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Scientific research
® In Mathematics/Physics:
trend towards unification and synthesis through
universal principles
® In Computer science:

SCIGntIﬁC resea rCh trend towards dispersion and parcellation through a
ever-growing collection of local ad-hoc techniques for
specific applications
An exponential process, will stop!
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Example: reasoning on computational structures
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Example: reasoning on computational structures

Abstract interpretation
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Concrete

Abstraction |
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Fingerprint
®

Eye color

Phone metadata
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Interval abstraction

® Example: interval abstraction (also called box

abstraction)

YA

My

my

Set of points
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Mx Mx

Interval abstraction
[, M X[y, My]
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Intuition 3
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A C program and one of its executions

#include <stdio.h>

int main()

{
int x, vy;
printf("Enter two integers: ");
scanf("%sd %d",&x, &y);

/% 1t %/ while ((x '=6) || (y !'=0)) {
printf("x = %d, y = %d\n",x,y);
/% 2% x/ X = X + 3;
/* 31 %/ if (x > 10) x = =x;
/* 4: %/ y=y-2;
/* 5: %/ if (y < =5) y = -y;
¥
/* 6: %/ printf("x = %d, y = %d\n",x,y);
}
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Enter two integers: x =0,y = 0

x=3,y=-2
x=6,y=-4
x=9,y=6
x=-12,y=4
x=-9,y=2
x=-6,y=0
x=-3,y=-2
x=0,y=-4
x=3,y=6
x=6,y=4
x=9,y=2
x=-12,y=0
x=-9,y=-2
x=-6,y=-4
x=-3,y=6
x=0,y=4
x=3,y=2
x=6,y=0
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Graphical representation of the execution (l)

Graphical representation of the execution (2)
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Semantics Properties (Collecting semantics)
Formalize what it means to run a program Formalize what you are interested to know about program behaviors
state A
A
N Possible
trajectories
trajectory
» time -
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Specification

Formalize what you are interested to prove about program behaviors

Abstraction

Abstract away all information on program behaviors irrelevant to the proof

‘ | Possible | Possible
‘ trajectories trajectories
i Abstraction of the trajectories )
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Verification Soundness
The proof is fully automatic Never forget any possible case so the abstract proof is correct in the concrete
Forbidden zone Forbidden zone
| Possible | Possible
trajectories trajectories

Abstraction of the trajectories
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Abstraction of the trajectories
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Unsound methods: testing

Try a few cases

Forbidden zone — Error !!

Possible
trajectories

Test of a few trajectories
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Unsound methods: bounded model checking

Simulate the beginning of all executions (so called bounded model-checking)

Forbidden zone

Possible
trajectories

Bounded model-checking
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Unsound methods: soundiness

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone Error !l

Possible
trajectories

Erroneous trajectory abstraction

Abstract interpretation, SAVE 16, Changsha, 10 December 2016 31 ©P Cousot

Alarms

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone Alarm !

| Possible
trajectories

Error or false alarm ?

By soundness an alarm must be raised for this over-approximation!
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True alarm

The abstract alarm may correspond to a concrete error

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Forbidden zone Ak
| Possible | Possible
trajectories trajectories
False alarm
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What to do in presence of false alarms
. ) Yy o o loh o o
® False alarms are ultimately unavoidable (Godel's f o o oo
. ’f o o o o o
incompleteness) WA — >
*a } X X o o ol o o
® Consider finite cases or decidable cases only (model- . L B
. ° [ ] [ ] [ ] [ ]
checking, does not scale)
Collecting semantics: Intervals: Simple congruences:
® Ask for human help by providing information on the partial traces x € [a,b] x = alb]
program behgwor (theorem provers, SMT solvers), Yy Yy m
program specific and labor costly
t
® Have specialists refine the abstract interpretation (e.g. x
Astrée, http://www.absint.com/astree/index.htm),
shared cost 4
Octagons: FEllipses: Exponentials:
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x? 4 by? —axy < d —ab < y(t) < a*

+tx+y<a
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The very first static analysis
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Brahmagupta

Brahmagupta (Sanskrit: SIS,
(598-¢.670 CE) was an
Indian mathematician and astronomer who

Brahmagupta

wrote two important works on Mathematics and
Astronomy: the Brahmasphutasiddhanta
(Extensive Treatise of Brahma) (628), a
theoretical treatise, and the Khandakhadyaka,
a more practical text.

Born 598 CE
Died ¢.670 CE
Fields Mathematics, Astronomy

Known for  Zero, modern Number system
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

® The abstraction is that you do not (always)
need to known the absolute value of the
arguments to know the sign of the result;

e Sometimes imprecise (don't know the sign of
the sum of a positive and a negative)

* Useful in practice (if you know what to do
when you don't know the sign)

e eg. in compilation: do not optimize (a
division by 2 into a shift when positive)

) Unless processor uses 2's complement and can shift the sign.
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[..]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[..]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.
18.33. The product of a negative and a positive is negative, of two
negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.
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The rule of signs by Brahmagupta (628)

18.30. [The sum] of two positives is positives, of two negatives negative;

[..]

18.32. A negative minus zero is negative, a positive [minus zero]
positive; zero [minus zero] is zero. When a positive is to be subtracted
from a negative or a negative from a positive, then it is to be added.
18.33. The product of a negative and a positive is negative, of two
negatives positive, and of positives positive; the product of zero and a
negative, of zero and a positive, or of two zeros is zero.

18.34. A positive divided by a positive or a negative divided by a
negative is positive; a zero divided by a zero is zero; a positive divided
by a negative is negative; a negative divided by a positive is [also]
negative.
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The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object "pos' when
a and b are the objects "pos" or '"neg', and when
the valuation is defined as follows :

pOS+pos=pos POS XpOS=poOs
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxnegepos
V(p+q)=V(p)+V(q) V(pxq)=V (p)xV(q)

V(0)=V(1)=...=pos

V(=1)=V(-2)=...™neg

The valuation of axa+bxb yields "pos" by the
following computations :

V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pos ,pos=pos =pos,pos=pos

V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos

This valuation proves that the result of
axa+bxb is always positive and hence allows to
compute its square root without any preliminary
dynamic test on its sign. On the other hand, the
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The rule of signs by Michel Sintzoff (1972)

For example, axa+bxb yields the value 25
when a is 3 and b is -4, and when + and X are
the arithmetic multiplication and addition.

But axa+bxb yields always the object "pos' when
a and b are the objects "pos" or '"neg', and when
the valuation is defined as follows :

pos+pos=pos POS XpOS=poOSs
pos+neg=pos,neg posxneg=neg
neg+pos=pos,neg negxpos=neg
neg+neg=neg negxneg=pos Oepos x -leneg
V(p+q)=V(p)+V(q) V(pxq)=V(p)xV(q) =0
V(0)=V(1)=...=pos = U¢gneg
V(=1)=V(-2)=...=neg
The valuation of axa+bxb yields "pos' by the
following computations :
V(a)=pos,neg V(b)=pos,neg
V(axa)=posxpos,negxneg V(bxb)=posxpos,negxneg
=pos ,pOS=pos =pos,pos=pos
V(axa+bxb)=V(axa)+V(bxb)=pos+pos=pos
This valuation proves that the result of
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The rule of signs Cousot & Cousot (1979)
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The rule of S|gns Cousot & Cousot (1979)

e Galois
e connection

lnclu5|on/ [ —— - )
implication inclusion

implication
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The rule of S|gns Cousot & Cousot (1979)

e Galois
e connection

|ncIu5|on/ [ ———————

implication imlgllliggg/n
++ 4 =
calculational ... .
design method w P o
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Application of abstract
Interpretation to static
analysis
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All computer scientists have experienced bugs

Ariane 5.01 failure Patriot failure  Mars orbiter loss Heartbleed
(overflow) (float rounding) (unit error) (buffer overrun)

® Checking the presence of bugs by debugging is great

® Proving their absence by static analysis is even better!
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Static analysis

® Check program properties (automatically, using the
program text only, without running the program)

e Difficulties:
® Undecidability / complexity:
® Precision
® Scalability
® Soundness (correctness)

® Induction: widening/narrowing

Abstract intery pretation, SAVE 16, Changsha, 10 December 2016 55

© P.Cousot

Fixpoint

{y>0} « hypothesis Fixpoint equation

X =y
{I(z,y)} ¢« loop invariant
while (x > 0) {

X =x - 1;

}

Floyd-Naur-Hoare verification conditions:
(y=2o0nz=y)= I(z,y) initialisation
(I(z,y)Az>0A Az =z —1)= I(z,y) iteration

Equivalent fixpoint equation:
I(z,y) =z220A(z=yVI(z+1,y)) (ie. I = F(I)®)

(5) We look for the most precise invariant I, implying all others, that is Ifp ~ F.
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Iterates

Iterates I = lim F™(false)
I%z,y) = false oo

Iterates

Tterates I = lim F™(false) 7
n—oo

I%z,y) = false

z IMz,y) = z20A(z=yVI(z+1,y)) z
T
CSE, SNU, Seoul, 09/30/2008 «<V@<- 53 -7 [W-D> @ © P. Cousot
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Iterates I = lim F™(false) Tterates I = lim F™(false) ¥
0 n—00 0 _ n—00
I(z,y) = false I°(z,y) = false
IMz,y) =220/ (z=yV Iz +1y)) (] z I'Nz,y) =22 0A(z=yVI(z+1y)) y e
0<z=y =0sz=y
2 — — 1
Plo,y) = 2200 =yvIiE+1y) o g AR L ALARL I S
=0<:L‘<’y§:12+1 “._,"‘/ =URTRYSKT
N 4 Plz,y) =20 (z=yV I (z+1y)) d
y m —0<z<y<z+2 yt z
2l
T
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Convergence acceleration: widening

Fixed point

Accelerated Iterates I = hm F™(false) Y Accelerated Iterates I = hm F™(false) ¥
I%(z,y) = false I°(z,y) = false
INMz,y) =z2>20A(z=yV Iz +1,79)) y z IYz,y) = z20A(z=yVI%z+1,9)) Yy n T
=0<z=y =0<z=y
P(z,y) =z > O/\(a:*yvll(z-i-l v)) 0 e P(z,y) = > 0/\(:1:—y\/[1(:1:+1 v)) 0 z
=0<z<y<z+1 Y =0<z<y<z+1 Y
Pz,y) = 2 >0A(e=yVI(z+1,y)) 4 P(z,y) = ¢ >0A(e=yV I(z+1,) 4
=0<z<y<z+2 Y= =0<z<y<z+2 Yt o
IY(z,y) = I*(z,y) V I3(z,y) < widening 2p I*(z,y) = I*(z,y) V I3(z,y) + widening 2 i
=0<z<y : . =0<z<y 2 .
P(z,y) = 2>0A(z=yV Iz +1y)
ﬁ = I*(z,y) fixed point! ﬁ
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OCtagonS Industrialisation: Development in cooperation with Airbus France
Accelerated Tterates I = lim F™(false) ¥ - Automg‘mc proof's of a}bsence of runtime
I%z,y) = false errors in Electric Flight Control Soft- =
IMz,y) = z2>20A(z=yVI(z+1,y)) Y = ware:
=0<z=y — A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb
P(z,y) = z2>20A(z=yVIi(z+1,79) 3 z (NOV. 2003)
=0<z<y<z+1 Py .
— A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
B(z,y) =z>0A(z=yVI¥(z+1,y)) 1 N
=0<z<y<z+2 O — no false alarm, World premiéres !
4 _ 72 3 i Jens 2 | 3 .
Fley) = é(f;ylvy] (2,y)  widening y — Automatic proofs of absence of runtime
. . y errors in the ATV software @:
Plz,y) =z20A(z=yVIi(z+1y)
— I“(a,y) fixed point! — C version of the automatic docking software: 102.000 lines of
The invariants are computer representable — C, 23s on a Quad-Core AMD Opteron™ processor, 16 Gb (Apr.
with octagons! 2008)
(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.
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Application of abstract
Interpretation to
program proof methods
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Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1,y=-1
int x,y; x=2,y=5 Xx==-2,y=1
printf("Enter an integer: "); x=1,y=7 x=-3, y=3
scanf("%d",&x); y = X; x=0,y=9 Xx=-4, y=5
/* 1: %/ while (x '= 0) { -
printf("x = %d, y = %d\n",x,y); x = =738245, y = 1476487
/% 21 %/ X =x-1; -
/x 31 %/ y=y+2;
}
/x 4: %/ printf("x = %d, y = %d\n",x,y); }
(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) — (1:,3,2,5) — (2:,3,2,5)
- {3:,3,1,5) — (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)
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Maximal execution trace

#include <stdio.h> Enter an integer: 3 Enter an integer: -1
int main() { x=3,y=3 x=-1, y=-1
int x,y; x=2,y=5 XxX==-2,y=1
printf("Enter an integer: "); x=1,y=7 x=-3, y=3
scanf("%sd",&x); y = X; x=0,y=9 Xx=-4, y=5
/% 1: %/ while (x !'=0) { -
printf("x = %d, y = %d\n",x,y); X = =738245, y = 1476487
/% 2% %/ X =x-1;
/% 3t %/ y=y+2;
}
/% 4: x/ printf("x = %d, y = %d\n",x,y); }
valuey of y ...,
memory P O .
value x of x -,
state state .
initial value zo of x -

control point

initial state e init [P] transition € trans[P]

—— — III

(1:,3,3,3) — (2:,3,3,3) — (3:,3,2,3) — (1:,3,2,5)
- (3:,3,1,5) — (1:,3,1,7) — (2:,3,1,7) — (3:,3,0,7) —
(1:,3,0,9) — (6:,3,0,9)
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Maximal trace semantics

® The trace semantics of a program is the set of all

possible maximal finite or infinite execution traces for

that program

® The trace semantics of a programing language maps
programs to their trace semantics
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Inductive definition
® Partial traces:
® A trace with one initial state is a partial trace

® A partial trace extended by a transition is a partial
trace

® Maximal traces:
® Finite traces with no extension by a transition

® |nfinite traces which prefixes are all partial traces
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Fixpoint partial trace semantics
® initial states of program P: init [P]
® transitions of programs P: trans [P]

® F[P]X ={s|seinit]P] } u
{ oss' | o0s € X A ss'€ trans[P] }

o Si[P] = Ifp~ Ft[P]
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Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

® o(X)c={m | do,0'". o(c,m)c' € X}

® Invariance semantics: Si[P] = «(S*[P])
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Invariance abstraction

® Collect at each control point the possible values of
variables when execution reaches that control point

e Si[P] = a(St[P])c = {m | Jo,0'. o(c,m)c' € St[P]}

#include <stdio.h>
int main() {
int x,y;
printf("Enter an integer: ");

{<370, Z, Y> | y = 3x0 - 2%}\/* L w vsvﬁai?g('(';’/K(,d'!':s%(;;{y = x;
{<$07x7y>| y = 3x0 - 2x}-\\\#*2:w Eggﬂfi=%m y = %d\n",x,y);
— _ _ R 3K/ y =y +2;

{<5UO, x, Y> | y = 3xo - 2x 2} //* 4: %/ zrintf(“x =%, y = %d\n",x,y); }
{<x07x7Y>|y:3$0/\$:0}

Abstract interpretation, SAVE |6, Changsha, 10 December 2016 72 ©P Cousot




Calculations design of the verification conditions

e o(Ft[P]X)
= Xc{m | do,0'. o(c,m)c' € X}

= Fi[P](a(X))
where Fi[P] are the Turing/Floyd/Naur/Hoare

verification conditions
® It follows that Si[P] = Ifp® Fi[P]

® The proof method is then by fixpoint induction (Tarski
1955)
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Application to the
semantics
of programming languages
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General idea

® All known semantics are abstractions of a most
precise semantics
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Abstraction to denotational semantics

® The maximal trace semantics S™[P] (maximal finite

and infinite execution traces
® Denotational semantics abstraction:
® SUP] = o(S™[P])
® o(X) =Xs{s' | Jo.sos' € X} U
{1]|Jo.so... € X}

i.e. a map of initial states to the set of final states
plus | in case of non-termination

76




Hierarchy of abstractions

idem for Prolog
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Abstract interpretation
® A well-developed theory, still in progress
® Active research e.g.
® abstract domains to handle e.g. complex data
structures
COI’IC I usion ® abstraction of parallelism with weak memory
models
® applications to biology, ...
® Industrial-quality static analyzers
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Industrialisation: Astrée Industrialisation: Astrée

Project Analysis Editors Edit Tools Help

Project Analysis Editors Tools Help

BEEHO 2H 2 O00@® ¢ H PEEO0RPH 2 OO® «» CN

Example 1: scenarios. # Analyzed file: db/invalid/path/scenarios.c Original source: src/scenarios.c - Example 1: scenarios. & Overview
@ Welcome 70 E @ Welcome e
Configuration 28| Configuration gs/C | FindngsfF | Rul vioations | Reachabity | Metrics | Datafow | Fiter
© Preprocessor z " 0 Preprocessor ~ | Count - :‘ama
arser 7 arser s Zul larms (7 findings)
T = T 3 Invalid usage of pointers and arrays Alarms (7 findings)
/" Analyzer 76 /" Analyzer 1 F Out-of-bound array access
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Prepeocessed | orgnal £ ' 2 i Preprocessed | orgnal r
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o es 51
o as x Sl x i
K] Y[« 0
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Many other static analyzers Static analysis for software development
® Julia (Java) http://www.juliasoft.com ® Users of Astrée:

® |kos, NASA https://ti.arc.nasa.gov/opensource/ikos/ @AIRBUS AREVA (D etmpapst {Eesa o8 ..

® Clousot for code contract, Microsoft, https://

github.com/Microsoft/CodeContracts
® Why not all software developers use

static analysis tools?

Infer (Facebook) http://fbinfer.com
® Zoncolan (Facebook)

® Google
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Irresponsibility

® Computer engineering is the only technology where
developers are not responsible for their errors, even
the trivial ones:

DISCLAIMER OF WARRANTIES. ... MICROSOFT AND ITS SUPPLIERS PROVIDE
THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL
FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FIT-
NESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY,
OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORK-
MANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE,
ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFT-
WARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHER-
WISE ARISING OUT OF THE USE OF THE SOFTWARE. ...
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The future

® Safety and security does matter to the general public

® Computer scientists will ultimately be held responsible
for there errors

® At least the automatically discoverable ones
® Since this is now part of the state of the art

® Automatic static analysis, verification, etc has a brilliant
future.
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Francesco Logozzo, designer of the Zoncolan static
analyzer at Facebook wrote me on 09/12/2016:

“"Finding people who really know static analysis
is very hard, you should tell your students that if
they want a great job in a Silicon Valley company
they should study abstract interpretation not
JavaScript. Feel free to quote me on that ;-)”
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The End, Thank You
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