} \mathfrak{f}}(r) \underline{\Phi}\langle D, w\rangle \text { then } r \text { is well-founded on } D
$$

Fixpoint characterization of the well-founded part of a relation

- $\alpha^{\mathfrak{w f}}(r)=\mathbf{l f p}^{\complement} \boldsymbol{\lambda}\langle D, w\rangle \cdot\left\langle\min _{r}(\boldsymbol{X}) \cup \widetilde{\mathbf{p r e}} \llbracket r \rrbracket D, w \cup\{\langle x, y\rangle \in r \mid x \in \widetilde{\text { pre }} \llbracket r \rrbracket D\}\right\rangle$
where
$\widetilde{\text { pre }} \llbracket \rrbracket X=\{x \in \mathfrak{X} \mid \forall y \in \mathfrak{X}: r(x, y) \Rightarrow y \in X\}$
and $\langle D, w\rangle \subseteq\left\langle D^{\prime}, w^{\prime}\right\rangle$ if and only if $D \subseteq D^{\prime} \wedge w \subseteq w^{\prime}$.
- By abstraction $\alpha(\langle D, w\rangle)=D$, we get a fixpoint characterization of the wellfoundedness domain.
$\mathfrak{d}(r)=\mathbf{l f}{ }^{\sqsubseteq} \boldsymbol{\lambda} X \cdot \min _{r}(\mathfrak{X}) \cup \widetilde{\mathbf{p r e}} \llbracket r \rrbracket X$
- We have recent results on under-approximating such fixpoint equations by Abstract Interpretation using abstraction and convergence acceleration by widening/narrowing

Recent results

- We have studied in

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, Francesco Logozzo: Automatic Inference of Necessary Preconditions. VMCAI 2013: 128-148

Patrick Cousot, Radhia Cousot, Francesco Logozzo: Precondition Inference from Intermittent Assertions and Application to Contracts on Collections. VMCAI 2011: 150-168
the static inference of such under-approximations

- The same infinitary under-approximation techniques do work for the inference of sufficient conditions for well-foundedness

Example

```
anceDemo.InferenceDemo * = CallWithNull0 - * 0 Errors | \ 4 Warnings (i) 4 Messages
    public int InferNotNull(int x, string p)
{
        if (x >= 0)
        {
            return p.GetHashCode();
        }
        return -1;
}
public void CallInferNotNull(string s)
{
    InferNotNull(1, s);
    Description
Line
(i) 1 CodeContracts: Suggested requires: Contract.Requires((x<0|p!= null)); 21
(i)2 CodeContracts: Suggested requires: Contract.Requires(s != null); }3
4 CodeContracts: requires is false - 35
\Delta CodeContracts: requires is false 35
\Delta + location related to previous warning 30
4 + - Cause requires obligation: s!= null 30
\Delta + -- Cause NonNull obligation: p!= null 23
(i) 7 CodeContracts: Suggested requires: Contract.Requires(false); }3
(i) 8 CodeContracts: Checked 7 assertions: 6 correct 1 false 1
```

\}
public void CallWithNull()
\{
CallInferNotNul1(nul1);
\}

- Implemented in Visual Studio contract checker

[^1]
Abstraction of a relation's well-founded part to a well-order

Why well-orders?

- It is always possible to prove that a relation is wellfounded by abstraction to a well order $(\langle\mathbb{N},<\rangle,\langle\mathbb{O}$, $<\rangle$, etc).
- Well-orders are easy to represent in a computer (while arbitrary well-founded relations may not be)

Well-order abstraction of a well-founded relation

- Abstraction to a ranking function:

- Formally

$$
\begin{aligned}
\alpha^{\mathcal{O}} & \in \mathfrak{w} \mathfrak{f}(D) \mapsto(D \mapsto \mathbb{O}) \\
\alpha^{\mathcal{O}}(w) & \triangleq \boldsymbol{\lambda} y \in D \cdot \bigcup\left\{\alpha^{\mathcal{O}}(w) x+1 \mid\langle x, y\rangle \in w\right\} \\
\gamma^{\mathcal{O}} & \in(D \mapsto \mathbb{O}) \mapsto \mathfrak{w} \mathfrak{f}(D) \\
\gamma^{\mathcal{O}}(\nu) & \triangleq\{\langle x, y\rangle \in D \times D \mid \nu(x)<\nu(y)\}
\end{aligned}
$$

Partial order on well-orders

- The length of maximal decreasing chains is overapproximated

- Formally

$$
f \precsim g \triangleq \gamma^{\circ}(f) \subseteq \gamma^{\circ}(g)
$$

Best abstraction

- Any well-founded relation can be abstracted to a most precise well-order

$$
\langle\mathfrak{W} \mathfrak{f}(D), \subseteq\rangle \underset{\alpha^{\mathfrak{0}}}{\stackrel{\gamma^{0}}{\leftrightarrows}}\langle D \mapsto \mathbb{O}, \precsim\rangle
$$

- An over-approximation of this best abstraction yields over estimates of the (transfinite) lengths of maximal decreasing chains
- The generalized Turing-Floyd method is sound for any such well-order and complete for the best one.

Generalized Turing/Floyd Proof method

- $\left\langle\Sigma, \tau^{-1}\right\rangle$ is well-founded if and only if there exists a ranking function

$$
\nu \in \Sigma \nrightarrow \mathbb{O}
$$

(\rightarrow is for partial functions, the class \mathbb{O} of ordinals is a canonical representative of all well-orders) such that
$\forall \mathrm{x} \in \operatorname{dom}(\nu): \forall \mathrm{y} \in \Sigma:$

$$
\langle\mathrm{x}, \mathrm{y}\rangle \in \tau \Longrightarrow \nu(\mathrm{y})<\nu(\mathrm{x}) \wedge \mathrm{y} \in \operatorname{dom}(\nu)
$$

- $\operatorname{dom}(\nu)$ determines the domain of well-foundedness of τ^{-1} on Σ

Fixpoint characterization of the ranking function

- The best/most precise ranking function is

$$
\begin{aligned}
& \operatorname{Lfp}^{\subseteq} \lambda X \cdot\{\langle\mathrm{x}, 0\rangle \mid \mathrm{x} \in \Sigma \wedge \forall \mathrm{y} \in \Sigma:\langle\mathrm{x}, \mathrm{y}\rangle \notin \tau\} \cup \\
& \{\langle\mathrm{x}, \cup\{\delta+1 \mid \exists\langle\mathrm{y}, \delta\rangle \in X:\langle\mathrm{x}, \mathrm{y}\rangle \in \tau\}\rangle \mid \mathrm{x} \in \Sigma \wedge \\
& \exists\langle\mathrm{y}, \delta\rangle \in X:\langle\mathrm{x}, \mathrm{y}\rangle \in \tau \wedge \forall \mathrm{y} \in \Sigma:\langle\mathrm{x}, \mathrm{y}\rangle \in \tau \Longrightarrow \exists \delta \in \\
& :\langle\mathrm{y}, \delta\rangle \in X\}
\end{aligned}
$$

- Examples:

Recent results

- We have recent results on approximating such fixpoint equations by Abstract Interpretation using abstraction and convergence acceleraion by widening/narrowing

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

- Combined with segmentation

Patrick Cousot, Radhia Cousot, Francesco Logozzo: A parametric segmentation functor for fully automatic and scalable array content analysis. POPL 2011: 105-118

these techniques have been successfully implemented for termination proofs

Catarina Urban, The Abstract Domain of Segmented Ranking Functions, to appear in SAS 2013.

- The same techniques do work for the inference of ranking functions in any other contexts.

Examples

Segmented ranking function abstract domain:

while ${ }^{1}(x \geq 0)$ do $\quad f \in \mathbb{Z} \mapsto \mathbb{N}$

$$
{ }^{2} x:=-2 x+10
$$

$\operatorname{od}^{3} \sum_{f(x)}=0$

$$
f(x)= \begin{cases}1 & x<0 \\ 5 & 0 \leq x \leq 2 \\ 9 & x=3 \\ 7 & 4 \leq x \leq 5 \\ 3 & x>5\end{cases}
$$

(at point ${ }^{1}$)

No widening:

		1st iteration	2nd iteration	\ldots	5th/6th iteration
3	\perp	$f(x)=0$	$f(x)=0$	\ldots	$f(x)=0$
$3[x<0]$	\perp	$f(x)= \begin{cases}1 & x<0 \\ \perp & x \geq 0\end{cases}$	$f(x)= \begin{cases}1 & x<0 \\ \perp & x \geq 0\end{cases}$	\ldots	$f(x)= \begin{cases}1 & x<0 \\ \perp & x \geq 0\end{cases}$
1	\perp	$f(x)= \begin{cases}1 & x<0 \\ \perp & x \geq 0\end{cases}$	$f(x)= \begin{cases}1 & x<0 \\ \perp & 0 \leq x \leq 5 \\ 3 & x>5\end{cases}$		$f(x)= \begin{cases}1 & x<0 \\ 5 & 0 \leq x \leq 2 \\ 9 & x=3 \\ 7 & 4 \leq x \leq 5 \\ 3 & x>5\end{cases}$
2	\perp	$f(x)= \begin{cases}\perp & x \leq 5 \\ 2 & x>5\end{cases}$	$f(x)= \begin{cases}4 & x \leq 2 \\ \perp & 3 \leq x \leq 5 \\ 2 & x>5\end{cases}$		$f(x)= \begin{cases}4 & x \leq 2 \\ 8 & x=3 \\ 6 & 4 \leq x \leq 5 \\ 2 & x>5\end{cases}$
$2[x \geq 0]$	\perp	$f(x)= \begin{cases}\perp & x \leq 5 \\ 3 & x>5\end{cases}$	$f(x)= \begin{cases}\perp & x<0 \\ 5 & 0 \leq x \leq 2 \\ \perp & 3 \leq x \leq 5 \\ 3 & x>5\end{cases}$		$f(x)= \begin{cases}\perp & x<0 \\ 5 & 0 \leq x \leq 2 \\ 9 & x=3 \\ 7 & 4 \leq x \leq 5 \\ 3 & x>5\end{cases}$

[^2]
Widening

Example of widening of abstract piecewise-defined ranking functions. The result of widening $v_{1}^{\#}$ (shown in (a)) with $v_{2}^{\#}$ (shown in (b) is shown in (c).

(a)

(b)

(c)

- Widenings enforce convergence (at the cost of loss of precision on the termination domain and maximal number of steps before termination)

Widening (cont'd)

- Example of loss of precision by widening on the termination domain $(x \in \mathbb{Q})$

$$
\begin{aligned}
& \text { while }^{1}(x<10) \text { do } \\
& \quad{ }^{2} x:=2 x
\end{aligned} \quad f(x)= \begin{cases}3 & 5 \leq x<10 \\
1 & 10 \leq x\end{cases}
$$

od ${ }^{3}$
(terminates iff $x>0$), at least a partial result!

- But with $x \in \mathbb{Z}$,

$$
f(x)= \begin{cases}9 & x=1 \\ 7 & x=2 \\ 5 & 3 \leq x \leq 4 \\ 3 & 5 \leq x \leq 9 \\ 1 & 10 \leq x\end{cases}
$$

Conclusion

- For well-foundedness/liveness, Abstract interpretation with infinitary abstractions and convergence acceleration >> finitary abstractions
- The well-foundedness/liveness analysis:
- requires no given satisfaction precondition [I],
- requires no special form of loops (e.g. linear, no test in [I])
- is not restricted to linear ranking functions [I],
- always terminate thanks to the widening (which is not the case of ad-hoc methods à la Terminator and its numerous derivators based on the search of lasso counter-examples along a single path at a time) [2]

[^3][2] Byron Cook, Andreas Podelski, Andrey Rybalchenko: Proving program termination. Commun. ACM 54(5): 88-98 (2011)

What Next?

- Verification of LTL specifications for infinite unbounded transition systems (including software)
- Full automatic verification not debugging/bounded checking/etc (there are no counter-examples for infinite unbounded non-wellfoundedness)

[^0]: ${ }^{3}$ Assuming the axiom of choice in set theory.

[^1]: Patrick Cousot, Radhia Cousot, Manuel Fähndrich, Francesco Logozzo: Automatic Inference of Necessary Preconditions. VMCAI 2013: 128-148

[^2]: Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62

[^3]: [I] Andreas Podelski, Andrey Rybalchenko: A Complete Method for the Synthesis of Linear Ranking Functions. VMCAI 2004: 239-251

