The hierarchy of analytic semantics of weakly consistent parallelism

Jade Alglave (MSR-Cambridge, UCL, UK)
Patrick Cousot (NYU, Emer. ENS, PSL)

IMDEA seminar
Madrid
Tuesday, May 24th, 2016 — 11:00 AM
Analytic semantics
Weak consistency models (WCM)

- **Sequential consistency:**
 reads $r(p, x)$ are *implicitly coordinated* with writes $w(q, x)$

- **WCM:**
 No implicit coordination (depends on architecture, program dependencies, and explicit fences)

\[
\begin{align*}
 &w(q, x) \\
 \hline
 &r(p, x) \\
 &rf(w(q, x), r(p, x))
\end{align*}
\]
Analytic semantic specification

- **Anarchic semantics:** describes computations, no constraints on communications

- **cat specification (Jade Alglave & Luc Maranget):** imposes architecture-dependent communication constraints

- **Hierarchy of anarchic semantics:** many different styles to describe the same computations (e.g. stateless/stateful, interleaved versus true parallelism)
Example: load buffer (LB)

• Program: \{ x = 0; y = 0; \}

- P0 || P1 ;
- r[] r1 x | r[] r2 y ;
- w[] y 1 | w[] x 1 ;
- exists(0:r1=1 \&\& 1:r2=1)

• Example of execution trace \(t \in S^\perp[[P]] \):

\[
\begin{align*}
t &= w(\text{start}, x, 0) \; w(\text{start}, y, 0) \; r(P0, x, 1) \; \text{rf}[w(P1, x, 1), r(P0, x, 1)] \; w(P0, y, 1) \; r(P1, y, 1) \\
&\quad \; w(P1, x, 1) \; \text{rf}[w(P0, y, 1), r(P1, y, 1)] \; r(\text{finish}, x) \; \text{rf}[w(P1, x, 1), r(\text{finish}, x, 1)] \\
&\quad \; r(\text{finish}, y, 1) \; \text{rf}[w(P0, y, 1), r(\text{finish}, y, 1)]
\end{align*}
\]

• Abstraction to cat candidate execution \(\alpha_\Xi(t) \):

- P0
 - a: Rx=1
 - b: Wy=1
- P1
 - c: Ry=1
 - d: Wx=1

J. Alglave & P. Cousot, The hierarchy of analytic semantics of weakly consistent parallelism, IMDEA Seminar, Madrid, 24 May 2016
Example: load buffer (LB), cont’d

- cat specification:

\[\text{acyclic (po | rf)}^+ \]

The cat semantics rejects this execution \(\alpha_\Xi(t) : \)

\[\text{\#\#[cat]} \ (\alpha_\Xi(t)) = \text{false} \]

- P₀
 - a: Rx=1
 - po

- P₁
 - b: Wy=1
 - rf
 - c: Ry=1
 - po
 - d: Wx=1

- The herd7 tool: [virginia.cs.ucl.ac.uk/herd/]
The WCM semantics

- Abstraction to a candidate execution:
 \[\alpha_{\Xi}(t) \triangleq \langle \alpha_e(t), \alpha_{po}(t), \alpha_{rf}(t), \alpha_{iw}(t), \alpha_{fw}(t) \rangle \]
 \[\alpha_{\Xi}(S) \triangleq \{ \langle t, \alpha_{\Xi}(t) \rangle \mid t \in S \} \]

- The cat semantics:
 \[\alpha_{\otimes}[\text{cat}](S) \triangleq \{ t \mid \langle t, \Xi \rangle \in S \land \alpha_{\otimes}[\text{cat}](\Xi) \} \]

- The WCM semantics:
 \[\alpha_{\otimes}[\text{cat}] \circ \alpha_{\Xi}(S[P]) \]

GC:
\[\langle \circ (\mathcal{C}^{+\infty}), \square \rangle \xrightarrow{\gamma_{\Xi}} \langle \circ (\mathcal{C}^{+\infty} \times \Xi), \square \rangle \xrightarrow{\gamma_{\otimes}[\text{cat}]} \langle \circ (\mathcal{C}^{+\infty}), \square \rangle \]
Definition of the anarchic semantics
Axiomatic parameterized definition of the anarchic semantics

- The semantics $S^\perp[P]$ is a finite/infinite sequence of interleaved events of processes satisfying well-formedness conditions.

Events:

- local computations and tests on registers
- start writing a shared variable $w(q, x)$
- start reading of shared variable $r(p, x)$
- communication event $rf(w(q, x), r(p, x))$
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:

 - uniqueness of events

 $\forall t \in S . \forall t_1, t_2 \in C^*, t_3 \in C^{*\infty} . \forall e, e' \in C . (t = t_1 e t_2 e' t_3) \implies (e \neq e') . \quad (Wf_1(S))$

 - traces start with an initialization of the shared variables

 $t = w(\text{start}, x, 0) w(\text{start}, y, 0) r(\text{P0}, x, 1) r(\text{P1}, y, 1) r(\text{P0}, x, 1) r(\text{P1}, y, 1) w(\text{P0}, x, 1) w(\text{P1}, x, 1) r(\text{P0}, y, 1) r(\text{P1}, y, 1) r(\text{finish}, y, 1) r(\text{finish}, x, 1) r(\text{finish}, x, 1) r(\text{finish}, y, 1) r(\text{finish}, y, 1)$
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics \(S \):
 - finite traces are maximal

\[
\forall t \in S \cap \mathcal{E}^+. \not\exists t' \in \mathcal{E}^{+\infty}. t \Join t' \in S. \quad (Wf_3(S))
\]

- the final value of shared variables in finite traces is known thanks to a final read

\[
t = w(\text{start}, x, 0) \Join w(\text{start}, y, 0) \Join r(\text{P0}, x, 1) \Join [w(\text{P1}, x, 1), r(\text{P0}, x, 1)] \Join w(\text{P0}, y, 1) \Join r(\text{P1}, y, 1)
\]

\[
\Join w(\text{P1}, x, 1) \Join [w(\text{P0}, y, 1), r(\text{P1}, y, 1)] \Join r(\text{finish}, x) \Join [w(\text{P1}, x, 1), r(\text{finish}, x, 1)]
\]

\[
\Join r(\text{finish}, y, 1) \Join [w(\text{P0}, y, 1), r(\text{finish}, y, 1)]
\]
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:
 - **read events must be satisfied by a unique communication event**

\[
\forall t \in S . \forall t_1 \in E^*, t_2 \in E^{*\infty} . (t = t_1 \ r(p, x) t_2) \implies \\
(\exists t_3 \in E^*, t_4 \in E^{*\infty} . t = t_3 \ r_f[w(q, x), r(p, x)] t_4) .
\]

\[
\forall t \in S . \forall t_1, t_2 \in E^*, t_3 \in E^{*\infty} . \\
(t \neq t_1 \ r_f[w(q, x), r(p, x)] t_2 \ r_f[w'(q', x), r(p, x)] t_3) .
\]
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:
 - communications cannot be spontaneous (must be originated by a read and a write)

\[
\forall t \in S. \forall t_1 \in \mathcal{C}^*, t_2 \in \mathcal{C}^{*\infty}. \ (t = t_1 \text{rf}[w(q,x), r(p,x)] t_2) \implies \\
(\exists t_3 \in \mathcal{C}^*, t_4 \in \mathcal{C}^{*\infty}. \ t = t_3 w(q,x) t_4 \land \exists t_5 \in \mathcal{C}^*, t_6 \in \mathcal{C}^{*\infty}. \ t = t_5 r(p,x) t_6) .
\]
Axiomatic parameterized definition of the anarchic semantics

- The language:
 - Programs: \(\text{initialisation} \ [P_1 \| \ldots \| P_n] \text{ finalisation} \)

- Actions (labelled \(\ell \in \mathbb{L}(p) \)):
 - \(a ::= m \) imperative actions
 - \(r := e \) assignment
 - \(r := x \) read of shared variable \(x \)
 - \(x := e \) write of shared variable \(x \)
 - \(b | \neg b \) conditional actions

- Next action: \(\text{next}(p, \ell) \) \(\text{nextt}(p, \ell) \) \(\text{nextf}(p, \ell) \) for tests

J. Alglave & P. Cousot, The hierarchy of analytic semantics of weakly consistent parallelism, IMDEA Seminar, Madrid, 24 May 2016
Axiomatic parameterized definition of the anarchic semantics

- Example of language-dependent well-formedness condition: computation (markers: skip, fence, begin/end of rmw)

\[\forall p \in \Pi \ . \ \forall k \in [1, 1 + |\tau|] \ . \ \forall \ell \in \mathbb{L}(p) \ . \ \exists \theta \in \Psi(p) \ . \ \bar{\tau}_k = m(\langle p, \ell, m, \theta \rangle) \]

\[\implies (\ell \in N^p(\tau, k) \land \text{action}(p, \ell) = m) . \]

(unique) event stamp \(\theta \)

control of process \(p \) is at label \(\ell \)

action of process \(p \) is at label \(\ell \) is the marker action \(m \)
Axiomatic parameterized definition of the anarchic semantics

- Example of language-dependent well-formedness condition: computation (local variable assignment)

\[
\forall p \in \mathcal{P} . \forall k \in [1, 1 + |\tau|] . \forall \ell \in \mathbb{L}(p) . \forall v \in \mathcal{D} . \\
(\exists \theta \in \mathcal{P}(p) . \bar{\tau}_k = a(\langle p, \ell, r := e, \theta \rangle, v)) \\
\implies (\ell \in \mathbb{N}^p(\tau, k) \land \text{action}(p, \ell) = r := e \land v = E_p[e](\tau, k - 1)) .
\]

- Control of process \(p \) is at label \(\ell \)
- Action of process \(p \) is at label \(\ell \) is a register assignment
- Value \(v \) of \(e \) is evaluated by past-travel
Media variables

- With WCM there is no notion of “the current value of shared variable \(x \)”

- At a given time each process may read a different value of the shared variable \(x \) (maybe guessed or unknown since a read may read from a future write)

- We use media variables (to record the values communicated between a write and read, whether the two accesses are on the same process or not)
Axiomatic parameterized definition of the anarchic semantics

Example: communication

- a read event is initiated by a read action:

 \[
 \forall p \in \Pi . \forall k \in]1, 1 + |\tau|[. \forall \ell \in L(p) . \\
 (\exists \theta \in \mathcal{P}(p) . (\overline{\tau}_k = r(\langle p, \ell, \mathbf{r} := x, \theta \rangle, x\theta))) \\
 \implies (\ell \in N^p(\tau, k) \land \text{action}(p, \ell) = \mathbf{r} := x) .
 \]

- a read must read-from (rf) a write (weak fairness):

 \[
 \forall p \in \Pi . \forall i \in]1, 1 + |\tau|[. \forall r \in \mathcal{Rf}(p) . \\
 (\overline{\tau}_i = r) \implies (\exists j \in]1, 1 + |\tau|[. \exists w \in \mathcal{W} . \overline{\tau}_j = \text{rf}[w, r]) .
 \]
Axiomatic parameterized definition of the anarchic semantics

- **Predictive evaluation** of media variables:

\[
V^p_{(32)}[x_\theta](\tau, k) \triangleq v \text{ where } \exists i \in [1, 1 + |\tau|] . (\tau_i = r(\langle p, \ell, r := x, \theta \rangle, x_\theta)) \land \\
\exists j \in [1, 1 + |\tau|] . (\tau_j = rf[\nu(\langle p', \ell', x := e', \theta' \rangle, v), \tau_i])
\]

- **Local past-travel evaluation** of an expression:

\[
E^p_{(30)}[r](\tau, k) \triangleq v \quad \text{if } k > 1 \land (\tau_k = a(\langle p, \ell, r := e, \theta \rangle, v)) \lor \\
(\tau_k = r(\langle p, \ell, r := x, \theta \rangle, x_\theta) \land V^p[\cdot]\theta)(\tau, k) = v)
\]

\[
E^p_{(30)}[r](\tau, 1) \triangleq l[0]
\]

\[
E^p_{(30)}[r](\tau, k) \triangleq E^p_{(30)}[r](\tau, k - 1)
\]

i.e. \(\tau_1 = \epsilon_{\text{start}} \) by Wf_{15}(\tau) otherwise.
Abstractions of the anarchic semantics
Abstractions

- **Anarchic semantics:**

\[S^\perp [P] \triangleq \lambda \langle B, \text{sat, } D, I, \mathcal{G}, V, E, N \rangle \cdot \{ \tau \in \mathcal{T}[P] | \subseteq | Wf_1 (\tau) \wedge \ldots \wedge Wf_{29}(\tau) \} \]

- **Examples of abstractions:**
 - Choose data (e.g. ground values, uninterpreted symbolic expressions, interpreted symbolic expressions i.e. “symbolic guess”)
 - Bind parameters (e.g. how expressions are evaluated)
 - ...

 parameters of the semantics
 trace well-formedness conditions
Binding a parameter of the semantics

- The abstraction

\[\alpha_a(f) \overset{\text{def}}{=} f(a) \]

\[\langle \wp(A, B, \ldots) \rightarrow \wp(R), \subseteq \rangle \overset{\alpha_a}{\leftrightarrow} \langle \wp(B, \ldots) \rightarrow \wp(R), \subseteq \rangle \]

\[\langle \wp(A, B, \ldots) \rightarrow \wp(R), \subseteq \rangle \overset{\gamma_a}{\leftrightarrow} \langle \wp(B, \ldots) \rightarrow \wp(R), \subseteq \rangle \]
The hierarchy of interleaved semantics

![Diagram of the hierarchy of semantics]

- **WCM**
- **valued**
- **symbolic interpreted**
- **symbolic uninterpreted**
- **data generic**
- **locally sequential**
- **unspecified locality**

The diagram illustrates the relationships between different levels of semantics, with each level representing a specific property or constraint. The hierarchy is organized from the most restrictive at the top (inscrutable) to the most general at the bottom (predictive).
True parallelism with local communications

• Extract from interleaved executions:
 • The subtrace of each process keeping communications in the process that read

⇒ no more global time between processes

⇒ local time between local actions and communications (a read can still tell when it is satisfied by which write)
True parallelism with local communications

- Interleaved execution:
 \[t = w(\text{start}, x, 0) \ w(\text{start}, y, 0) \ r(\text{P0}, x, 1) \ r([w(\text{P1}, x, 1), r(\text{P0}, x, 1)]) \ w(\text{P0}, y, 1) \ r(\text{P1}, y, 1) \]

- Parallel executions with interleaved communications:
 \[t = \text{Initialization:} \quad w(\text{start}, x, 0) \ w(\text{start}, y, 0) \]
 \[\text{P0:} \quad r(\text{P0}, x, 1) \ r([w(\text{P1}, x, 1), r(\text{P0}, x, 1)]) \ w(\text{P0}, y, 1) \]
 \[\text{P1:} \quad r(\text{P1}, y, 1) \ w(\text{P1}, x, 1) \ r([w(\text{P0}, y, 1), r(\text{P1}, y, 1)]) \]
 \[\text{Finalization:} \quad r(\text{finish}, x) \ r([w(\text{P1}, x, 1), r(\text{finish}, x, 1)]) \]
 \[r(\text{finish}, y, 1) \ r([w(\text{P0}, y, 1), r(\text{finish}, y, 1)]) \]
True parallelism of computations and communications

- Extract from interleaved executions:
 - The subtrace of each process (sequential execution of actions)
 - The rf communication relation (interactions between processes)

$$\Rightarrow$$ no more global time between processes

$$\Rightarrow$$ no more global/local time for communications
True parallelism with separate communications

- Parallel executions with interleaved communications:

 Initialization:
 \[w(\text{start}, x, 0) \quad w(\text{start}, y, 0)\]

 P0:
 \[r(P0, x, 1) \quad w(P0, y, 1)\]

 P1:
 \[r(P1, y, 1) \quad w(P1, x, 1)\]

 Finalization:
 \[r(\text{finish}, x) \quad r(\text{finish}, y, 1)\]

 Communications:
 \[
 \{ \text{tf}[w(P1, x, 1), r(P0, x, 1)], \text{tf}[w(P0, y, 1), r(P1, y, 1)] \}
 \]
True parallelism with separate communications

- This is the semantics used by the herd7 tool:

\[
\begin{align*}
P_0 & \quad P_1 \\
event & \quad a: \ Rx=1 \quad c: \ Ry=1 \\
local\ time & \quad po \quad rf \quad po \\
event & \quad b: \ Wy=1 \quad d: \ Wx=1
\end{align*}
\]

+ interpreted symbolic expressions i.e. “symbolic guess”
The true parallelism hierarchy

separated communication \downarrow \quad \text{true parallelism} \downarrow \quad \text{per process}

WCM

\alpha_{\text{cat}} \circ \alpha_\Xi(S[P])

\tilde{\alpha}_{gp}

interleaved communication

locally sequential

free \uparrow \quad \text{eager} \quad \text{lazy}

J. Alglave & P. Cousot, The hierarchy of analytic semantics of weakly consistent parallelism, IMDEA Seminar, Madrid, 24 May 2016
States

- At each point in a trace, the state abstracts the past computation history up to that point.
- Example: classical environment (assigning values to register at each point k of the trace):

\[
\rho^p(\tau, k) \triangleq \lambda r \in \mathbb{R}(p) \cdot E^p[r](\tau, k)
\]

\[
\nu^p(\tau, k) \triangleq \lambda x_\theta \cdot V_{(32)}^p[x_\theta](\tau, k)
\]
Prefixes, transitions, . . .

• Abstract traces by their prefixes:

\[\bar{\alpha}(S) \triangleq \bigcup \{ \bar{\alpha}(\tau) \mid \tau \in S \} \]
\[\bar{\alpha}(\tau) \triangleq \{ \tau[j] \mid j \in [1, 1 + |\tau|] \} \]
\[\tau[j] \triangleq \langle \overleftarrow{\tau_i} \rightarrow \tau_i \mid i \in [1, 1 + j] \rangle \]

• and transitions: extract transitions from traces

\[\Rightarrow \text{communication fairness is lost, inexact abstraction,} \]
\[\Rightarrow \text{add fairness condition} \]
\[\Rightarrow \text{impossible to implement with a scheduler (≠ process fairness)} \]
Effect of the cat specification on the hierarchy
Exactness and cat preservation
The cat abstraction

- The same cat specification $\alpha \llbracket \text{cat} \rrbracket$ applies equally to any concurrent execution abstraction $\alpha \Xi$ of any interleaved/truly parallel semantics in the hierarchy.

- The appropriate level of abstraction to specify WCM:
 - No states, only marker (e.g. fence), r, w, $rf(w,r)$ events
 - No values in events
 - No global time (only po order of events per process)
 - Time of communications forgotten (only rf of who communicates with whom)
Conclusion
Conclusion

• **Analytic semantics**: a new style of semantics

• The hierarchy of **anarchic semantics** describes the same computations and potential communications in very different styles

• The **cat semantics** restricts communications to a machine/network architecture in the same way for all semantics in the hierarchy

• This idea of **parameterized semantics at various levels of abstraction** is useful for

 • Verification
 • Static analysis
The End