Abstract Interpretation

SAVE 2016,
Changsha, |0 December 2016

Patrick Cousot
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

This is an abstract interpretation

Abstract interpretation

Patrick Cousot

New York University

Amphi 15

4, place Jussieu

Metro Jussieu

- 29 Septembre 2016

for programmers,

Colloquium d'Informatique
de I'UPMC Sorbonne Universités

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 | © P.Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 2 © P.Cousot
Scientific research
® In Mathematics/Physics:
trend towards unification and synthesis through
universal principles
® In Computer science:

SCIGntIﬁC resea rCh trend towards dispersion and parcellation through a
ever-growing collection of local ad-hoc techniques for
specific applications
An exponential process, will stop!

3 ©P Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 4 ©PC

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Example: reasoning on computational structures

WCET . i
Security protocole gyctems biolo Operational
Axiomatic ificati)4 &Y semantics
. verification analysis b
semantics straction
Confidentiality Date}flqw crezdk?rig Database refinement
: analysis query
analysis . Type
Program evZ?l:;lc?Ln Obfuscation Dependence inference
synthesis Denotational analysis Separation
Effect . logi
Grammar systems semantics CEGAR ogic
analysis T Theories Program Termination
Statistical sen:a?nfgcs combination transformation Proof
model-checking Code 'Mterpolants Abstract Shape
Invariance Symbolic contracts Integrity ~ model analysis

proof execution analysis ~ checking Malware

Probabilistic Quantum entanglement Bisimulation detection
verification detection SMT solvers Code.
Parsing Type theory Steganography T, col ogy testers refactoring

5 ©P.Cousot

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Example: reasoning on computational structures

WCET _ Security protocole gystems biolo Operational
Axiomatic verification Y ology semantics
semantics MEYEE Abstraction

Confidentiality Data}flqw cref:ld(?rlm Database refinement
analysis Partial analysis - & query Type

Program eyaluation Obfuscation Dependence inference

synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic

analysis Theories Program Termination
Statistical Trace ombination transformation Proof
model-checking Seémantics Code Interpolants Abstract Shape
Invariance Symbolic contracts Integrity ~ model analysis
proof execution analysis ~ checking Malware
Probabilistic =~ Quantum entanglement Bisimulation deéec;ion
ode

verification detection SMT solvers '
Parsing Type theory Steganography Tl e refactoring

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Example: reasoning on computational structures

Abstract interpretation

WASE Security protocole gystems biolo Operational
Axiomatic et Y 8Y semantics
! verification analysis Ab
semantics straction
Confidentiality Data}flqw crecc):ldﬁrlmg Database refinement
; analysis query
analysis - Type
Program evzzll::tzillon Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar SyStems semantics CEGAR logic
analysis Y Theories Program Termination

Trace ombination transformation Proof

Statistical s tics
Cod Interpolants Abstract St 1ape

model-checking

Invariance Symbolic contracts Integrity ~ model analysis

proof execution analysis ~ checking Malware
Probabilistic Quantum entanglement Bisimulation detection
verification detection SMT solvers Code

Parsing Type theory Steganography Tl e refactoring

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Intuition |

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Concrete

Abstraction |

N

Abstract incerpretation, SAVE 16, Changsha, 10 December 2016 ©P Cousot Abstract incerpretation, SAVE 16, Changsha, 10 December 2016 ©P Cousot
l \ t t i C t i t i
£ & £
-
A
Abstract interpretation, SAVE |6, Changsha, 10 December 2016 I ©P Cousot Abstract interpretation, SAVE |6, Changsha, 10 December 2016 12 © P Cousot

Concretization |

£

¥
ﬁ

£ 8
e

o

- Fae
~ a3

o .

_

Abstract interpretations

e

i

Abstract interpretations
Q122 Intuition 2

Fingerprint
®

Eye color

Phone metadata

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 17

Interval abstraction

® Example: interval abstraction (also called box

abstraction)

YA

My

my

Set of points

Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Mx Mx

Interval abstraction
[, M X[y, My]

18 ©P Couso

Intuition 3

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 19

A C program and one of its executions

#include <stdio.h>

int main()

{
int x, vy;
printf("Enter two integers: ");
scanf("%sd %d",&x, &y);

/% 1t %/ while ((x '=6) || (y !'=0)) {
printf("x = %d, y = %d\n",x,y);
/% 2% x/ X = X + 3;
/* 31 %/ if (x > 10) x = =x;
/* 4: %/ y=y-2;
/* 5: %/ if (y < =5) y = -y;
¥
/* 6: %/ printf("x = %d, y = %d\n",x,y);
}
Abstract interpretation, SAVE 16, Changsha, 10 December 2016

Enter two integers: x =0,y = 0

x=3,y=-2
x=6,y=-4
x=9,y=6
x=-12,y=4
x=-9,y=2
x=-6,y=0
x=-3,y=-2
x=0,y=-4
x=3,y=6
x=6,y=4
x=9,y=2
x=-12,y=0
x=-9,y=-2
x=-6,y=-4
x=-3,y=6
x=0,y=4
x=3,y=2
x=6,y=0

20 ©P Couso

Graphical representation of the execution (l)

Graphical representation of the execution (2)

A Xy A
L+—T 4 .k ol T+ 2 1_ 9,y=6
— 1 1) '
PP S P V' / d |/ o |/
/ /
. 17 T 1
z fe
| —Pg] 0 R
Lx=0y=0 ®=16,y =0 > X x=0,y=0
/
B / / /
Na, x=6,y=0
1 8
0 l8= t
Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 21 P.Cou Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 22 P.Cou
Semantics Properties (Collecting semantics)
Formalize what it means to run a program Formalize what you are interested to know about program behaviors
state A
A
N Possible
trajectories
trajectory
» time -
Abstract inter, pretation, SAVE 16, Changsha, 10 December 2016 23 P. Cou Abstract inter, pretation, SAVE 16, Changsha, 10 December 2016 24 P. Cou

Specification

Formalize what you are interested to prove about program behaviors

Abstraction

Abstract away all information on program behaviors irrelevant to the proof

‘ | Possible | Possible
‘ trajectories trajectories
i Abstraction of the trajectories)
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 25 © P.Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 26 © P Cousot
Verification Soundness
The proof is fully automatic Never forget any possible case so the abstract proof is correct in the concrete
Forbidden zone Forbidden zone
| Possible | Possible
trajectories trajectories

Abstraction of the trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 27 ©P Cousot

Abstraction of the trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 28 ©P Cousot

Unsound methods: testing

Try a few cases

Forbidden zone — Error !!

Possible
trajectories

Test of a few trajectories

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 29 ©P Cousot

Unsound methods: bounded model checking

Simulate the beginning of all executions (so called bounded model-checking)

Forbidden zone

Possible
trajectories

Bounded model-checking

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 30 ©P Cousot

Unsound methods: soundiness

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone Error !l

Possible
trajectories

Erroneous trajectory abstraction

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 31 ©P Cousot

Alarms

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone Alarm !

| Possible
trajectories

Error or false alarm ?

By soundness an alarm must be raised for this over-approximation!

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 32 ©P Cousot

True alarm

The abstract alarm may correspond to a concrete error

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Forbidden zone Ak
| Possible | Possible
trajectories trajectories
False alarm
Abstract inter, pretation, SAVE 16, Changsha, 10 December 2016 33 ©P Cousot Abstract inter, pretation, SAVE 16, Changsha, 10 December 2016 34 ©P Cousot
What to do in presence of false alarms
.) Yy o o loh o o
® False alarms are ultimately unavoidable (Godel's f o o oo
. ’f o o o o o
incompleteness) WA — >
*a } X X o o ol o o
® Consider finite cases or decidable cases only (model- . L B
. ° [] [] [] []
checking, does not scale)
Collecting semantics: Intervals: Simple congruences:
® Ask for human help by providing information on the partial traces x € [a,b] x = alb]
program behgwor (theorem provers, SMT solvers), Yy Yy m
program specific and labor costly
t
® Have specialists refine the abstract interpretation (e.g. x
Astrée, http://www.absint.com/astree/index.htm),
shared cost 4
Octagons: FEllipses: Exponentials:

Abstract inter, pretation, SAVE 16, Changsha, 10 December 2016 35 ©P Cousot

x? 4 by? —axy < d —ab < y(t) < a*

+tx+y<a

Abstract inter, pretation, SAVE 16, Changsha, 10 December 2016 36 ©P Cousot

The very first static analysis

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 37 ©P Cousot

Brahmagupta

Brahmagupta (Sanskrit: SIS,
(598-¢.670 CE) was an
Indian mathematician and astronomer who

Brahmagupta

wrote two important works on Mathematics and
Astronomy: the Brahmasphutasiddhanta
(Extensive Treatise of Brahma) (628), a
theoretical treatise, and the Khandakhadyaka,
a more practical text.

Born 598 CE
Died ¢.670 CE
Fields Mathematics, Astronomy

Known for Zero, modern Number system

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 38 ©P Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 39 ©P Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 40 ©P Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 41 ©P. Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 42 ©P.Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)

e eg. in compilation: do not optimize (a
division by 2 into a shift when positive)

) Unless processor uses 2's complement and can shift the sign.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 43 ©P. Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[..]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 44 ©P.Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[..]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.
18.33. The product of a negative and a positive is negative, of two
negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 45 ©P. Cousot

The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[..]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.
18.33. The product of a negative and a positive is negative, of two
negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.

18.34. A positive divided by a positive or a negative divided by a
negative is positive; a zero divided by a zero is zero; a positive divided
by a negative is negative; a negative divided by a positive is [also]
negative.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 46 ©P.Cousot

The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object "pos' when
a and b are the objects "pos" or '"neg', and when
the valuation is defined as follows :

pOS+pos=pos POS XpOS=poOs
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxnegepos
V(p+q)=V(p)+V(q) V(pxq)=V (p)xV(q)

V(0)=V(1)=...=pos

V(=1)=V(-2)=...™neg

The valuation of axa+bxb yields "pos" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pos ,pos=pos =pos,pos=pos

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 47 ©P. Cousot

The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object "pos' when
a and b are the objects "pos" or "neg', and when
the valuation is defined as follows :

pOS+pos=pos POS XpOS=poOSs
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxnegepos
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q)

V(0)=V(1)=...=pos

V(=1)=V(-2)=...=neg

The valuation of axa+bxb yields "pos" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pos ,pos=pos =pos,pos=pos

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 48 ©P.Cousot

The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object "pos' when
a and b are the objects "pos" or '"neg', and when
the valuation is defined as follows :

pos+pos=pos POS XpOS=poOSs
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxneg=pos Oepos x -leneg
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q) =0
V(0)=V(1)=...=pos = U¢gneg
V(=1)=V(-2)=...=neg
The valuation of axa+bxb yields "pos' by the
following computations :
V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pos ,pOS=pos =pos,pos=pos
V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos
This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the
Abstract interpretation, SAVE |6, Changsha, 10 December 2016 49

The rule of signs Cousot & Cousot (1979)

ation, SAVE 16, Changsha, 10 December 2016 50

The rule of S|gns Cousot & Cousot (1979)

e Galois
e connection

lnclu5|on/ [—— -)
implication inclusion

implication

ation, SAVE 16, Changsha, 10 December 2016 51

The rule of S|gns Cousot & Cousot (1979)

e Galois
e connection

|ncIu5|on/ [———————

implication imlgllliggg/n
++ 4 =
calculational
design method w P o

ation, SAVE 16, Changsha, 10 December 2016 52

Application of abstract
Interpretation to static
analysis

Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 53

All computer scientists have experienced bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss Heartbleed
(overflow) (float rounding) (unit error) (buffer overrun)

® Checking the presence of bugs by debugging is great

® Proving their absence by static analysis is even better!

Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 54 ©P.Cousot

Static analysis

® Check program properties (automatically, using the
program text only, without running the program)

e Difficulties:
® Undecidability / complexity:
® Precision
® Scalability
® Soundness (correctness)

® Induction: widening/narrowing

Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 55

© P.Cousot

Fixpoint

{y>0} « hypothesis Fixpoint equation

X =y
{I(z,y)} ¢« loop invariant
while (x > 0) {

X =x - 1;

}

Floyd-Naur-Hoare verification conditions:
(y=2o0nz=y)= I(z,y) initialisation
(I(z,y)Az>0A Az =z —1)= I(z,y) iteration

Equivalent fixpoint equation:
I(z,y) =z220A(z=yVI(z+1,y)) (ie. I = F(I)®)

(5) We look for the most precise invariant I, implying all others, that is Ifp ~ F.
Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 56 ©P.Cousot

Iterates

Iterates I = lim F™(false)
I%z,y) = false oo

Iterates

Tterates I = lim F™(false) 7
n—oo

I%z,y) = false

z IMz,y) = z20A(z=yVI(z+1,y)) z
T
CSE, SNU, Seoul, 09/30/2008 «<V@<- 53 -7 [W-D> @ © P. Cousot
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 57 ©P Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 58 ©P Cousot
Iterates I = lim F™(false) Tterates I = lim F™(false) ¥
0 n—00 0 _ n—00
I(z,y) = false I°(z,y) = false
IMz,y) =220/ (z=yV Iz +1y)) (] z I'Nz,y) =22 0A(z=yVI(z+1y)) y e
0<z=y =0sz=y
2 — — 1
Plo,y) = 2200 =yvIiE+1y) o g AR L ALARL I S
=0<:L‘<’y§:12+1 “._,"‘/ =URTRYSKT
N 4 Plz,y) =20 (z=yV I (z+1y)) d
y m —0<z<y<z+2 yt z
2l
T
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 59 ©P.Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 60 ©P.Cousot

Convergence acceleration: widening

Fixed point

Accelerated Iterates I = hm F™(false) Y Accelerated Iterates I = hm F™(false) ¥
I%(z,y) = false I°(z,y) = false
INMz,y) =z2>20A(z=yV Iz +1,79)) y z IYz,y) = z20A(z=yVI%z+1,9)) Yy n T
=0<z=y =0<z=y
P(z,y) =z > O/\(a:*yvll(z-i-l v)) 0 e P(z,y) = > 0/\(:1:—y\/[1(:1:+1 v)) 0 z
=0<z<y<z+1 Y =0<z<y<z+1 Y
Pz,y) = 2 >0A(e=yVI(z+1,y)) 4 P(z,y) = ¢ >0A(e=yV I(z+1,) 4
=0<z<y<z+2 Y= =0<z<y<z+2 Yt o
IY(z,y) = I*(z,y) V I3(z,y) < widening 2p I*(z,y) = I*(z,y) V I3(z,y) + widening 2 i
=0<z<y : . =0<z<y 2 .
P(z,y) = 2>0A(z=yV Iz +1y)
ﬁ = I*(z,y) fixed point! ﬁ
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 61 ©P.Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 62 ©P.Cousot
OCtagonS Industrialisation: Development in cooperation with Airbus France
Accelerated Tterates I = lim F™(false) ¥ - Automg‘mc proof's of a}bsence of runtime
I%z,y) = false errors in Electric Flight Control Soft- =
IMz,y) = z2>20A(z=yVI(z+1,y)) Y = ware:
=0<z=y — A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb
P(z,y) = z2>20A(z=yVIi(z+1,79) 3 z (NOV. 2003)
=0<z<y<z+1 Py .
— A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
B(z,y) =z>0A(z=yVI¥(z+1,y)) 1 N
=0<z<y<z+2 O — no false alarm, World premiéres !
4 _ 72 3 i Jens 2 | 3 .
Fley) = é(f;ylvy] (2,y) widening y — Automatic proofs of absence of runtime
. . y errors in the ATV software @:
Plz,y) =z20A(z=yVIi(z+1y)
— I“(a,y) fixed point! — C version of the automatic docking software: 102.000 lines of
The invariants are computer representable — C, 23s on a Quad-Core AMD Opteron™ processor, 16 Gb (Apr.
with octagons! 2008)
(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 63 ©P.Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 64 ©P.Cousot

Application of abstract
Interpretation to
program proof methods

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 65 ©P.Cousot

Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1,y=-1
int x,y; x=2,y=5 Xx==-2,y=1
printf("Enter an integer: "); x=1,y=7 x=-3, y=3
scanf("%d",&x); y = X; x=0,y=9 Xx=-4, y=5
/* 1: %/ while (x '= 0) { -
printf("x = %d, y = %d\n",x,y); x = =738245, y = 1476487
/% 21 %/ X =x-1; -
/x 31 %/ y=y+2;
}
/x 4: %/ printf("x = %d, y = %d\n",x,y); }
(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) — (1:,3,2,5) — (2:,3,2,5)
- {3:,3,1,5) — (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 66 P Cousot

Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1, y=-1
int x,y; x=2,y=5 XxX==-2,y=1
printf("Enter an integer: "); x=1,y=7 x=-3, y=3
scanf("%sd",&x); y = X; x=0,y=9 Xx=-4, y=5
/% 1: %/ while (x !'=0) { -
printf("x = %d, y = %d\n",x,y); X = =738245, y = 1476487
/% 2% %/ X =x-1;
/% 3t %/ y=y+2;
}
/% 4: x/ printf("x = %d, y = %d\n",x,y); }
valuey of y ...,
memory P O .
value x of x -,
state state .
initial value zo of x -

control point

initial state e init [P] transition € trans[P]

—— — III

(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) — (1:,3,2,5)
- (3:,3,1,5) — (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 67 ©P.Cousot

Maximal trace semantics

® The trace semantics of a program is the set of all

possible maximal finite or infinite execution traces for

that program

® The trace semantics of a programing language maps
programs to their trace semantics

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 68

© P.Cousot

Inductive definition
® Partial traces:
® A trace with one initial state is a partial trace

® A partial trace extended by a transition is a partial
trace

® Maximal traces:
® Finite traces with no extension by a transition

® |nfinite traces which prefixes are all partial traces

Abstract interpretation, SAVE |6, Changsha, 10 December 2016 69 ©P Cousot

Fixpoint partial trace semantics
® initial states of program P: init [P]
® transitions of programs P: trans [P]

® F[P]X ={s|seinit]P] } u
{ oss' | o0s € X A ss'€ trans[P] }

o Si[P] = Ifp~ Ft[P]

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 70 ©P Cousot

Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

® o(X)c={m | do,0'". o(c,m)c' € X}

® Invariance semantics: Si[P] = «(S*[P])

Abstract interpretation, SAVE |6, Changsha, 10 December 2016 71 ©P Cousot

Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

e Si[P] = a(St[P])c = {m | Jo,0'. o(c,m)c' € St[P]}

#include <stdio.h>
int main() {
int x,y;
printf("Enter an integer: ");

{<370, Z, Y> | y = 3x0 - 2%}\/* L w vsvﬁai?g('(';’/K(,d'!':s%(;;{y = x;
{<$07x7y>| y = 3x0 - 2x}-\\\#*2:w Eggﬂfi=%m y = %d\n",x,y);
— _ _ R 3K/ y =y +2;

{<5UO, x, Y> | y = 3xo - 2x 2} //* 4: %/ zrintf(“x =%, y = %d\n",x,y); }
{<x07x7Y>|y:3$0/\$:0}

Abstract interpretation, SAVE |6, Changsha, 10 December 2016 72 ©P Cousot

Calculations design of the verification conditions

e o(Ft[P]X)
= Xc{m | do,0'. o(c,m)c' € X}

= Fi[P](a(X))
where Fi[P] are the Turing/Floyd/Naur/Hoare

verification conditions
® It follows that Si[P] = Ifp® Fi[P]

® The proof method is then by fixpoint induction (Tarski
1955)

73

Application to the
semantics
of programming languages

74

General idea

® All known semantics are abstractions of a most
precise semantics

75

Abstraction to denotational semantics

® The maximal trace semantics S™[P] (maximal finite

and infinite execution traces
® Denotational semantics abstraction:
® SUP] = o(S™[P])
® o(X) =Xs{s' | Jo.sos' € X} U
{1]|Jo.so... € X}

i.e. a map of initial states to the set of final states
plus | in case of non-termination

76

Hierarchy of abstractions

idem for Prolog

Abstract interpretati

on, SAVE 16, Changsha, 10 December 2016 80

ground
Hoare 3 Herbrand
logics T Sen[P]
correct am
weakest : ool L calpattemn:
st computfed Sep [P
precondition Smodels o
semantics breadth- sm[P] instantiated |
SB[P] SCP] callsﬁzﬁtlg]?rns around
. SLD-trees
denotational ‘;;‘fftpisgiﬁsl SK[P]
semantics . SP[F] .) oK
“ Dt
5™ [r] dei;‘?g;tngus
relational most general sei[P]
semantics 171 imstantiated
(lcgiigﬁgﬁrxs
TIQOSF giperal
trace erivations
semantics si[rP]
7= __, abstraction ® all semantics are abstractions of SY[P]
| | | | | ___ equivalence
angelic natural demoniac __ _restriction
deterministic infinite
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 77 P.Cou Abstract interpretation, SAVE 16, Changsha, 10 December 2016 78 P.Cou
Abstract interpretation
® A well-developed theory, still in progress
® Active research e.g.
® abstract domains to handle e.g. complex data
structures
COI’IC I usion ® abstraction of parallelism with weak memory
models
® applications to biology, ...
® Industrial-quality static analyzers
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 79

Industrialisation: Astrée Industrialisation: Astrée

Project Analysis Editors Edit Tools Help

Project Analysis Editors Tools Help

BEEHO 2H 2 O00@® ¢ H PEEO0RPH 2 OO® «» CN

Example 1: scenarios. # Analyzed file: db/invalid/path/scenarios.c Original source: src/scenarios.c - Example 1: scenarios. & Overview
@ Welcome 70 E @ Welcome e
Configuration 28| Configuration gs/C | FindngsfF | Rul vioations | Reachabity | Metrics | Datafow | Fiter
© Preprocessor z " 0 Preprocessor ~ | Count - :‘ama
arser 7 arser s Zul larms (7 findings)
T = T 3 Invalid usage of pointers and arrays Alarms (7 findings)
/" Analyzer 76 /" Analyzer 1 F Out-of-bound array access
A Annotations n . A Annotations 2 I Possible overflow upon dereference
Results ;g 1 ptr = §ArrayBlock[0]: ~ 1 Invalid ranges and overflows
[1} Overflowin conversion
*
@ Overview o H i ' . L | 1 Failed or invalid directives
4 Call graph 82 3} " aa Call graph . 1 P Assertion failure
epor 83 i1 epor - 2 Uninitialized variables
/- Reports 8a if (Gninitializedi2) { t s if (uninitialized /- Reports 2 P Use of uninitislized variables e
Files 85 *.15) = 8X18; // hard case o 81 *(ptr + 15) = 0x10; /1 hard case Files N b 1
Prepeocessed | orgnal £ ' 2 i Preprocessed | orgnal r
" B a8 %) astreec
a9
%0
51
%2 . 8
o3 2z = (short) ((unsigned short)vx + (unsigned short)vy || 89 2 = (short) ((unsigned short)vx + (unsigned short)vy
94 _ASTREE_assert((-2<=2 & z=2)); 50 _ASTREE_assert((-2<=z &5 z<=2));
o es 51
o as x Sl x i
K] Y[« 0
(Line 81, column 7 Line 77, column 1 e

[call#main@58 at scenarios.c:
f@80=true at scenarios.c804-

[call#main@58 at scenarios.c:58.0-130.1
825

ALARM (O
f@80=true at scenarios.:80.4- S
Fiter: |~ v || Typefiters | Comment fiters | 8 of 8 findings visble
Fiter: [T ~ | | Type fiters | |Comment fiters | 8 of 8 findings visble: Type Category Location Classification Comment =
e Notification Invalid conversion # scenarios.c73.4-20 transiate warning(type): conversion from floating-

(P Summary Rescaontoe [0 e = s e = | 9(typ: 9t
Errors: 2 4 Aem© Out-of-bound array access # scenarios.c811719 out-of-bound array index {15} not incl P Alerm (© Overflowin conversion double->signed short conversion range [0, 40000 r
Alarms on code locations

S . Definite Alarm (&) | Possible overflow upon dereference. | B} scenarios.c816-20 - T ; P Alarm () Use of uninitiaized varizbles # scenarios,c808-23 uninitilized read: eading 4 byte(s) at offset(s 0 in

Data flow anomalies: 0 Data flow anomalies: 0

e v 6 P Alerm () Use of uninitiali % 83 uninitialzed read: reading 4 byte(s) at e Alarm () Out-of-bound array access B scenarios.c8117-19 -- ou und array index {15} not included in [0, 9]
i F o larm (4) d #

Alarms on memory locations. 7 P Definite Alarm (4) # 7 invalid dereference: dereferencing 1 b B v

816-20 invalid dereference: dereferencing 1 byte(s) at offse’
Data races: o Data races: o
< B 8 P Alarm (4) Assertion failure # scenarios.c127.4-40 assert failure _ASTREE assert((second < s P Alarm (8) Use of uninitialized variables # scenarios.c848-23 uninitialized read: reading 4 byte(s) at offset(s) 0in | _
|| puration: 25 < D || puration: 195 $ D
Aouput (W Fndngs A Notreached A Watch A Search Aouput [WFndngs A Notreached A Watch A Search
(& (&
Abstract interpretation, SAVE 16, Changsha, 10 December 2016 81 ©P.Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 82 ©P.Cousot

Many other static analyzers Static analysis for software development
® Julia (Java) http://www.juliasoft.com ® Users of Astrée:

® |kos, NASA https://ti.arc.nasa.gov/opensource/ikos/ @AIRBUS AREVA (D etmpapst {Eesa o8 ..

® Clousot for code contract, Microsoft, https://

github.com/Microsoft/CodeContracts
® Why not all software developers use

static analysis tools?

Infer (Facebook) http://fbinfer.com
® Zoncolan (Facebook)

® Google

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 83 ©P Cousot Abstract interpretation, SAVE 16, Changsha, 10 December 2016 84 ©P Cousot

Irresponsibility

® Computer engineering is the only technology where
developers are not responsible for their errors, even
the trivial ones:

DISCLAIMER OF WARRANTIES. ... MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. ...

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 85 ©P. Couso

The future

® Safety and security does matter to the general public

® Computer scientists will ultimately be held responsible
for there errors

® At least the automatically discoverable ones
® Since this is now part of the state of the art

® Automatic static analysis, verification, etc has a brilliant
future.

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 86 ©P.Couso

Francesco Logozzo, designer of the Zoncolan static
analyzer at Facebook wrote me on 09/12/2016:

“"Finding people who really know static analysis
is very hard, you should tell your students that if
they want a great job in a Silicon Valley company
they should study abstract interpretation not
JavaScript. Feel free to quote me on that ;-)”

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 87 ©P.Couso

Selected bibliography

Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of

e Patrick Cousot, Rac

Abstract Interpret

Fixpoints. POPL 1¢

e Patrick Cousot, Nicolas Ibwachs:

Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96
e Patrick Cousot, Radhia Cousot:

Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
e Patrick Cousot, Radhia Cousot:

Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992: 269-295
e Patrick Cousot:

Types as Abstract Interpretations. POPL 1997: 316-331
e Patrick Cousot, Radhia Cousot:

Temporal Abstract Interpretation. POPL 2000: 12-25
e Patrick Cousot, Radhia Cousot:

Systematic design of program transformation frameworks by abstract interpretation. POPL 2002: 178-190

o Patrick Cousot,

Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103
(2002)
e Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Fe Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:
A static analyzer for large safety-critical software. PI 3: 196-207
e Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:
The ASTREE Analyzer. ESOP 2005: 21-30
o Patrick Cousot, Radhia Cousot, Roberto Giacobazzi:
Abstract interpretation of resolution-based semantics. Theor. Comput. Sci. 410(46): 4724-4746 (2009)
e Patrick Cousot, Radhia Cousot:

An abstract interpretation framework for termination. POPL 2012: 245-258

e Patrick Cousot, Radhia Cousot:
A Galois connection calculus for abstract interpretation. POPL 2014: 3-4
o Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival:

ysis and Verification of Aerospace Software by Abstract Interpretation. Foundations and Trends in Programming Languages
2(2-3): 7T1-190 (2015)

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 88 ©P. Couso

The End, Thank You

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 89 ©P Cousot

