
Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Proof of mutual-exclusion and non-
starvation of a program with weak

memory model: PostgreSQL

1

Patrick Cousot (NYU, Emer. ENS, PSL)
(joint work with Jade Alglave)

International joint research project ``Analysis and verification of
of dependable cyber physical software’’

National Natural Science Foundation of China
Changsha, December 9 , 2016

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot2

PostgreSQL
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do 21:do

2: do 22: do

3: r[] Rl0 latch0 23: r[] Rl1 latch1

4: while (Rl0=0) 24: while (Rl1=0)

5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 26: r[] Rf1 flag1

7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

3

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot3

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot4

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Invariance

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot5

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

WCM

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot6

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot7

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Invariance + WCM

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot8

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Incompleteness:
Dynamic conditions on

executions of one
program

Static conditions on all
executions of all programs

in one architecture

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Conditional invariance
proof:

Mutual exclusion

9

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Algorithm

10

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot11

PostgreSQL
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot12

Stamps
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

Ensure that events are unique (your choice)

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Variables in Hoare logic & L/O-G
• program variables: int x;

• in predicates you need to name the value of variable x
to express properties of this value of x:

• valueof(x)
• 𝑥

• WCM: no notion of “the” value of a shared variable x

• The only way to know something about “the” value of
a shared variable x is to read it

• Pythia variable: name given to the read value

• Not necessary in the semantics, only in assertions (but
we put them in the semantics)

13

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

14

Pythia variables

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot15

Invariant specification Sinv

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: ¬at{28} 28: ¬at{8}
(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

3

16

Mutual exclusion

(invariant Sinv is elsewhere true)

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Analytic semantics =
Anarchic semantics +

communication constraints

17

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Analytics semantics with cuts

• Anarchic semantics: set of
executions:  
 
 
 

• Communication semantics:
restrictions on rf in cat

18

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

ν
ρ

τ

rf

11:,r2=0

12:,r2=1

13:,r2=1

1:,r1=0

0:, start

2:,r1=1

3:,r1=1

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r1
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ← 0}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→

⟨{ ← w0, ← w2}, { ← 0}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→ ⟨{ ← w0, ← w2},

{ ← 0}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 0},

{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r12
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w0}, { ← 1}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→

⟨{ ← w12, ← w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ←

w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷

−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 1},
{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r1
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ← 0}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→

⟨{ ← w0, ← w2}, { ← 0}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→ ⟨{ ← w0, ← w2},

{ ← 0}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 0},

{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r12
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w0}, { ← 1}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→

⟨{ ← w12, ← w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ←

w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷

−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 1},
{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r1
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ← 0}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→

⟨{ ← w0, ← w2}, { ← 0}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→ ⟨{ ← w0, ← w2},

{ ← 0}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 0},

{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r12
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w0}, { ← 1}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→

⟨{ ← w12, ← w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ←

w2}, { ← 1}, { ← 1}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 1},
{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r1
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ← 0}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→

⟨{ ← w0, ← w2}, { ← 0}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→ ⟨{ ← w0, ← w2},

{ ← 0}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 0},

{ ← 1}⟩

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r12
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w0}, { ← 1}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→

⟨{ ← w12, ← w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ←

w2}, { ← 1}, { ← 1}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 1},
{ ← 1}⟩

•

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r1
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ← 0}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→

⟨{ ← w0, ← w2}, { ← 0}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→ ⟨{ ← w0, ← w2},

{ ← 0}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 0},

{ ← 1}⟩

•

w0

︷ ︸︸ ︷
;

w0

︷ ︸︸ ︷
−−−−−−−−−−−−→ ⟨{ ← w0, ← w0}, { ← 0}, { ←

0}⟩

r1
︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ← w0}, { ← 1}, { ← 0}⟩

r11

︷ ︸︸ ︷

−−−−−−−−−→

⟨{ ← w12, ← w2}, { ← 1}, { ← 1}⟩

w12

︷ ︸︸ ︷
−−−−−−−−→ ⟨{ ← w12, ←

w2}, { ← 1}, { ← 1}⟩

w2

︷ ︸︸ ︷

−−−−−−−−→ ⟨{ ← w12, ← w2}, { ← 1},
{ ← 1}⟩

•
w (w)

•

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ∧rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ∧rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

π = ς × π × rf

• ς is the computation
• π is the cut sequence
• rf is the communication

8

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Local invariants

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

19

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Local invariant

• Attached to each program point ℓ of each process 𝑝
• Depends on

• Program points of all other processes 𝜅
• Stamps 𝜃 of all processes

• Local registers of all processes 𝜌
• Pythia variables 𝜈

• Communications (rf)
20

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[\ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[. ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv)) i.e.
S !P" ⊆ γinv(Sinv) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Communication relation rf
• rf: relation between write and read events

• Each rf is encoded by 𝛤, a set of pairs

• (the set of all possible communications rf)  
21

∀p ∈ Pi . ∀ℓ ∈ L(p) . ∀rf′ ∈ Cp,ℓ(S
a
invp(ℓ)) . (inclusion)

(
!Hcom"(αa

Ξ(Sa
invp(ℓ), rf

′)) ∧ Sa
invp(ℓ)[rf ← rf′]

)

⇒ Scomp(ℓ)[rf ← rf′] .
The cat specification Hcom is a conjunction of conditions on a
candidate execution ⟨e, po, rf , iw⟩ of the form

let r = R(⟨e, po, rf , iw⟩)
acyclic | irreflexive | empty | not empty r

where the relation r ∈ ℘(e×e) is a function R of e , po, rf , and iw ,
as defined by the cat language semantics !Hcom" (Alglave et al.
2016). We have acyclic(r) if and only if irreflexive(r+) so
we only have to handle irreflexivity and emptyness.

The proof ¬Scomp(ℓ)[rf] ⇒ ¬ !Hcom"(αa
Ξ(Sa

inv [rf])) is by
contraposition, i.e., any communication rejected by Scom is also re-
jected by Hcom . Assuming ¬Scomp(ℓ)[rf], the check ¬ !Hcom"(⟨e,
po, rf , iw⟩) considers each of these reflexivity or emptyness con-
ditions in turn.

13. A proof of PostgreSQL
The PostgreSQL example1 of Fig. 21 was considered in (Alglave
et al. 2013) for bounded bug-finding on a multi-core PowerPC sys-
tem. We prove, under appropriate hypotheses, the critical section
(CS) specification Sinv ! ¬(at{8} ∧ at{28}) plus non-starvation
(CSs are entered infinitely often).
Anarchic communications of PostgreSQL. The anarchic commu-
nications Γ are given in Fig. 21. We write rf⟨xθ, ⟨ℓ:, θ′, v⟩⟩ to
state that the read into pythia variable xθ was from an write event
marked θ′ of value v generated by the action at process label ℓ. The
markers θ/θ′ are the vectors of iteration counters of the loops en-
closing the read/write instruction. We write Rvpθ for the possible
read-froms of variable latchp (v =L) or variable flagp (v =F)
in process Pp, p ∈ {0, 1} for unique stamp θ (as encoded by loop
counters). All possible cases are considered in Fig. 21.

All possible communications are obtained by considering that
each read of a shared variable in the loops can read from any initial,
past or future write to this variable, a different choice being possible
at each read. So each Γ ∈ Γ , Γ = {rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈
N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} encodes a particular
read-from relation rf specifying that for the ith iteration in the
external loop 1–12 and the jith iteration in the internal loop 2–4 of
process P0, 3: r[] Rl0 latch0 {❀ L0iji} will read as specified
by rl0i

ji ∈ RL0i
ji while 6: r[] Rf0 flag0 {❀ F0i} will read

as specified by rf0i ∈ RF0i.
(Anarchic) inductive invariant of PostgreSQL. The inductive
invariant Sind is given in Fig. 21. It depends on Γ encoding a
communication rf. Sind assumes that Γ belongs to a unspecified
set Γ of possible communications (this dependency is written
Sind (Γ, Γ)). So Sind (Γ, Γ) is valid under the communication hy-
pothesis Scom (Γ, Γ) ! (Γ ∈ Γ). It follows that Sind (Γ, Γ) is an
inductive anarchic invariant.
Necessary and sufficient communication specification Scom for
mutual exclusion. We derive in Fig. 19 the communication spe-
cification Scom in Fig. 18 by calculational design from the critical
section requirements.

It follows that (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) ⇒ Sinv (Γ, Γ) so
Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) (since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)), prov-
ing mutual exclusion under the Scom communication hypothesis.

The proof that Scom (Γ, Γ) is also necessary is done by providing
counter-examples. For example, a candidate execution counter-
example to Scom1 is given in Fig. 20 (where the control points of

1 www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us

the cut of the traces where the error occurs (i.e., both processes are
simultaneously in their critical section) is marked ").
Consistency specification Hcom for mutual exclusion. The con-
sistency specification Hcom is obtained by excluding all executions
Scomi(Γ, Γ), i ∈ [1, 4] for the anarchic communications Γ .

For Scom1(Γ, Γ), Fig. 20 corresponds to a incorrect scenario
where process P1 reads from the initialisation, enters its critical
section, P0 reads the latch0 and flag0 to be later set by process
P1 and so also enters its critical section. This is excluded on ar-
chitectures with no prophecy beyond cuts (see Fig. 12a where no
read before a cut can read from a write after the cut, hence when
the write is not yet executed). Another correct scenario would have
process P1 reads from the initialisation, enters and exits its critical
section, writes latch0 and flag0, later read by process P0 which
in turn enters its critical section. Both scenarios abstract to the same
candidate execution (since cuts are abstracted away) so the incor-
rect scenario can hardly be excluded in cat without referring to
cuts (by adding synchronisation markers in case of prophecy bey-
ond cuts, see Fig. 16).
Non-starvation. We must prove that there exists no single execution
ξ such that either from the initialisation or from a later local time
in this execution, one process (or both) never enter their critical
section (under the non-blocking and communication satisfaction
Wf 8(ξ) fairness hypotheses), which yields six cases. We assume
there is one such execution ξ, and derive a contradiction. Let Γrf be
the encoding of the communication relation rf of this execution ξ.
Γrf uniquely determines rf, hence by Th. 1, uniquely determine the
execution ξ. The inductive invariant Sind (Γ, {Γrf}) of Fig. 21 holds
for this single execution ξ. By completeness in Th. 2, the strongest
such inductive invariant Sind (Γ, {Γrf}) ! αinv({ξ}) exists and sat-
isfies the interpretation of the initialisation (7.2), sequential (7.3),
non-interference (7.4), and communication (7.5) verification con-
ditions of Sect. 7. The contradiction is that this is not the case.
(This reasoning is not possible with (Owicki and Gries 1976; Lam-
port 1977) since the inductive invariant holds for communications
wired in the interleaved semantics hence in the verification con-
ditions. If every execution ultimately never reaches some critical
section, the conclusion is that some execution ultimately reaches
the critical section. This does not mean non-starvation, which is to
show that every execution ultimately reaches the critical section.
The difficulty with (Owicki and Gries 1976; Lamport 1977) is to
prove liveness using sets of states (Pnueli et al. 2005; Podelski and
Rybalchenko 2005). Here the reasoning is on only one erroneous
execution, which is shown impossible. Moreover, we don’t need a
ranking function on a well-founded set (Pnueli et al. 2005) since
there are only two processes with a fixed scheduling). Let us con-
sider two of these cases.
• Assume process P1 never enters its critical section on the erro-
neous execution ξ. Since process P1 never enters its critical section
on this execution ξ, the strongest inductive invariant Sinv (Γ, {Γrf})
is false at{28} hence false at{28, 29, 30, 31}. So ¬r1Rf1ℓ[Γrf]
hence r0Rf1ℓ[Γrf] holds. By the (satisfaction) verification condi-
tion the read at{26} must be from a reachable write of value 0
to flag1. The only possible one at{28} is not reachable so this
strongest inductive invariant Sinv (Γ, {Γrf}) cannot satisfy the veri-
fication conditions, the desired contradiction.
• Assume process P0 never enters its critical section on the erro-
neous execution ξ. The strongest inductive invariant Sinv (Γ, {Γrf})
is false at{8} (hence at{8, 9, 10, 11}).

So by the invariant at{7} must have ¬r1Rf0i[Γrf] and so
r1Rl0i

ki
[Γrf] ∧ r0Rf0i[Γrf].

By def. of r1Rl0i
ji [Γrf]! ∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈

Γrf ∧ L0iji = 1, the read of 1 at{3} is from at{30}, which cannot
be unreachable by the previous case. By def. of r1Rl1ℓ

mℓ
[Γrf] !

J. Alglave and P. Cousot, Ogre and Pythia 13 2016/11/7

Pythia variable
of the

read event

Program
label of the
write action

Stamp
of the

write event

Value
write

Γ = {{rl0i
ji , rf0i, rl1ℓ

mℓ
, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] .

rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈ N . ∀mℓ ∈ [1,mℓ] . rl1ℓ
mℓ

∈ RL1ℓ
mℓ

∧ rf1ℓ ∈ RF1ℓ}

Γ ∈ Γ
Γ ∈ Γ , Γ ⊆ Γ

4

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Anarchic communications

22

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Anarchic communications
• Any read can read from any write on the same shared

variable (location)

23

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Anarchic communications
• Possible communications for each read at each stamp

(point in the execution):

• Anarchic communications:  
 
 

• Anarchic semantics:

• WCM semantics:

24

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Γ = {{rl0i
ji , rf0i, rl1ℓ

mℓ
, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] .

rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈ N . ∀mℓ ∈ [1,mℓ] . rl1ℓ
mℓ

∈ RL1ℓ
mℓ

∧ rf1ℓ ∈ RF1ℓ}

4

Γ = {{rl0i
ji , rf0i, rl1ℓ

mℓ
, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] .

rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈ N . ∀mℓ ∈ [1,mℓ] . rl1ℓ
mℓ

∈ RL1ℓ
mℓ

∧ rf1ℓ ∈ RF1ℓ}

Γ ∈ Γ
Γ ∈ Γ , Γ ⊆ Γ

4

Γ = {{rl0i
ji , rf0i, rl1ℓ

mℓ
, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] .

rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈ N . ∀mℓ ∈ [1,mℓ] . rl1ℓ
mℓ

∈ RL1ℓ
mℓ

∧ rf1ℓ ∈ RF1ℓ}

Γ ∈ Γ
Γ ∈ Γ , Γ ⊆ Γ

4

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot25

Inductive invariant Sind

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Inductive invariant
• Sind is inductive under hypothesis Scom iff, assuming

Scom, we have:

• Sind is true at the beginning of an execution

• If Sind is true during execution is remains true after
one more computation or communication step

•

26

Sinv holds under hypothesis Scom
Sind Sinv⇒

Scom Sinv⇒

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot27

Inductive invariant
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot28

Inductive invariant
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Possible
communications

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot29

Inductive invariant
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Register assignment of
the Pythia variable

after read event

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot30

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Possible values of Pythia variables depending on communications

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Inductive invariant

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

• Notation: r(0|1)R(l,f)(0|1)

31

Communicated values

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

read value 0
or 1

register

latch
fetch

process

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot32

Communication
specification

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot33

Calculational design of the communication specification

R. W. Floyd. Assigning meaning to programs. Proc. Symp. in Applied
Math., volume 19, 19–32. Amer. Math. Soc., 1967.

R. Giacobazzi and R. Cousot, editors. ACM Proceedings of POPL 2013.
A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. ’cause

i’m strong enough: reasoning about consistency choices in distributed
systems. In Bodı́k and Majumdar (2016), 371–384.

I. Grief. Semantics of communicating parallel processes. PhD thesis,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science, Sept. 1975. URL https://dspace.mit.edu/
handle/1721.1/57710.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors. ACM Proceedings of
OOPSLA 2013.

R. Jung, R. Krebbers, L. Birkedal, and D. Dreyer. Higher-order ghost state.
ICFP 2016, 256–269.

V. Klebanov. A jmm-faithful non-interference calculus for Java. FIDJI
2004, LNCS 3409, 101–111. Springer, 2004.

O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak memory
models. ICALP 2015, LNCS 9135, 311–323. Springer, 2015.

O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire con-
sistency. In Bodı́k and Majumdar (2016), 649–662.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers, 28(9):690–691, 1979.

L. Lamport. How to make a correct multiprocess program execute correctly
on a multiprocessor. IEEE Trans. Computers, 46(7):779–782, 1997.

A. Miné. Static analysis of run-time errors in embedded real-time parallel
C programs. Logical Methods in Computer Science, 8(1), 2012.

A. Miné. Relational thread-modular static value analysis by abstract inter-
pretation. VMCAI 2014, LNCS 8318, 39–58. Springer, 2014.

M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically modelled
machine code. TACAS 2007, LNCS 4424, 568–582. Springer, 2007.

M. O. Myreen, A. C. J. Fox, and M. J. C. Gordon. Hoare logic for ARM
machine code. FSEN 2007, LNCS 4767, 272–286. Springer, 2007.

M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro. The
CISE tool: proving weakly-consistent applications correct. ACM PaPo-
CEuroSys 2016, 2:1–2:3.

P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
B. Norris and B. Demsky. CDSCHECKER: checking concurrent data struc-

tures written with C/C++ atomics. In Hosking et al. (2013), 131–150.
P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.

Comput. Sci., 375(1-3):271–307, 2007.
S. Owens. Reasoning about the implementation of concurrency abstractions

on x86-tso. In D’Hondt (2010), 478–503.
S. S. Owicki and D. Gries. An axiomatic proof technique for parallel

programs I. Acta Inf., 6:319–340, 1976.
J. Palsberg and M. Abadi, editors. ACM Proceedings of POPL 2005.
G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process.

Lett., 12(3):115–116, 1981.
A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-

foundedness for the analysis of fair discrete systems. TACAS, LNCS
3440, 124–139. Springer, 2005.

A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair
termination. In Palsberg and Abadi (2005), 132–144.

S. K. Rajamani and D. Walker, editors. ACM Proceedings of POPL 2015.
D. Shasha and M. Snir. Efficient and correct execution of parallel programs

that share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312,
1988.

F. Sieczkowski, K. Svendsen, L. Birkedal, and J. Pichon-Pharabod. A
separation logic for fictional sequential consistency. ESOP 2015, LNCS
9032, 736–761. Springer, 2015.

J. Tassarotti, D. Dreyer, and V. Vafeiadis. Verifying read-copy-update in a
logic for weak memory. ACM PLDI 2015, 110–120.

A. M. Turing. Checking a large routine. Report of a Conference on
High Speed Automatic Calculating Machines, Mathematical Laborat-
ory, Cambridge, UK, 67–69, 24 June 1949. Reproduced as “An early

program proof by Alan Turing”, in F.L. Morris and C.B. Jones (Eds),
Annals of the History of Computing, Vol. 6, Apr. 1984, http://www.
turingarchive.org/browse.php/B/8.

A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory with
ghosts, protocols, and separation. In ACM OOPSLA 2014, 691–707.

V. Vafeiadis and C. Narayan. Relaxed separation logic: a program logic for
C11 concurrency. In Hosking et al. (2013), 867–884.

I. Wehrman and J. Berdine. A proposal for weak-memory local reasoning.
LOLA workshop, volume 11, 55–70, 2011.

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧
rf⟨L1ℓnℓ

, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Figure 18: Communication specification for PostgreSQL

(¬Sinv (Γ, Γ)) ∧ Sind (Γ, Γ)

! at{8} ∧ at{28} ∧ Sind (Γ, Γ) !def. invariance specification Sinv "
⇒ at{8} ∧ at{28} ∧ (∃i, ki, ℓ, nℓ ∈ N . Γ ∈ Γ ∧ r1Rl0iki

[Γ] ∧
r1Rf0i[Γ] ∧ r1Rl1ℓnℓ

[Γ] ∧ r1Rf1ℓ[Γ]) !by invariant Sind (Γ, Γ)"
⇒ at{8} ∧ at{28} ∧

(
∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki

,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ)
)
∨(

∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki
, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨0:, ,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ)
)
∨(

∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki
, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨10:, i10,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ)
)
∨(

∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki
, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨10:, i10,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ)
)

!def. r1Rl0iki
[Γ], r1Rf0i[Γ], r1Rl1ℓnℓ

[Γ], and r1Rf1ℓ[Γ], rf⟨xθ,

⟨ℓ:, θ′, v⟩⟩ implies that xθ = v, A ∧ (B ∨ C) = (A ∧B) ∨
(A ∧ C), ∃ distributes over ∨, and (∃x . A(x)) ∧ B = ∃x .
(A(x) ∧B) when x is not free in B"

⇒ at{8}∧ at{28}∧ (¬Scom1 (Γ, Γ)∨¬Scom2 (Γ, Γ)∨¬Scom3 (Γ, Γ)∨
¬Scom4 (Γ, Γ))

⇒ ¬Scom (Γ, Γ)

by defining Scom (Γ, Γ) ! (at{8} ∧ at{28}) ⇒ (Scom1 (Γ, Γ) ∧
Scom2 (Γ, Γ)∧Scom3 (Γ, Γ)∧Scom4 (Γ, Γ)) and the Scomi (Γ, Γ) as in Fig. 18.

Figure 19: Calculational design of Scom for PostgreSQL
Scom-1-1

{0: w latch0 0; w latch1 1;

w flag0 0; w flag1 1;}
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0

fence[fdep] {3:} {6:}
6: r Rf0 flag0 1 26: r Rf1 flag1 1

! 8: (* critical section *) ! 28: (* critical section *)
w flag1 0

29: w flag0 1

fence[flw] {29:} {30:}
30: w latch0 1
31:

 rf^-1

 rf^-1

Wf-P0-1

{0: w latch0 0; w latch1 1;

w flag0 0; w flag1 1;}
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0

f[fdep] {3:} {6:} 26:
! 6: r Rf0 flag0 0 r Rf1 flag1 1
7: ... 28: (* critical section *)

w flag1 0
29: w flag0 1

f[flw] {29:} {30:}
30: w latch0 1

! 31: ...

strongest such inductive invariant Sinv (Γ, {Γrf}) i.e. for the analytic semantics {ξ}. Since process P1 never enters
its critical section on this execution ξ, the strongest inductive invariant Sinv (Γ, {Γrf}) is false at{28} hence is false
at{28, 29, 30, 31}. So ¬r1Rf1ℓ[Γrf] hence r0Rf1ℓ[Γrf] holds. By the ?? verification condition the read at{26} must
be from a reachable write of value 0 to flag1. The only possible one at{28} is not reachable so this strongest
inductive invariant Sinv (Γ, {Γrf}) cannot satisfy the verification conditions, the desired contradiction.

TODO:

1.9.2 Initially, process P0 never enters its critical section on the erroneous execution ξ

Assume that there exists an erroneous execution ξ = ς × π × rf ∈ Ξ on which process P0 never enters its critical
section and Γrf be the encoding of the rf. Let Sinv (Γ, {Γrf}) be the strongest inductive invariant for the analytic
semantics {ξ}. By hypothesis that P0 never enters its critical section on ξ, it follows that the strongest inductive
invariant Sinv (Γ, {Γrf}) is false at{8} (hence at{8, 9, 10, 11}).

So by the invariant at{7} must have ¬r1Rf0i[Γrf] and so r1Rl0iki [Γrf] ∧ r0Rf0i[Γrf].
By def. of r1Rl0iji [Γrf]! ∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γrf ∧L0iji = 1, the read of 1 at{3} is from at{30},

which cannot be unreachable by Section ??. By def. of r1Rl1ℓmℓ
[Γrf] ! (rf⟨L1ℓmℓ

, ⟨0:, _, 1⟩⟩ ∈ Γrf ∧ L1ℓmℓ
=

1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γrf ∧ L1ℓmℓ

= 1) the read of 1 at{23} is from at{0} since at{10} is
unreachable.

By def. of r0Rf0i[Γrf], the read of 0 at{6} has only two possibilities (i.e. a read from 0: or from 8:).

1. Either rf⟨F0i, ⟨0:, _, 0⟩⟩ ∈ Γrf ∧F0i = 0, which we can prevent either by observing that we are in the situation

Wf-P0-1:Wf-P0-1

{0: w latch0 0; w latch1 1;

w flag0 f0; w flag1 1;}
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0

fence[fdep] {3:} {6:} 26:
! 6: r Rf0 flag0 0 r Rf1 flag1 1
7: ... 28: (* critical section *)

w flag1 0
29: w flag0 1

fence[flw] {29:} {30:}
30: w latch0 1

! 31: ...

acyclic fre;fences;rfe;fences

that is to be prevented by Scom /the fenced cat specification Hcom .

2. Or ∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧F0i = 0, but the read is from an unreachable write, which is impossible
by the ?? verification condition.

1.10 Strong non-starvation
We want to prove that after any number of iterations in their main loop, each process ultimately enters its critical
section at least once (so the critical sections are entered infinitely often).

1.11 Eventually, process P1 never enters its critical section
Assume there exists a limit λ after which process P1 never enters its critical section so the invariant ¬(ℓ " λ) holds
at{28, 29, 30, 31}. So for all ℓ " λ, we have r1Rl1ℓnℓ

[Γ] ∧ ¬r1Rf1ℓ[Γ] ∧ r0Rf1ℓ[Γ] that holds at{27}. So we are in
the following situation (dotted lines are alternatives for the read-from relation),

12

rf

rf

co
fre fcs

fcs

counter-example to Scom1 counter-example to non-starvation
Figure 20: Counter-examples to PostgreSQL with WCM

J. Alglave and P. Cousot, Ogre and Pythia 15 2016/11/13

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

• where

• This proves Scom sufficient for correctness

• Counter-examples prove Scom necessary ⇒ Scom is the
weakest WCM requirement for correctness

34

R. W. Floyd. Assigning meaning to programs. Proc. Symp. in Applied
Math., volume 19, 19–32. Amer. Math. Soc., 1967.

R. Giacobazzi and R. Cousot, editors. ACM Proceedings of POPL 2013.
A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. ’cause

i’m strong enough: reasoning about consistency choices in distributed
systems. In Bodı́k and Majumdar (2016), 371–384.

I. Grief. Semantics of communicating parallel processes. PhD thesis,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science, Sept. 1975. URL https://dspace.mit.edu/
handle/1721.1/57710.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors. ACM Proceedings of
OOPSLA 2013.

R. Jung, R. Krebbers, L. Birkedal, and D. Dreyer. Higher-order ghost state.
ICFP 2016, 256–269.

V. Klebanov. A jmm-faithful non-interference calculus for Java. FIDJI
2004, LNCS 3409, 101–111. Springer, 2004.

O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak memory
models. ICALP 2015, LNCS 9135, 311–323. Springer, 2015.

O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire con-
sistency. In Bodı́k and Majumdar (2016), 649–662.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers, 28(9):690–691, 1979.

L. Lamport. How to make a correct multiprocess program execute correctly
on a multiprocessor. IEEE Trans. Computers, 46(7):779–782, 1997.

A. Miné. Static analysis of run-time errors in embedded real-time parallel
C programs. Logical Methods in Computer Science, 8(1), 2012.

A. Miné. Relational thread-modular static value analysis by abstract inter-
pretation. VMCAI 2014, LNCS 8318, 39–58. Springer, 2014.

M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically modelled
machine code. TACAS 2007, LNCS 4424, 568–582. Springer, 2007.

M. O. Myreen, A. C. J. Fox, and M. J. C. Gordon. Hoare logic for ARM
machine code. FSEN 2007, LNCS 4767, 272–286. Springer, 2007.

M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro. The
CISE tool: proving weakly-consistent applications correct. ACM PaPo-
CEuroSys 2016, 2:1–2:3.

P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
B. Norris and B. Demsky. CDSCHECKER: checking concurrent data struc-

tures written with C/C++ atomics. In Hosking et al. (2013), 131–150.
P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.

Comput. Sci., 375(1-3):271–307, 2007.
S. Owens. Reasoning about the implementation of concurrency abstractions

on x86-tso. In D’Hondt (2010), 478–503.
S. S. Owicki and D. Gries. An axiomatic proof technique for parallel

programs I. Acta Inf., 6:319–340, 1976.
J. Palsberg and M. Abadi, editors. ACM Proceedings of POPL 2005.
G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process.

Lett., 12(3):115–116, 1981.
A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-

foundedness for the analysis of fair discrete systems. TACAS, LNCS
3440, 124–139. Springer, 2005.

A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair
termination. In Palsberg and Abadi (2005), 132–144.

S. K. Rajamani and D. Walker, editors. ACM Proceedings of POPL 2015.
D. Shasha and M. Snir. Efficient and correct execution of parallel programs

that share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312,
1988.

F. Sieczkowski, K. Svendsen, L. Birkedal, and J. Pichon-Pharabod. A
separation logic for fictional sequential consistency. ESOP 2015, LNCS
9032, 736–761. Springer, 2015.

J. Tassarotti, D. Dreyer, and V. Vafeiadis. Verifying read-copy-update in a
logic for weak memory. ACM PLDI 2015, 110–120.

A. M. Turing. Checking a large routine. Report of a Conference on
High Speed Automatic Calculating Machines, Mathematical Laborat-
ory, Cambridge, UK, 67–69, 24 June 1949. Reproduced as “An early

program proof by Alan Turing”, in F.L. Morris and C.B. Jones (Eds),
Annals of the History of Computing, Vol. 6, Apr. 1984, http://www.
turingarchive.org/browse.php/B/8.

A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory with
ghosts, protocols, and separation. In ACM OOPSLA 2014, 691–707.

V. Vafeiadis and C. Narayan. Relaxed separation logic: a program logic for
C11 concurrency. In Hosking et al. (2013), 867–884.

I. Wehrman and J. Berdine. A proposal for weak-memory local reasoning.
LOLA workshop, volume 11, 55–70, 2011.

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧
rf⟨L1ℓnℓ

, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Figure 18: Communication specification for PostgreSQL

(¬Sinv (Γ, Γ)) ∧ Sind (Γ, Γ)

! at{8} ∧ at{28} ∧ Sind (Γ, Γ) !def. invariance specification Sinv "
⇒ ∃i, ki, ℓ, nℓ ∈ N . Γ ∈ Γ ∧ r1Rl0iki

[Γ]∧ r1Rf0i[Γ]∧ r1Rl1ℓnℓ
[Γ]∧

r1Rf1ℓ[Γ] !by invariant Sind (Γ, Γ)"
⇒

(
∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki

, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨0:, ,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ)
)
∨(

∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki
, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨0:, ,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ)
)
∨(

∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki
, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨10:, i10,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ)
)
∨(

∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ (rf⟨L0iki
, ⟨30:, ℓ30,

1⟩⟩ ∈ Γ) ∧ (rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ) ∧ (rf⟨L1ℓnℓ
, ⟨10:, i10,

1⟩⟩ ∈ Γ) ∧ (rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ)
)

!def. r1Rl0iki
[Γ], r1Rf0i[Γ], r1Rl1ℓnℓ

[Γ], and r1Rf1ℓ[Γ], rf⟨xθ,

⟨ℓ:, θ′, v⟩⟩ implies that xθ = v, A ∧ (B ∨ C) = (A ∧B) ∨
(A ∧ C), ∃ distributes over ∨, and (∃x . A(x)) ∧ B = ∃x .
(A(x) ∧B) when x is not free in B"

⇒ ¬Scom1 (Γ, Γ) ∨ ¬Scom2 (Γ, Γ) ∨ ¬Scom3 (Γ, Γ) ∨ ¬Scom4 (Γ, Γ)

⇒ ¬Scom (Γ, Γ)

by defining Scom (Γ, Γ) ! Scom1 (Γ, Γ)∧Scom2 (Γ, Γ)∧Scom3 (Γ, Γ)∧
Scom4 (Γ, Γ) and the Scomi (Γ, Γ) as in Fig. 18.

Figure 19: Calculational design of Scom for PostgreSQL
Scom-1-1

{0: w latch0 0; w latch1 1;

w flag0 0; w flag1 1;}
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0

fence[fdep] {3:} {6:}
6: r Rf0 flag0 1 26: r Rf1 flag1 1

! 8: (* critical section *) ! 28: (* critical section *)
w flag1 0

29: w flag0 1

fence[flw] {29:} {30:}
30: w latch0 1
31:

 rf^-1

 rf^-1

Wf-P0-1

{0: w latch0 0; w latch1 1;

w flag0 0; w flag1 1;}
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0

f[fdep] {3:} {6:} 26:
! 6: r Rf0 flag0 0 r Rf1 flag1 1
7: ... 28: (* critical section *)

w flag1 0
29: w flag0 1

f[flw] {29:} {30:}
30: w latch0 1

! 31: ...

strongest such inductive invariant Sinv (Γ, {Γrf}) i.e. for the analytic semantics {ξ}. Since process P1 never enters
its critical section on this execution ξ, the strongest inductive invariant Sinv (Γ, {Γrf}) is false at{28} hence is false
at{28, 29, 30, 31}. So ¬r1Rf1ℓ[Γrf] hence r0Rf1ℓ[Γrf] holds. By the ?? verification condition the read at{26} must
be from a reachable write of value 0 to flag1. The only possible one at{28} is not reachable so this strongest
inductive invariant Sinv (Γ, {Γrf}) cannot satisfy the verification conditions, the desired contradiction.

TODO:

1.9.2 Initially, process P0 never enters its critical section on the erroneous execution ξ

Assume that there exists an erroneous execution ξ = ς × π × rf ∈ Ξ on which process P0 never enters its critical
section and Γrf be the encoding of the rf. Let Sinv (Γ, {Γrf}) be the strongest inductive invariant for the analytic
semantics {ξ}. By hypothesis that P0 never enters its critical section on ξ, it follows that the strongest inductive
invariant Sinv (Γ, {Γrf}) is false at{8} (hence at{8, 9, 10, 11}).

So by the invariant at{7} must have ¬r1Rf0i[Γrf] and so r1Rl0iki [Γrf] ∧ r0Rf0i[Γrf].
By def. of r1Rl0iji [Γrf]! ∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γrf ∧L0iji = 1, the read of 1 at{3} is from at{30},

which cannot be unreachable by Section ??. By def. of r1Rl1ℓmℓ
[Γrf] ! (rf⟨L1ℓmℓ

, ⟨0:, _, 1⟩⟩ ∈ Γrf ∧ L1ℓmℓ
=

1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γrf ∧ L1ℓmℓ

= 1) the read of 1 at{23} is from at{0} since at{10} is
unreachable.

By def. of r0Rf0i[Γrf], the read of 0 at{6} has only two possibilities (i.e. a read from 0: or from 8:).

1. Either rf⟨F0i, ⟨0:, _, 0⟩⟩ ∈ Γrf ∧F0i = 0, which we can prevent either by observing that we are in the situation

Wf-P0-1:Wf-P0-1

{0: w latch0 0; w latch1 1;

w flag0 f0; w flag1 1;}
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0

fence[fdep] {3:} {6:} 26:
! 6: r Rf0 flag0 0 r Rf1 flag1 1
7: ... 28: (* critical section *)

w flag1 0
29: w flag0 1

fence[flw] {29:} {30:}
30: w latch0 1

! 31: ...

acyclic fre;fences;rfe;fences

that is to be prevented by Scom /the fenced cat specification Hcom .

2. Or ∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧F0i = 0, but the read is from an unreachable write, which is impossible
by the ?? verification condition.

1.10 Strong non-starvation
We want to prove that after any number of iterations in their main loop, each process ultimately enters its critical
section at least once (so the critical sections are entered infinitely often).

1.11 Eventually, process P1 never enters its critical section
Assume there exists a limit λ after which process P1 never enters its critical section so the invariant ¬(ℓ " λ) holds
at{28, 29, 30, 31}. So for all ℓ " λ, we have r1Rl1ℓnℓ

[Γ] ∧ ¬r1Rf1ℓ[Γ] ∧ r0Rf1ℓ[Γ] that holds at{27}. So we are in
the following situation (dotted lines are alternatives for the read-from relation),

12

rf

rf

co
fre fcs

fcs

counter-example to Scom1 counter-example to non-starvation

Figure 20: Counter-examples to PostgreSQL with WCM

J. Alglave and P. Cousot, Ogre and Pythia 15 2016/11/7

Calculational design of the communication specification

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! (at{8} ∧ at{28}) =⇒ (Scom1(Γ, Γ) ∧ Scom2(Γ, Γ) ∧ Scom3(Γ, Γ) ∧ Scom4(Γ, Γ))

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

6

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Example of counter-example to Scom1

35

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧
(r0Rl0iji [Γ] ∨ r1Rl0iji [Γ])}

24: {Γ ∈ Γ ∧ Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γ] ∨ r1Rl1ℓmℓ

[Γ])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {Γ ∈ Γ ∧ r1Rl0iki [Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓnℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0iki [Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓnℓ
[Γ]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0iki [Γ] ∧ Rf0 = F0i ∧

(r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓnℓ

[Γ] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0iki [Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓnℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0iki [Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓnℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0iki [Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓnℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0iki [Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓnℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi
12: {Γ ∈ Γ} 32: {Γ ∈ Γ}

while true while true
13:{false} 33:{false}

1

cut

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Proof of mutual exclusion
• Scom implies mutual exclusion (for any)

36

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom

6

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

6

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot37

Conditional invariance
proof

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot38

Sequential proof ℓ = 𝜅 and 𝑝 = 𝑞
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot39

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

Sequential proof ℓ = 𝜅 and 𝑝 = 𝑞

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot40

Sequential proof ℓ = 𝜅 and 𝑝 = 𝑞
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot41

Non-interference proof
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

The local invariants of process 𝑝
depend only on Γ and local registers
or Pythia variables unchanged by a

step in the other process

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot42

Communication proof
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

…

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot43

Communication proof
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot44

Communication proof
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {Γ ∈ Γ} 21:{Γ ∈ Γ}

do {i} do {ℓ}
2: {Γ ∈ Γ} 22: {Γ ∈ Γ}

do {ji} do {mℓ}
3: {Γ ∈ Γ} 23: {Γ ∈ Γ}

r[] Rl0 latch0 {❀ L0iji} r[] Rl1 latch1 {❀ L1ℓmℓ
}

4: {Γ ∈ Γ ∧ Rl0 = L0iji ∧ (r0Rl0i
ji [Γ] ∨ r1Rl0i

ji [Γ])} 24: {Γ ∈ Γ∧Rl1 = L1ℓmℓ
∧(r0Rl1ℓ

mℓ
[Γ]∨r1Rl1ℓ

mℓ
[Γ])}

while (Rl0=0) {ki} while (Rl1=0) {nℓ}
5: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ]} 25: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

w[] latch0 0 w[] latch1 0

6: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ]} 26: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ]}

r[] Rf0 flag0 {❀ F0i} r[] Rf1 flag1 {❀ F1ℓ}
7: {Γ ∈ Γ ∧ r1Rl0i

ki
[Γ] ∧ Rf0 = F0i

∧ (r0Rf0i[Γ] ∨ r1Rf0i[Γ])}
27: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ Rf1 = F1ℓ

∧ (r0Rf1ℓ[Γ] ∨ r1Rf1ℓ[Γ])}
if (Rf0 ̸=0) then if (Rf1̸=0) then

8: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 28: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 29: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] flag1 1 w[] flag0 1

10: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 30: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

w[] latch1 1 w[] latch0 1

11: {Γ ∈ Γ ∧ r1Rl0i
ki
[Γ] ∧ r1Rf0i[Γ]} 31: {Γ ∈ Γ ∧ r1Rl1ℓ

nℓ
[Γ] ∧ r1Rf1ℓ[Γ]}

fi fi

12: {Γ ∈ Γ} 32: {Γ ∈ Γ}
while true while true

13:{false} 33:{false}

Invariants:
r0Rl0i

ji [Γ] ! (rf⟨L0iji , ⟨0:, , 0⟩⟩ ∈ Γ ∧ L0iji = 0) ∨ (∃i5 ∈ N . rf⟨L0iji , ⟨5:, i5, 0⟩⟩ ∈ Γ ∧ L0iji = 0)

r1Rl0i
ji [Γ] ! (∃ℓ30 ∈ N . rf⟨L0iji , ⟨30:, ℓ30, 1⟩⟩ ∈ Γ ∧ L0iji = 1)

r0Rf0i[Γ] ! (rf⟨F0i, ⟨0:, , 0⟩⟩ ∈ Γ ∧ F0i = 0) ∨ (∃i8 ∈ N . rf⟨F0i, ⟨8:, i8, 0⟩⟩ ∈ Γ ∧ F0i = 0)

r1Rf0i[Γ] ! (∃ℓ29 ∈ N . rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ F0i = 1)

r0Rl1ℓ
mℓ

[Γ] ! (∃ℓ25 ∈ N . rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 0)

r1Rl1ℓ
mℓ

[Γ] ! (rf⟨L1ℓmℓ
, ⟨0:, , 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1) ∨ (∃i10 ∈ N . rf⟨L1ℓmℓ
, ⟨10:, i10, 1⟩⟩ ∈ Γ ∧ L1ℓmℓ

= 1)

r0Rf1ℓ[Γ] ! (∃m28 ∈ N . rf⟨F1ℓ, ⟨28:, m28, 0⟩⟩ ∈ Γ ∧ F1ℓ = 0)

r1Rf1ℓ[Γ] ! (rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ ∧ F1ℓ = 1) ∨ (∃i9 ∈ N . rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ ∧ F1ℓ = 1)

Communications:
RL0i

ji ! {rf⟨L0iji , ⟨0:, , 0⟩⟩, rf⟨L0iji , ⟨5:, i5, 0⟩⟩, rf⟨L0
i
ji , ⟨30:, ℓ30, 1⟩⟩ | i5 ∈ N ∧ ℓ30 ∈ N}

RF0i ! {rf⟨F0i, ⟨0:, , 0⟩⟩, rf⟨F0i, ⟨8:, i8, 0⟩⟩, rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ | i8 ∈ N ∧ ℓ29 ∈ N}
RL1ℓ

mℓ
! {rf⟨L1ℓmℓ

, ⟨0:, , 1⟩⟩, rf⟨L1ℓmℓ
, ⟨25:, ℓ25, 0⟩⟩, rf⟨L1ℓmℓ

, ⟨10:, i10, 1⟩⟩ | ℓ25 ∈ N ∧ i10 ∈ N}
RF1ℓ ! {rf⟨F1ℓ, ⟨0:, , 1⟩⟩, rf⟨F1ℓ, ⟨28:, ℓ28, 0⟩⟩, rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ | ℓ28 ∈ N ∧ i9 ∈ N}

Anarchic communications:
Γ = {{rl0i

ji , rf0i, rl1ℓ
mℓ

, rf1ℓ | i ∈ N ∧ ji ∈ [0, ki] ∧ ℓ ∈ N ∧ j ∈ [0, nℓ]} | ∀i ∈ N . ∀ji ∈ [1, ki] . rl0i
ji ∈ RL0i

ji ∧ rf0i ∈ RF0i ∧ ∀ℓ ∈
N . ∀mℓ ∈ [1,mℓ] . rl1ℓ

mℓ
∈ RL1ℓ

mℓ
∧ rf1ℓ ∈ RF1ℓ}

Figure 21: Inductive invariant Sind (Γ, Γ) of PostgreSQL (under hypothesis Scom (Γ, Γ) ! (Γ ∈ Γ), Γ ⊆ Γ)

J. Alglave and P. Cousot, Ogre and Pythia 16 2016/11/7

(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv) ∧ (Hcom ⇒ Scom)

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr)] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is

J. Alglave and P. Cousot, Ogre and Pythia 10 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Inclusion proof

45

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {⟨w12

x , r1x ⟩, ⟨w2
y , r

11
y ⟩} ̸∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ℓ in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Method
• The communication specification is

• The consistency specification must satisfy

• So the design of must forbid the erroneous
communications specified by the communication
specification

46

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

6

i.e.

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

6

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

6

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! (at{8} ∧ at{28}) =⇒ (Scom1(Γ, Γ) ∧ Scom2(Γ, Γ) ∧ Scom3(Γ, Γ) ∧ Scom4(Γ, Γ))

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

6

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! (at{8} ∧ at{28}) =⇒ (Scom1(Γ, Γ) ∧ Scom2(Γ, Γ) ∧ Scom3(Γ, Γ) ∧ Scom4(Γ, Γ))

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

(
at{8} ∧ at{28} ∧

4∨

i=1

¬Scomi(Γ, Γ)
)
=⇒

4∨

i=1

¬Hcomi(Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

6

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot47

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ∧rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ∧rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

6

cut

no prophecy beyond cut during execution

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot48

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

cut

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ∧rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ∧rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

6

no prophecy beyond cut during execution

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot49

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

cut

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ∧rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ∧rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

6

no prophecy beyond cut during execution

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot50

(¬Sinv (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ ¬(Scom (Γ, Γ))

=⇒ Scom (Γ, Γ) =⇒ (Sinv (Γ, Γ) ∨ ¬Sind (Γ, Γ)) !contraposition"
=⇒ Scom (Γ, Γ) =⇒ (Sind (Γ, Γ) =⇒ Sinv (Γ, Γ)) !implication"
=⇒ (Scom (Γ, Γ) ∧ Sind (Γ, Γ)) =⇒ Sinv (Γ, Γ) !implication"
=⇒ Scom (Γ, Γ) ⇒ Sinv (Γ, Γ) !since Scom (Γ, Γ) ⇒ Sind (Γ, Γ)"

Scom Γ

Scom (Γ, Γ) ! Scom1(Γ, Γ)∧Scom2(Γ, Γ)∧Scom3(Γ, Γ)∧Scom4(Γ, Γ)

Hcom (Γ, Γ) ⇒ Scom (Γ, Γ)

¬Scom (Γ, Γ) ⇒ ¬Hcom (Γ, Γ)

4∨

i=1

¬Scomi(Γ, Γ) =⇒
4∨

i=1

¬Hcomi(Γ, Γ)

Scom1 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom2 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨0:, , 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

Scom3 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10 ∈ N . Γ ∈ Γ∧rf⟨L0iki
, ⟨30:,

ℓ30, 1⟩⟩ ∈ Γ ∧ rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ ∧ rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨0:, , 1⟩⟩ ∈ Γ

Scom4 ! ¬(∃i, ki, ℓ, nℓ, ℓ30, ℓ29, i10, i9 ∈ N . Γ ∈ Γ ∧ rf⟨L0iki
,

⟨30:, ℓ30, 1⟩⟩ ∈ Γ∧rf⟨F0i, ⟨29:, ℓ29, 1⟩⟩ ∈ Γ∧rf⟨L1ℓnℓ
,

⟨10:, i10, 1⟩⟩ ∈ Γ ∧ rf⟨F1ℓ, ⟨9:, i9, 1⟩⟩ ∈ Γ

6

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

2

cut

no prophecy beyond cut during execution

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Conclusion on mutual exclusion
• PostgreSQL is correct on architectures satisfying the

``no prophecy beyond cut during execution’’ property

• Intuition on necessity: when waiting for a spinlock, you
should look at its current value, not at later ones!

51

rf
w

r

✗

✓
w

rf

let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc
with Cut from AllCuts

foreach cut from Cut
irreflexive po ; cut ; po ; rf

Figure 11: SC in cat

For example, Figure 11 gives a definition of Sequential Consistency
(SC) in cat (an equivalence proof appears e.g. in (Alglave 2010))
TODO[PC]: J’ai rajoute le cut, enleve si ca te plait pas. On the
first line we define the relation fr, for from-read, as the sequence
of the inverse of rf (viz., rf^-1) and the coherence order co. We
then require the acyclicity of the union of the program order po, the
read-from rf, the coherence co and the from-read fr. TODO[JA]:
SC restricts read-froms in two ways. (no prophecy) A read before a
cut cannot read from a write after this cut and (always last) a read
reads from the last write in the cuts, see Figure ??

• Writing the corresponding cat specification Hcom (see Fig. 12
for the definition of Hcom in cat). For each case in Fig. 10, we for-
bid a reflexive sequence.

Overall this leads to the cat specification given in Fig. 12:
irreflexive fr; po; fr; po
irreflexive fr; po
irreflexive co; po; fr; po
irreflexive rf; po; rf; po
irreflexive rf; po; cut; po

Figure 12: A possible specification Hcom of Peterson algorithm

• Proving that all the behaviours allowed by Hcom are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcom . By ¬Scom in
(1), we get ∃i, j . [rf⟨F2i4, ⟨0:, false⟩⟩∨ rf⟨F2i4, ⟨17:, false⟩⟩∨ rf⟨Ti5,
⟨11:, 1⟩⟩]∧ [rf⟨F1j13, ⟨0:, false⟩⟩∨ rf⟨F1j13, ⟨8:, false⟩⟩∨ rf⟨Tj14, ⟨2:,
2⟩⟩]] which we put in disjunctive normal form and give the cases
illustrated in Fig. 10, thus proving ¬Hcom .

3.3.3 Consistency proof M ⇒ Hcom

Proving that all the behaviours allowed by M are allowed by Hcom
is done by reductio ad absurdum. Suppose an execution of Peterson
that is forbidden by Hcom yet allowed by M . By definition of Hcom
in Fig. 12, there are 4 cases. Each of these cases may be forbidden
by the WCM M (e.g. SC) or prevented by adding fences (e.g.
TSO).

• When M is SC. In cat speak, SC is modelled as given in
Fig. 11. The last line states that there cannot be a cycle in the union
(depicted by |) of the program order po, the read-from rf, the
coherence co and the from-read fr. Now, all 4 sequences required
to be irreflexive by Hcom are included in the transitive closure
of po | rf | co | fr, and rejected on SC, thus proving that
SC ⇒ Hcom . TODO: Quid de la 5eme condition? Expliquer cat
pas assez expressif, voir ja+ pc/ papers/ cut/ cut. tex , peut
etre introduire les cuts informellement

• When M is TSO. TODO[JA]: a bien verifier, voir ja+ pc/
papers/ invariance/ herd7/ peterson2/ README ou ca marche
pas bien In cat speak, TSO is modelled as given in Fig. 13. The
first line defines fr as in SC. Then we define a new relation
po-loc, as the restriction of the program order po to accesses
relative to the same variable (see the intersection with the relation
loc). Next up we require the acyclicity of the union of po-loc
with all the communication relations: read-from rf, coherence co
and from-read fr.

We then define the relation ppo (for preserved program order) as
the program order po relieved from (see the setminus operator \)

the write-read pairs (W*R). Then we define the relation rfe (for ex-
ternal read-from) as the restriction of the read-from rf to accesses
that belong to different threads (denoted by the relation ext). Fi-
nally we require the acyclicity of the union of the preserved pro-
gram order, the external read-from, the coherence and the from-
read relations.

let fr = (rf^-1;co)
let po-loc = po & loc
acyclic po-loc | rf | co | fr as scpv

let ppo = po \ (W*R)
let rfe = rf & ext
acyclic ppo | rfe | co | fr as tso

Figure 13: TSO in cat

Thus certain executions forbidden by our specification Hcom of
Peterson (see Fig. 12) will not be forbidden by the TSO model
given in Fig. 13. Indeed all the executions that contain a sequence
fr; po; fr; po forbidden by our specification of Peterson in-
volves a pair write-read in program order. Moreover, the write-read
pairs are explicitly removed from the tso acyclicity check given on
the last line of the TSO model of Fig. 13, thus will not contribute
to executions forbidden by the model.

• Adding fences permits a correct implementation. The idea is
that the cycles in Fig. 10 that are not naturally forbidden by TSO
must be forbidden with a fence. The only cycle that is not naturally
forbidden by TSO is the case 1 in Figure Fig. 10. To forbid it, one
needs to add a fence (e.g. mfence in x86) between write-read pairs
in program order.

In the invariance proof, fences are skip so the proof is unchanged.
The fence semantics must be defined by a cat specification (F is
the set of fence events) and Hcom strengthened as shown in Fig. 14.
let fencerel = (po & (_ * F)); po

irreflexive fr; fencerel; fr; fencerel

Figure 14: Semantics of fences in Peterson for TSO

4. Related works
Contrary to our approach, previous attempts to generalise the
(Owicki and Gries 1976) invariance proof method from SC to
WCM are not parameterised by a formal specification of the WCM.
Our formal specification of the WCM parameter takes the form of
program-specific programmer-specified communication assertion
Scom shown to be implied by a program-specific programmer-
specified cat specification Hcom itself implied by an architectural
cat specification M (Shasha and Snir 1988; Alglave 2010; Alglave
et al. 2016). These constraints Scom hence Hcom are on commu-
nications only, in contrast to constraints on the execution order and
the visibility of writes (Crary and Sullivan 2015) or the ordering
between commands of (Bornat et al. 2015).

Our invariance proof method deals with weak memory models
without getting back to the world of SC. This is in contrast to
previous methods exposing the store buffers as part of the program
state (e.g. (Dan et al. 2015)) or explicitly considering all possible
reshuffles e.g. by program transformation (e.g. (Atig et al. 2011;
Alglave et al. 2013; Miné 2012)).

In the classical (Turing 1949; Naur 1966; Floyd 1967; Hoare 1969)
invariance proof method, (shared) variable names are used in proofs
to denote the value of the program variables. This is a severe
restriction for previous invariance proof methods since in WCM
there is no notion of global time hence of “the” instantaneous value
of a shared variable. We solve the problem using pythia variables,
based on the idea that the value of a shared variable is locally

7 2016/10/22

cut

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

in cat
• A static condition to impose a dynamic condition:  
 
 
 
 
 
 
 
 
 

52

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: f[cut] 28: f[cut]

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

enum fences = ’cut
instructions F[{’cut}]

let cut = (tag2events(’cut) * tag2events(’cut)) & ext
irreflexive rf; po; cut; po

5

cut
po

po

rf

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: f[cut] 28: f[cut]

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

enum fences = ’cut
instructions F[{’cut}]

let cut = (tag2events(’cut) * tag2events(’cut)) & ext
irreflexive rf; po; cut; po

5

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot53

Prevents valid executions
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: f[cut] 28: f[cut]

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

enum fences = ’cut
instructions F[{’cut}]

let cut = (tag2events(’cut) * tag2events(’cut)) & ext
irreflexive rf; po; cut; po

5

cut
po

po

rf

1

34

2
Invalid

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: f[cut] 28: f[cut]

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

enum fences = ’cut
instructions F[{’cut}]

let cut = (tag2events(’cut) * tag2events(’cut)) & ext
irreflexive rf; po; cut; po

5

cut
po

po

rf

1

24

3
Valid

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do {i} 21:do {ℓ}
2: do {ji} 22: do {mℓ}
3: r[] Rl0 latch0 {! L0iji} 23: r[] Rl1 latch1 {! L1ℓmℓ

}
4: while (Rl0=0) {ki} 24: while (Rl1=0) {nℓ}
5: w[] latch0 0 25: w[] latch1 0

6: r[] Rf0 flag0 {! F0i} 26: r[] Rf1 flag1 {! F1ℓ}
7: if (Rf0 ̸=0) then 27: if (Rf1 ̸=0) then

8: f[cut] 28: f[cut]

(* critical section *) (* critical section *)

w[] flag0 0 w[] flag1 0

9: w[] flag1 1 29: w[] flag0 1

10: w[] latch1 1 30: w[] latch0 1

11: fi 31: fi

12:while true 32:while true

13: 33:

enum fences = ’cut
instructions F[{’cut}]

let cut = (tag2events(’cut) * tag2events(’cut)) & ext
irreflexive rf; po; cut; po

5

•

•

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Non-starvation

54

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Difference with Lamport/Owicki-Gries

• The communications in L/O-G are fixed in the
semantics (SC) for all executions:  
 
 
 
 
 
 
 
⟹ entangled with the verification conditions 
⟹ impossible to reason on one execution trace only

55

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Reasoning on only one execution
• An execution is entirely determined by its read-from

relation rf
• The verification conditions depend on a set Γ of

verification conditions

• By choosing Γ = {rf}, we can reason on this execution

• This execution satisfies the inductive invariant Sind({rf})
• To prove that this execution is impossible it is sufficient to

prove that Sind({rf}) cannot hold (according to the
verification conditions)

• Since the method is sound, if the verification conditions are
not satisfied, the execution is excluded by the semantics

56

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

9 cases of starvation

57

P0 P1

initially eventually initially eventually

starves
in loop

never
enter CS

starves
in loop

never
enter CS

starves
in loop

never
enter CS

starves
in loop

never
enter CS

⟸

(2)

(3)

∧

∨

(4) ∨

(1)

(5) ∨
(6)

(7)

(8)
(9)

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot58

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

• let rf be the communication
for such a trace (encoded in
Γrf)

• invariant false after both spin
loops

• so latch1 in 23: can only be
read from initialization

• so latch1 is 1 not 0, a
contradiction

(1) Both processes starve in spin loops

falsefalse

✘

✔

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot59

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

• let rf be the communication
for such a trace (encoded in
Γrf)

(2) Both processes never enter their critical section

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot60

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

false false

• let rf be the communication
for such a trace (encoded in
Γrf)

• the invariant inside critical
sections must be false

(2) Both processes never enter their critical section

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot61

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

false false

• let rf be the communication
for such a trace (encoded in
Γrf)

• the invariant inside critical
sections must be false

• tests (Rf0≠0) and (Rf1≠0)
must be false (written xxx)

(2) Both processes never enter their critical section

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot62

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

false false

• let rf be the communication
for such a trace (encoded in
Γrf)

• the invariant inside critical
sections must be false

• tests (Rf0≠0) and (Rf1≠0)
must be false (written xxx)

• so read of Rf0 and Rf1 is 0
from a reachable write

rfrf

(2) Both processes never enter their critical section

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot63

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

false false

• let rf be the communication
for such a trace (encoded in
Γrf)

• the invariant inside critical
sections must be false

• tests (Rf0≠0) and (Rf1≠0)
must be false (written xxx)

• so read of Rf0 and Rf1 is 0
from a reachable write

• impossible for Rf1 so loop 23
—24 is never exited 
 
⟹ we are in case (3), P1
stuck in spin loop

✘

rf

✘

rf

✔

(2) Both processes never enter their critical section

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot64

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

false

false

• let rf be the communication
for such a trace (encoded in
Γrf)

• the invariant after 25: must be
false

• read of latch1 in 23: must be
a 0

• only possibility if from 25:
• A contradiction since 25: is

unreachable

(3) Process P1 stuck in spin loop (no hypothesis on P0)

✘

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot65

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

• let rf be the communication
for such a trace (encoded in
Γrf)

• the invariant after 5: must be
false so P0 never enters its
critical section

• read of latch0 in 3: must be
a 0, with 2 possibilities

• cannot be from write at 5:
which is unreachable

• so is from initial write 0:
• but P1 enters its critical

section (otherwise see case 1)
• so w[] latch0 1 will be

executed later in co order
• so all 3:r[] R10 latch0 are

fr to all 30: w[] latch0 1
• by fairness of communications,

this write of 1 to latch0 will
eventually be read at 3:

• in contradiction with always
reading 0

(4) Process P0 starves in spin loop, no hypothesis on P1

false

✘

✔ co

fr

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

(4) Process P0 starves in spin loop, P1 does not

66

0: w latch0 0

3: r latch0 0

3: r latch0 0
……

po-loc

rf

co

fre

3: r latch0 0

3: r latch0
……

po-loc

……

30: w latch0 1
……

……

……
……

po-loc

One or more writes of 1 co-after
the initial write of 0 to latch0 must

eventually be read by one of the
infinitely many reads of latch0

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Communication fairness hypothesis(*)

• All writes eventually hit the memory:

• If, at a cut of the execution, all the processes
infinitely often write the same value υ to a shared

variable x and only that value υ

• and from a later cut point of that execution, a
process infinitely often repeats reads to that variable
x

• then the reads will end up reading that value υ

67

(*) The SPARC Architecture Manual, Version 8, Section K2, p. 283: ``if one processor does an S , and another processor repeatedly does L ’s to the same location, then
there is an L that will be after the S’’.

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot68

(5) Process P1 never enters its CS
• let rf be the communication

for such a trace (encoded in
Γrf)

• P1 exits loop 23:–24: (else see
cases (1) or (3))

• must read Rl1 = 1 from 0: or
10:

• read of Rf1 at 26: must be 0
• only possibility is from 28:
• impossible from unreachable

code

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {true} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 30: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

false

✘

rf

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot69

(5) Process P0 leaves spin loop but always fails entering its CS

• let rf be the communication for
such a trace (encoded in Γrf)

• loop 2:–4: exited
• read of Rl0 = 1 at 3: is from 30:
• invariant false in critical section

8:–11:
• read of Rf0 = 0 at 6: is from 0:

(8: not reachable)

false

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true} 21:{true}

do {i} do {ℓ}
2: {Γrf} 22: {true}

do {ji} do {mℓ}
3: {true} 23: {true}

r[] Rl0 latch0 {! L0iji} r[] Rl1 latch1 {! L1ℓmℓ
}

4: {Rl0 = L0iji ∧
(r0Rl0iji [Γrf] ∨ r1Rl0iji [Γrf])}

24: {Rl1 = L1ℓmℓ
∧

(r0Rl1ℓmℓ
[Γrf] ∨ r1Rl1ℓmℓ

[Γrf])}
while (Rl0=0) {ki} while (Rl1=0) {nℓ}

5: {r1Rl0iki [Γrf]} 25: {r1Rl1ℓnℓ
[Γrf]}

w[] latch0 0 w[] latch1 0

{r1Rl0iki [Γrf]}
f[fdep] {3} {6}

6: {r1Rl0iki [Γrf]} 26: {r1Rl1ℓnℓ
[Γrf]}

r[] Rf0 flag0 {! F0i} r[] Rf1 flag1 {! F1ℓ}
7: {r1Rl0iki [Γrf] ∧ Rf0 = F0i ∧

(r0Rf0i[Γrf] ∨ r1Rf0i[Γrf])}
27: {r1Rl1ℓnℓ

[Γrf] ∧ Rf1 = F1ℓ ∧
(r0Rf1ℓ[Γrf] ∨ r1Rf1ℓ[Γrf])}

if (Rf0 ̸=0) then if (Rf1 ̸=0) then

8: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 28: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

(* critical section *) (* critical section *)
w[] flag0 0 w[] flag1 0

9: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 29: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

w[] flag1 1 w[] flag0 1

10: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

f[flw] {29} {30}
30: {r1Rl1ℓnℓ

[Γrf] ∧ r1Rf1ℓ[Γrf]}
w[] latch1 1 w[] latch0 1

11: {r1Rl0iki [Γrf] ∧ r1Rf0i[Γrf]} 31: {r1Rl1ℓnℓ
[Γrf] ∧ r1Rf1ℓ[Γrf]}

fi fi
12: {true} 32: {true}

while true while true
13:{false} 33:{false}

10

rf

 fre

fences

fences

withco
let l-fencerel(S) =
 ((po&(_*S));po)&fromto(S)
let Fdep = F & tag2events('fdep)
let deps = l-fencerel(Fdep) & (R*_)
let Flw = F & tag2events('flw)
let flw = l-fencerel(Flw)
let fences = deps | flw
let fre = (rf^-1;co) & ext
irreflexive fre;fences;rfe;fences

co

In TSO there is no need for
a fence since it is MP. For
weaker than PSO, a fence is
needed.

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot70

(6) Both processes eventually starve in spin loop
• let rf be the communication

for such a trace (encoded in
Γrf)

• so latch0 is always 0 and
latch1 is always 0

• so latch0 in 23 is always
read from 25:

• so 10: w latch1 1 was co-
before (since otherwise by
the communication hypothesis
it would be eventually read)

• and 3: Rl0 latch0 0 is
from 0: or 5:

• so 30: w latch0 1 is co-
before them (since otherwise
by the communication
hypothesis it would be
eventually read)

• impossible by fences
• irreflexive co; bar; co; bar

Case 7 : Sf-P0-2

{0: w latch0 0; w latch1 1;

w flag0 0; w flag1 1;}
...
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0
6: r Rf0 flag0 1 26: r Rf1 flag1 1
8: (* critical section *) 28: (* critical section *)

w flag0 0 w flag1 0

f[flw] {25:} {29:}
9: w flag1 1 29: w flag0 1

f[bar] {5:} {10:}
10: w latch1 1 30: w latch0 1
...
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0
6: r Rf0 flag0 1 26: r Rf1 flag1 1
8: (* critical section *) 28: (* critical section *)

w flag0 0 w flag1 0

f[bar] {25:} {29:}
9: w flag1 1 29: w flag0 1

f[bar] {5:} {10:}
10: w latch1 1 30: w latch0 1
...
3: r Rl0 latch0 0 23: r Rl1 latch1 0
3: r Rl0 latch0 0 23: r Rl1 latch1 0
...

bar bar

co
f[bar]

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot71

(7) Eventually, P0 starves in spin loop, P1 never enters its CS

• P1 does not eventually
starves in spin loop
(otherwise case 6)

• case P1 eventually never
starves and never enters its
critical section

• P1 then does a last write of
1 to latch0

• P0 eventually makes
infinitely many reads of
latch0

• A contradiction (since
otherwise by the
communication hypothesis,
this 1 would be eventually
read)

Process
P0

enters &
exits CS
multiple
times

then,
never
exits
the

waiting
loop

last
CS

entr-
ance

{0: w latch0 0; w latch1 1;

w flag0 0; w flag1 1;}
...
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0
6: r Rf0 flag0 1 26: r Rf1 flag1 1
8: (* critical section *) 28: (* critical section *)

w flag0 0 w[] flag1 0
9: w flag1 1 29: w[] flag0 1
10: w latch1 1 30 w[] latch0 1
...
3: r Rl0 latch0 1 23: r Rl1 latch1 1
5: w latch0 0 25: w latch1 0
6: r Rf0 flag0 1 26: r Rf1 flag1 0
8: (* critical section *)

w flag0 0 23: r Rl1 latch1 1
9: w flag1 1 25: w latch1 0
10: w latch1 1 26: r Rf1 flag1 0
... ...
3: r Rl0 latch0 0
3: r Rl0 latch0 0
3: r Rl0 latch0 0
... ...

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

symmetric of (7)

72

(8) Eventually, P1 starves in spin loop, P0 never enters its CS

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot73

(9) P0 and P1 always leave spin loop and never enter their CS
• P0 and P1 eventually never

starve and never enter their
critical sections

• They both have a last entrance
in their critical sections

• This last write of 1 to the
latches will, by communication
fairness, eventually reach the
memory

• Then we only have infinitely
many writes of 0 to the latches

• So the read of the latches in the
spin loops will eventually always
read 0

• So from then on, by
communication fairness, all the
reads will be from 0, in reads of
the latch will be zero

• In contradiction with the fact
that the spin loop is always
exited

• The barrier prevents infinitely
postponing the write 0 actions

…
rf

{0: w[] latch0 0; w[] latch1 1;

w[] flag0 0; w[] flag1 1;}
...
3: r[] Rl0 latch0 1 23: r[] Rl1 latch1 1
5: w[] latch0 0 25: w[] latch1 0
6: r[] Rf0 flag0 1 26: r[] Rf1 flag1 1
8: (* critical section *) 28: (* critical section *)

w[] flag0 0 w[] flag1 0
9: w[] flag1 1 29: w[] flag0 1
10: w[] latch1 1 30 w[] latch0 1
...
3: r Rl0 latch0 1 23: r[] Rl1 latch1 1
5: w[] latch0 0 25: w[] latch1 0
6: r[] Rf0 flag0 1 26: r[] Rf1 flag1 0
8: (* critical section *) 28: (* critical section *)

w[] flag0 0 23: w[] flag1 0
9: w[] flag1 1 29: w[] flag0 1
10: w[] latch1 1 30: w[] latch0 1
...
3: r[] Rl0 latch0 1 23: r[] Rl1 latch1 1
5: w[] latch0 0 25: w[] latch1 0
6: r[] Rf0 flag0 0 26: r[] Rf1 flag1 0
...
3: r[] Rl0 latch0 1 23: r[] Rl1 latch1 1
5: w[] latch0 0 25: w[] latch1 0
6: r[] Rf0 flag0 0 26: r[] Rf1 flag1 0
...
3: r[] Rl0 latch0 1 23: r[] Rl1 latch1 1
5: w[] latch0 0 25: w[] latch1 0
6: r[] Rf0 flag0 0 26: r[] Rf1 flag1 0
...

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Conclusion

74

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Conclusion
• The proof method is parameterized by consistency

hypotheses, expressed in

• Invariance form: Scom

• Consistency form: Hcom (e.g. in cat)

• Program not logic/architecture/consistency model
dependent (hence the proof is portable)

• Can reason on arbitrary subsets of anarchic executions
(hence flexible e.g. non-starvation)

75

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Proposed design methodology
1. Design the algorithm A and its specification Sinv (e.g. in

the sequential consistency model of parallelism)

2. Consider the anarchic semantics of algorithm A
3. Add communication specifications Scom to restrict

anarchic communications and ensure the correctness of
A with respect to specification Sinv

4. Do the invariance proof under WCM with Scom

5. Infer Hcom (in cat) from invariant Scom

6. Prove that the machine memory model M in cat implies
Hcm

76

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Challenges
• Modern machines have complex memory models

⇒ portability has a price (refencing)

⇒ debugging is very hard/quasi-impossible

⇒ proofs are much harder than with sequential
consistency (but still feasible?, mechanically?)

⇒ static analysis parameterized by a WCM will be a
challenge

⇒ but we can start with Scom

77

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

Thanks
• Patrick Cousot thanks Luc Maranget for his precious help

at Dagstuhl on the non-starvation part.

78

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016 © P. Cousot

The End, Thank You

79

