Types as Abstract Interpretations

Patrick COUSOT
Ecole Normale Supérieure
DMI, 45, rue d'UIm
75230 Paris cedex 05
France

cousot@dmi.ens.fr

http://wuw.ens.fr/~cousot

POPL'97, Paris, January 17, 1997

P. Cousot 1 POPL'97

Subject Choice

e Twenty Years of Abstract Interpretation would
have been a nice, peaceful and restful subject;

e Types as Abstract Interpretation is hopefully
also an interesting subject but probably more
debatable and exciting:

abstract interpretation and type theory
are most often considered as separate
non-interfering subjects, each with its
own partisans.

P. Cousot 3 POPL'97

P. Cousot 2 POPL'97

Abstract Interpretation

e Abstract interpretation is a methodology for
designing approximate semantics of program-
ming languages;

e Abstract interpretation is used to soundly prove
and analyze program properties [1, 2].

___ References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pages 238-252, Los Angeles, California, 1977. ACM Press.

[2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269-282, San Antonio, Texas, 1979. ACM Press.

P. Cousot 4 POPL'97

Type Theory

e Type systems [3] and type inference [4, 5] have
been a dominating research theme in program-
mMing languages in the last two decades;

___ References

[3] L. Damas & R. Milner. Principal type-schemes for functional programs. In 9
POPL, pp. 207-212, Albuquerque, N.M., Jan. 1982. ACM Press.

[4] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans.
Amer. Math. Soc., 146:29-60, 1969.

[5] R. Milner. A theory of polymorphism in programming. J. Comput. Sys. Sci.,
17(3):348-375, Dec. 1978.

P. Cousot 5 POPL'97

P. Cousof

Content of the Talk

An abridged digest of abstract interpretation;
Methodology of design of type systems by ab-
stract interpretation (illustrated by Church/Curry
simple monotypes);

Application to the design of a new Church/Curry
polytype system;

Type inference and its limits in the context of
program analysis.

What is a type system?

t 7 POPL'97

Types from an Abstract Interpretation
Point of View

e Broaden the scope of abstract interpretation:
is type theory an instance of abstract interpre-
tation?

e Understand type theory from a different point
of view:

- Why is type theory so difficult?

- Can type theory be extended to cope with
more profound program semantic properties
analysis?

P. Cousot 6 POPL'97

P. Cousot 8 POPL'97

The Idea of Semantics Approximation

e Syntax;

e Standard semantics;
Concrete properties;
Collecting semantics;
Abstract Properties;
Abstraction/concretization;
e Abstract semantics.

The abstract semantics is a safe approximation
of the collecting semantics.

P. Cousot 9 POPL'97

Standard Semantics

e The standard semantics specifies the possible
runtime behaviors of programs:

S semantic domain

S[e]c E—S standard semantics

P. Cousot 1 POPL'97

Syntax

e The syntax defines a set of valid programs:

eclE programs/expressions

P. Cousot 10 POPL'97

Concrete Properties

e A concrete property of a program is a set of
possible program behaviors;

e The set of concrete properties:
PeP 2 S
is a complete boolean lattice:
<]P)7 ga (Da Sa Ua ﬂ, _'>

for subset inclusion C, that is logical implica-
tion.

P. Cousot 12 POPL'97

Example of Concrete Property

e “Computing the factorial function in any envi-
ronment R" is the formal property:

{AR* An- €ZN0<nAn!<maxint ? n!

(n
|),

AR® An°(neZ/\n<0?L
IneZAN0<nAN! <maxint ? n!
| ©

S—
——

P. Cousot 13 POPL'97

Abstract Properties

e The abstract properties correspond to a well-
chosen and conveniently encoded subset of the
concrete properties;

e The set of abstract properties is a complete
lattice

<T7 Sa 07 17 \/1 /\>

for the approximation ordering <, correspond-
ing to concrete subset inclusion/logical impli-
cation.

P. Cousot 15 POPL'97

Collecting Semantics

e A collecting semantics associates a concrete
property (of a given class e.g. safety, liveness,
.) to each program:

Cle] e Es P

e The standard collecting semantics:

Cle] = {S[e]}

is the strongest concrete property.

P. Cousot 14 POPL'97

Abstraction/Concretization

e T he correspondence between concrete and ab-
stract properties is defined by a Galois connec-
tion':

5
(P, C, 0,S, U, N) %—Q—T (T, <,0,1, V, A)

- o abstraction;
- 7. concretization.

! For weaker models, see P. Cousot & R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511—
547, 1992.

P. Cousot 16 POPL'97

Galois Connection

e By definition:
¥
P, C, 0,S,uU, N &= (T, <,01,V,A)

Q

means:
VPeP: VI eT:afP)<T < P CH(T)

e T he intuition is that:

- a(P) is the best/strongest/most precise ap-
proximation of P;

- v(T) is the meaning of T.

P. Cousot 17 POPL'97

The Abstract Interpretation Design
Methodology

e Define Tle] by calculation, simplifying the ex-
pression «(Cle]), using <-approximations for sim-
plification purposes;

e The soundness S[e] € 7(T[e]) of the abstract
semantics is by construction.

P. Cousot 19 POPL'97

Abstract Semantics

e An abstract semantics associates a abstract
property to each program:

T[o]EEHT

e T he abstract semantics is a safe approximation
of the collecting semantics:

Clel € (TleD)

P. Cousot 18 POPL'97

The Type Theory Design Methodology

e Syntax (for a given language);
e Standard semantics (defining type errors);
e Formalize the type system by type rules;

e Verify that execution of well-typed programs
cannot produce type errors;

e Design type-checking/inference algorithms;

e Verify their correctness with respect to the
type system.

P. Cousot 20 POPL'97

Comparison of the Type Theoretic
and Abstract Interpretation
Design Methodologies

Thesis:

e The design of the type rules and the infer-
ence algorithm are abstract interpretations;

e The correctness criterion provides a design
methodology.

Formal construction versus formal verification.

P. Cousot 21 POPL'97

Simple Typing of the Eager Lambda
Calculus by Abstract Interpretation

e Define the syntax, standard and collecting se-
mantics;

e Understand the type system as an abstract se-
mantics;

e Show that this type semantics is an abstraction
of the collecting semantics (which implies that
typable programs cannot go wrong);

e Show that type inference algorithms are further
abstractions of the type semantics.

P. Cousot 23 POPL'97

Design Methodology
of a Type System
by Abstract Interpretation

P. Cousot 22 POPL'97

Syntax of the Eager Lambda Calculus

xf,...eX variables
ecE expressions
e =X variable

| Ax-e abstraction
| ei(e2) application
| pf-Ax-e recursion
| 1 one
| e — e difference
|

(e1 7 e9:e3) conditional

P. Cousot 24 POPL'97

Semantic Domains

Q wrong/runtime error value

L non-termination

w2 {Q} wrong

zeZ integers
uf.peU=W,0Z, ¢ U—U]", values
REREXU environments

$ES SR U semantic domain

2 [U+ U]: continuous, L-strict, Q-strict functions from values U to values U.

P. Cousot 25 POPL'97

e The semantics S[e; — es] R of a difference e; — es:

Sle; — e2] R 2

(S[e1]R=LVS[es)]R=171

| S[[Bl]]R =Z1 A S|[62]]R =2Z972]— 2y

|)

specifies that the evaluation of e¢; — ey:

- does not terminate if the evaluation of e; or
ey does not terminate;

- goes wrong if the evaluation of e; or ey does
not return integer values;

- else the result is the difference of these val-

ues.

P. Cousot 27 POPL'97

Denotational Semantics
of the Eager Lambda Calculus

e T he denotational semantics is:
S|[o]] cE—S

e The semantics S[1]R of constant 1 is the inte-
ger value 1 %

3 For short up/down lifting/injection are omitted.

P. Cousot 26 POPL'97

e The conditional (e; ?ey:e3) is a test for zero:

S[(e17er:es)]RE (S[e]R=17 L
| S[e1]R =07 S[es] R
| S[e1]R =z # 0 ? S[es]R
|©2)

- the evaluation does not terminate if ¢; does
not terminate;

- the evaluation goes wrong if ¢; does not re-
turn an integer value;

- if ¢; is O then the result is the value of ey else
that of es.

P. Cousot 28 POPL'97

e The semantics S[x]R of variable x in environ-
ment R is the value R(x) of x in R:

S[x]R 2 R(x)

P. Cousot 29 POPL'97

e The semantics S[ej(ey)]R of an application ej(es):

S[e1(e2)]R 2 (S[e1]R = LV S[eg]R =17 L
| S|[€1]]R =fe [Ui—> U] ? f(Sﬂeg]R)
| Q)

specifies that:

- the application does not terminate if the eval-
uation of e; or e9 does not terminate;

- e; should evaluate to a function f = S[¢;]R*
and the result is the application of f to the
value S[es]R of e5®

else evaluation goes wrong.
% The result may be L in case of non-termination of the call or Q if it goes wrong.

1

P. Cousot 31 POPL'97

e The semantics S[Ax-¢]R of an abstraction Ax-e
in environment R is a L-strict, Q-strict contin-
uous function:

S[Ax-¢]R 2 Aus(u=171
lu=Q7Q
| S[e]R[x«-u])

It maps the value u of the parameter x to
the value S[e¢]|R[x«u] of the body e in the envi-
ronment R[x<u] which is R where x has value
u.

P. Cousot 30 POPL'97

o A recursive definition uf-Ax-e defines a func-
tion ¢ as the abstraction Ax-e where every oc-
currence of variable £ within the body e refers
to ¢

S[ut-Ax-e]R 2 1fp Ap* S[Ax - ¢]R[f<]

The choice of a least fixpoint for Scott-
ordering C ensures that no result can be re-
turned before the computation ends.

P. Cousot 32 POPL'97

e The let construct is defined such that:
S[letx=e1 ines] 2 S[(Ax-e2)(er)]

Note: e; is evaluated even when x is not used
in ey (call by value).

P. Cousot 33 POPL'97

Standard Collecting Semantics

e The standard collecting semantics:

C[o]‘ cE—P
Cle] £ {S[e]}

is the strongest concrete property.

P. Cousot 35 POPL'97

Standard Semantics

e This denotational semantics is chosen as the
standard semantics specifying run-time program
behaviors:

e Important characteristics:

- functional presentation, explicit fixpoints,

- explicit handling of nontermination,

- the semantics specifies a run-time/dynamic
type checking;

e Other semantics would only require further re-
finements/abstractions.

P. Cousot 34 POPL'97

Church/Curry Monotypes

e Simple types are monomorphic:

mée M, m:=int | m->my monotype

e A type environment associates a type to free
program variables:

H e Hf 2 X — M type environment

P. Cousot 36 POPL'97

Church/Curry Monotypes (continued)

e A typing (H, m) specifies a possible result type m
in a given type environment H assigning types
to free variables:

0 el 2 He x M typing

e An abstract property or program type is a set
of typings;

T e T° 2 o(I9 program type

P. Cousot 37 POPL'97

o type environment ~S € H — p(R):

Yi(H) £ {RER | Vx € X: R(x) € 7{(H(x))}

e typing 7 € I° — P

YS((H, m)) 2 {p €S| VR € 75(H) : $(R) € i(m)}

P. Cousot 39 POPL'97

Concretization Function

The meaning of types is a program property, as
defined by the concretization function ~¢:°¢

o Monotypes ¢ € M — p(U):
7i(int) £ ZU {1}
c A
yi(m>my) = {¥ € [U—T] |

Yu € y5(my) - ¢(u) € y5(my)}
UL}

% For short up/down lifting/injection are omitted.

P. Cousot 38 POPL'97

e program type € T — P

(D) = [~5(0)
oeT
Y0 =S

e Types exclude going wrong:

Qeqr(T) << T=10

P. Cousot 40 POPL'97

Galois Connection

e Disjunction of properties correspond to inter-
section of types
YU Ty) = N (T
VISTAN VISTAN
so that the correspondence between concrete
properties and program types is a Galois con-
nection:

<]P>7 gv wv Sv U, m> < <TC7 27]Icﬂ 07 n, U>

P. Cousot 41 POPL'97

H[f+m] H— Ax-e=m

(REQ)

HF= pf - Ax-e=m
HF= 1=int (CST)

HF= ej=int, HF— es=>int

(DIF)

HF— e — eg=int

HF= ej=int, HF—ey=m, HF— e3=m

(CND)

HF— (61 ?ey: 63):>m

P. Cousot 43 POPL'97

Church/Curry Monotyping Rules

H = x=>H(x) (VAR)

HF—ej=m;>my, HF— ey=my

(APP)
H I“C_ €1 (62):>m2

H[x¢—my] F— e=my

(ABS)
HF—= Ax-e=mj > my

P. Cousot 42 POPL'97

Abstract Semantics

e These typing rules can be understood as a
compositional abstract semantics:
T|[o]] € Er— T
e Reciprocally, a compositional abstract seman-
tics can be presented using inference rules;

e This follows from a general result [6], showing
equivalence of various semantics presentations.

___ Reference

[6] P. Cousot & R. Cousot. Compositional and inductive semantic definitions in
fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. CAV '95, LNCS 939, pp. 293-308, 1995.

P. Cousot 44 POPL'97

Church/Curry Monotype Semantics

Abstraction Theorem

o A . e The Church/Curry type semantics T[] is an
Tl = {(H, Hx)) | He H} (VAR) upper-approximation’ of the strongest collect-
ing semantics (for the standard denotational
Tx] 2 {(H, my>my) | (ABS) semantics):
<H[X%m1], m2> € TC|[€]]} O‘C(C[e]l)) TC|[€]I
Ter(e9)] 2 {(H, mo) | (H, m;>my) € Te] (APP) = Cle] S (Te]
A (H, m1) € T(es]} — Sle] € v (T [e])
T C-upper concrete and D-upper (i.e. C-lower) abstract approximation
Typable Programs Cannot Go Wrong
Tt Ax-¢] £ {(H, m) | (REC)
(H[f+m)], m) € T[Ax-¢]} o A program e is typable iff T[e] # 0.
A e Typable programs cannot go wrong:
T[1] = {(H, int) | H € H} (CsT)
(H, m) € T[] AR € v5(H) = S[e]R # Q
Tle; — e2] = {(H, 1nt) | (DIF)
<H, int> € TC|[61]I N TC|[€2]]}
C . A
TP(e1 ? ez e3)] = {(H. m) | (CND)

(H, int) € T[er] A (H, m) € T [ea] N T [es]}

P. Cousot 46 POPL'97

P. Cousot 48 POPL'97

Design Methodology

e The soundness requirement that the abstract
semantics is an D-upper abstract approxima-
tion of the concrete/collecting semantics:

Cle] € 7 (T [e])
< o (Cle]) D Te]

provides a design methodology:

Design T¢[e] by calculation, starting from
the best possible choice: o (Cle]).

P. Cousot 49 POPL'97

Design of a New
Church/Curry Polytype System
by Abstract Interpretation

P. Cousot 51 POPL'97

A Simplistic Example ... Constants
T1]
= a(C[1]) best possible choice
= a({S[1]}) def. collecting sem.

def. standard sem.
Galois connection

— o ({AR" 1)
— U{T] {AR" 1} C v(T)}

= U{T| V0 e T:AR"1 € ~0)} def. A<
={0 | AR*1 € ~0)} set theory
= {(H, m) | VR € 75(H) : 1 € v{(m)} def. ~¢

{(H, int) | H € H} def. ~¢

P. Cousot 50 POPL'97

A New Type System

e The methodology is illustrated by the design
of a new simple polytype system:
the Church/Curry polytype system:

- polytypes are infinitary conjunctions of mono-
types;

- let-polymorphism, a la Milner;

- more powerful than the Damas-Miner and
Milner-Mycroft polymorphic type systems;

- no complete inference algorithm.

P. Cousot 52 POPL'97

Church/Curry Polytypes

m € M, m:=int | m;>my monotype

p € P* = (M) polytype

H e H* 2 X — P type environment
0 el 2 H™ x M™ typing

Te T 2 o(I7) program type

Polymorphism is restricted to environments.

P. Cousot 53 POPL'97

o Concretization of polytypes ~ € P* — p(U):
PC A PC
75(p) =) A (m)
mep
PC A
v (0) =U

o Concretization of polytype environments v €
H* — p(R):

YE(H) 2 {R € R | Vx € X : R(x) € 7(H(x))}

P. Cousot 55 POPL'97

Galois Connection

e T he correspondence between polytypes and pro-
gram properties is a Galois connection:

PC

Y
<= PC
(B, C) 5 (T%, D)

e Concretization of monotypes v € M — p(U)
(unchanged):

yi(int) £ ZU {1}
Y (m>m) £ {p € [Urs U] |
WU € i (m) : p(u) € 7 ()} U {L}

P. Cousot 54 POPL'97

o Concretization of polytypings % € I — P:
PC A PC PC
Vi((H, m)) = {¢ € S| VR € v;(H) : (R) € y"(m)}

o Concretization of program types ~* € T — P:

“(T) = N ~+¥(0)
oeT
V@) £ 5

o If T # () then ~™(T) excludes semantical values
going wrong.

P. Cousot 56 POPL'97

Church/Curry Polytype Semantics

e The Church/Curry polytype semantics:
TPCI[O]] € E— T

Church/Curry Polytyping Rules

e Rule-based presentation of the polytype se-
mantics T [e]:

. . . . m € H(x)
is designhed according to the soundness condi- (VAR)
tion: HHF=x=m
a™(Cle]) 2 T™[e]
< Cle] C™(T™[e]) Hixefon}] =
S T X< e=-1119
— I[e]] Sl ([[6]]) (APP)
so that typable programs cannot go wrong:; HF= Ax-e=m >my
e By calculation we derive a compositional func-
tional fixpoint definition of T™[e]; HF= e1=>m;>my, HF= ey=my
e We then express this polytype semantics in b (ABS)
. HFH 61(62>:>m2
equivalent rule-based form.
p1#0, Vmy € p;: HE— ej=my,
Hlx+pi] F= eo=m
[x¢p1] =119 (LET)
HF= letx=e] ines=my
Vmy € p; : H[f<p1] F= Ax-e=mj, m € p
(REQ)

P. Cousot 58 POPL'97

HF= puf - Ax-e=m

P. Cousot 60 POPL'97

Church/Curry Polytyping Semantics

The most interesting case is for recursion:

-
MPC - MPC \Ij}

where ¥ £ Ap*{m | (H[f+p], m') € T*[Ax-¢€]}

T [t - Ax- €] 2 {(H, m) | m € gfp

or equivalently:

T[pt-Ax-e¢] ={(H, m) | 3p € M*->M* : m € p A
V' € p: (H[f+p], m') € T¥[Ax-€]}

P. Cousot 61 POPL'97

. without Hindley/Milner Type

> Caml Light version 0.71/mac
#let rec F f gn x =

if n = 0 then g(x)

else F(f) (fun x -> (fun h -> g(h(x)))) (n-1)(x) (£);;
Toplevel input:

> if n = 0 then g(x)
> else F(f)(fun x -> (fun h -> g(h(x)))) (n-1)(x)(£)..
This expression has type
’a => (b => ’c¢) -> int -> ’b -> ’c,
but is used with type
’a => (°b => (°b => ’b) => ’c) -> int -> ’b -> ’a -> ’c.

P. Cousot 63 POPL'97

A Typable Program . ..

The ML program:

let rec F f gn x =
if n = 0 then g(x)
else F(f) (fun x ->(fun h -> g(h(x)))) (n-1) (x) (£);;

such that:
Ffgnzx-=g("x))
has type:

{(H, (m1~>mq)~>((m>my)~>(int > (m > my))))
| He H* A my, my € M™}

P. Cousot 62 POPL'97

What is the Problem?

e A la Milner typing makes rough program-inde-
pendent approximations of fixpoints;

e The abstract interpretation iteration strategy
for fixpoints is more refined?é,

e Worst, a la Milner typing uses specific type
property and language-dependent abstractions
which are not general enough for program anal-
ySis®.

5 convergence may have to be enforced through with widenings & narrowings
9 Mostly applicable to boolean abstract domains.

P. Cousot 64 POPL'97

Type Inference
and its Limits
for Program Analysis

P. Cousot 65 POPL'97

Monotypes with Variables

a € V type variables

T € M monotype with variables
T u=idnt | ’a| T >m

H ¢ H" = X—M type environment

A

T e T"=H"xM program typing

P. Cousot 67

POPL'97

Herbrand Abstraction

e The Herbrand abstraction lcg (least common
generalization) can be used to abstract an (in-
finite) set of ground terms by a single, machine-
representable term with variables.

e For example, up to variable ’a, ’b, ... renam-
ing:
leg({(my->my)->((my>my)->(int > (my > my))) |

my, my € M})

= (’a => ’a) -> ((’a -> ’b) -> (int ->(’a -> ’b)))

P. Cousot 66 POPL'97

Cconcretization

P. Cousot 68

POPL'97

Galois Connection

e The Herbrand abstraction lcg is a Galois con-
nection:

(p(ground(T)), C, (), ground(7T"), U, N)
ground

e (T
cg

3 Sa 07 [,a]57 1Cg7 gCi>

where:
- T set of terms with variables ’a, ...,
- lcg: least common generalization,
- ground: set of ground instances,
- <. instance preordering,

- gci: greatest common instance.

P. Cousot 69 POPL'97

Wrong Direction of Approximation

e The Church/Curry monotype abstraction:

~/C

Y

<P7 ga @ Sa U, m> _ac—_>

e The Herbrand abstraction:

ground

_ W0 ;
<_1_Tg_» <T /E? Sa wv [&]Ea lcgﬂ gC1>

They do not compose!

P. Cousot 71 POPL'97

Imprecision

e The Herbrand abstraction lcg approximates a
set of monotypes by a single monotype with
variables;

e The Herbrand abstraction lcg is quite approxi-
mate:

leg({int, int >int}) = ’a

e This e.g. excludes an overloaded primitive f
which would behave has an int->int function in
a call context and as an int (e.g. f(0)) in the
context of an arithmetic operand.

P. Cousot 70 POPL'97

A Specific Solution: Exact Herbrand
Abstraction

e For soundness, we need a D-upper (i.e. C-
lower) approximation of sets of monotypes;

e The Herbrand abstraction provides a C-upper
approximation by a monotype with variable;

e T he specific solution is to require equality, just
for those sets of monotypes considered in the
Church/Curry monotype semantics;

e This can always been obtained by restricting
the considered types and language!

P. Cousot 72 POPL'97

Exactness
We have:
T[] € E = (T, 2)
ground
(T, ©) @ (T <)

We design, by calculation:
T'[e] = leg(T [e])
and, for soundness, require:

ground(T"[e]) = T [e]

P. Cousot 73 POPL'97

Design of the Type Semantics/Inference
Algorithm

o Define T"[¢] by calculation of the expression
a'(Te]) (" based on lcg);

e Check that "(T"[e]) = T [e] to ensure sound-
ness (~" based on ground);

o If the elements of the abstract domain are
computer-representable and the abstract se-
mantics is computable then the abstract se-
mantics is a specification of a type inference
algorithm.

P. Cousot 75 POPL'97

Exact Abstract Semantics

e It follows that Church/Curry monotype seman-
tics T<Je] and Hindley monotype with variables
semantics T"[s] are (lcg, ground) isomorphic;

o For other points of T¢, outside {T[e] | e € E},
the approximation may be unsound;

e SO the language E has to be somewhat singu-
lar, since the slightest change in the standard
semantics might be unsound.

P. Cousot 74 POPL'97

Hindley Monotype Semantics

Tl 2 (H, H(x)

TAx-¢] 2

T'[e] = (H,)7
(H[x¢a], H(x)>7) | 0)
Tler(ea)] = (Tlea] = (Mo, mo)A gei{ T*[eq], (M.
m>’a)t = (H, m>7)? (H, 1) |0)
Tpt-Ax-¢] 2 (T'[Ax-e] = (H 7) A
o= mgu{ ‘a-> b, H(f), ’r} =+ 1/
(o(H)[f<c], a(7)) | D)

P. Cousot 76 POPL'97

T'[1] 2 (H, int)

T'ler — eo] = gei{(H, int), T'[e]. T'[ea]}

=X

T [(e1 ?egte3)] = (Ter] = (Hy, int) ?

gei{(Hy, ’a), T"[ea], T [es]} [0)

P. Cousot 7 POPL'97

P. Cousot 79 POPL'97

Limits of the Exact Herbrand Abstraction

e Language dependent (e.g. introduction of an
{int, int>int} Overloaded primitive fails);

e Concrete property dependent (e.g. restriction
of polymorphic typings to certain environments
only).

e T he abstraction is rough and specific, not con-
venient for most program analyzes.

P. Cousot 78 POPL'97

Lattice of Type Abstract Interpretations

e We can define a partial preorder on type sys-
tems through the notion of abstraction;

¢ In this way, type systems can be organized into
a complete lattice;

e Type systems can then be defined as any ab-
straction of a type collecting semantics, the
most refined of all of them;

e Type inference algorithms are the computable
ones.

P. Cousot 80 POPL'97

Church/Curry monotype semantics
is an abstraction of
Church/Curry polytype semantics

The correspondence is given by the Galois con-

nection: 5

(T*, 2) & (T, D)
defined by:
o(T) £ {(H, m) | (\y e X*{H(y)}, m) € T}
V(T £ {(Ay € X*{H(y)}, m) | (H, m) € T"}

such that:
Te] = a(T™[e])

P. Cousot 81 POPL'97

More in the Proceedings

Sketch of a conjunctive Church/Curry polytype

semantics (with polymorphic abstraction);

e More developments on abstraction and sound-
ness;

e Design of a type collecting semantics;

e Proof that the Milner/Mycroft polymorphic type
semantics is an Herbrand abstraction of the
new Church/Curry polytype semantics;

e Proof that the Damas/Milner polymorphic type
semantics is a further approximation of the Mil-
ner/Mycroft semantics;

P. Cousot 83 POPL'97

SOTjuRULS

TOTSINIDT J!I[({

(

J}()_L)A'\‘I\:‘.I.)IIHI‘ IV
Surd£y£jod oAy
~TU[IA-SeUR(®]

{leIs}

\4
[]

4]
Al
[l ol
o [l
B}
[],L

UIOTOT) /
|

SOnueles e [[.]]:)

TOU[I\-SeTR(] ®]
Aump) /pa)) e v
sorjuetes odAjouotr
Tedourd Loppury e v

D ey

sonuetmes urdA)Ljod
sonjuees gurdAjonour

omdiowouout) ¢
(morsmoor orydIo

P. Cousot Y 8L POPL'97

Conclusion

P. Cousot 84 POPL'97

A Personal Conclusion

e Positive:
- Abstract interpretation provides a semantic
foundation of type theory;
- This leads to less empirical, calculation based
development of type systems;
e Negative:
- The Herbrand abstraction is too specific to
be of general use in program analysis.

P. Cousot 85 POPL'97

A Personal Hope

e Now that type inference is understood as an
abstract interpretation it becomes possible to
combine type inference with program analysis:
- certainly not by using an Herbrand-like en-

coding of program properties;
- probably in combination with other abstract
domains.

P. Cousot 86 POPL'97

