Grammar Semantics, Analysis, and Parsing
by Abstract Interpretation

Patrick Cousot

Courant Institute of Mathematical Sciencesl, CNRS, Ecole normale supérieur62, and INRIAS

Radhia Cousot

CNRS, Ecole normale supérieure 2, and INRIA®

Abstract

We study abstract interpretations of a fixpoint protoderivation semantics defining the
maximal derivations of a transitional semantics of context-free grammars akin to pushdown
automata. The result is a hierarchy of bottom-up or top-down semantics refining the
classical equational and derivational language semantics and including Knuth grammar
problems, classical grammar flow analysis algorithms, and parsing algorithms.

Keywords: Abstract interpretation, Context-free grammar, Bottom-up semantics,
Top-down semantics, Abstract semantics, Grammar flow analysis, Grammar problem,
Parsing.

1. Introduction

Grammar flow problems consist in computing a function of the [proto]language
generated by the grammar for each nonterminal. This includes Knuth’s grammar problem
[1, 2], grammar decision problems such as emptiness and finiteness [3], and classical
compilation algorithms such as FIRST and FoLLOw [4]. For the later case, Ulrich Méncke
and Reinhard Wilhelm introduced grammar flow analysis to solve computation problems
over context-free grammars [5, 6, 7], [8, Sect. 8.2.4]. The idea is to provide two fixpoint
algorithm schemata, one for bottom-up grammar flow analysis and one for top-down
grammar flow analysis which can be instantiated with different parameters to get classical
iterative algorithms such as FIRST and FoLLoOw.

More generally, we show that grammar flow algorithms are abstract interpretations
[9] of a hierarchy of bottom-up or top-down grammar semantics refining the classical
(proto-)language semantics.

1 New York University, 251 Mercer Street, New York, N.Y. 10012.
245 rue d’Ulm, 75230 Paris Cedex 05, France.
3 Project-team “Abstraction” of INRIA common to CNRS and Ecole normale supérieure.

Preprint submitted to Elsevier May 23, 2011

Then, we apply this comprehensive abstract-interpretation-based approach to the
systematic derivation of parsing algorithms.

The mathematical background and the necessary elements of abstract interpretation
are reminded in the Appendix A.

2. Languages

Let A be an alphabet, that is a finite set of letters. A sentence o € A* over the
alphabet A of length |o]| £ n > 0 is a possibly empty finite sequence o109 ...0, of
letters 01,09, ...,0, € A. For n = 0, the empty sentence is denoted € of length |e| = 0.
A language X over the alphabet A is a set of sentences X € p(A*). We represent
concatenation by juxtaposition. It is extended to languages as ©Y = {o0’ |0 € L A0’ €
Y}, For brevity, o denotes the language {o} so that we can write X%’ for X{c}%’. The
junction of languages is X § %' = {0102...0m0%...0 | 0109...0m € LA T,0h.. .0, €
S Aom = ot} Givenaset 2 = {[, | i € A}yU{], | i € A} of matching parentheses
and an alphabet A, the Dyck language Dgp 4 C (P U A)* over & and A is the set of
well-parenthesized sentences over ZU.A. In any sentence o € D, 4 the number of opening
parentheses [, for i € A is equal to the number of matching closing parentheses], while in
any prefix of o there are more opening parentheses than closing parentheses. It is pure if A
= @. The parenthesized language over 2 and Ais P 4 = {[,0], | i € ANo € Do s\ {e}}.

3. Context-free Grammars

A context-free grammar [10, 11] is a quadruple G = (7, A4, S, #) where 7 is the
alphabet of terminals, 4 such that 7 N .4 = @ is the alphabet of nonterminals, S € N
is the start symbol (or aziom) and #Z € (A x ¥*) is the finite set of rules written
A — o where the lefthand side A € A4 is a nonterminal and the righthand side o € ¥™* is
a possibly empty sentence over the vocabulary ¥ = .7 U 4. By convention, the empty
sentence € does not belong to the vocabulary, e & 7.

Example 1 ({a}, {4}, A, {A — AA, A — a}) is a grammar. o

4. Transitional Semantics of Context-free Grammars

Pushdown automata (PDA) are a classical language recognition mechanism first
introduced by Oettinger in 1961 [12]*. They are essentially finite state automata that can
use an unbounded stack as auxiliary memory. Afterwards, Chomsky [19], Evey [20] and
Schiitzenberger [21] showed that context-free grammars and PDA are equally expressive
[22, 23, 24] [8, Sec. 8.2]. Inspired by PDA, we define the transitional semantics of grammars
by labelled transition systems where states are stacks, labels encode the structure of
sentences and transitions are small steps in the recursive derivation of sentences.

4An anonymous referee pointed out that this invention was preceeded by [13], [14], and [15, 16], see
(17, 18].

4.1. Stacks

Given a grammar G = (7, A, S, &), we let stacks w € S = (%" U .#)* be sentences
over rule states #* = {[A — 0.0'] | A — o0’ € Z} specifying the state of the derivation
(o has been derived while ¢’ is still to be derived) and markers .#Z = {+, -} where
(resp.) marks the beginning (resp. the end) of a sentence. The height of a stack w is its
length |w|.

Example 2 A stack w for the grammar 4
A— AA A — aisH[A — AAA — AA][A
— a.]. It records the ancestors in an infix [A— A4
traversal of a parse tree, as shown opposite. [A — A.A]
[A — a]

4.2. Labels a | .
We let 2 = 0 U% be the set of parentheses where 0 = {(A| A € A} is the set of
opening parentheses while € = {A) | A € A4} is the set of closing parentheses. We let

labels ¢ € & be parentheses or terminals so that £ = 2 U 7. A pair of parentheses
(A...A) delimits the structure of a sentence deriving from nonterminal A € .4 while
terminals describe elements of the sentence.

4.3. Labelled Transition System
Given a grammar G = (7, A, S, #), we define a labelled transition system S'[G]

= (S, &, —, F) where the initial state is - and the labelled transition relation L>,
e Zis

LN] AsoeR (1)

w[A = 0.a0’] 2 w[A — ca.o’], A= oac’ € X (2)
w[A = 0.Bo'| &5 m[A 5 0B.o'|[B], A 0Bo' e RAB sceZ (3)
wlA = o] 2w, Asoe. (4)

Intuitively, the transition system S‘[G] generates the sentences of the language de-
scribed by G by recursive infix traversal of their derivation tree using a stack to eliminate
recursion. More precisely, (1) (resp. (3)) starts generating a terminal sentence for the
nonterminal A (resp. B), (2) generates a terminal a, and (4) finishes the generation of a
terminal sentence for the nonterminal A.

If we only want derivations from the grammar start symbol S then we replace transition
rule (1) by

FB S50, S—ooe. (1)

5. Maximal Derivations

The maximal derivation semantics of a grammar is the set of all possible maximal
derivations for this grammar where a maximal derivation is a finite labelled trace of
maximal length generated by the transitional semantics.

3

Example 3 The maximal derivation for the sentence a of the grammar ({a}, {A}, A,

{A— AAJA = a})isk “, [A =] 2 44— a) Ay § while for the sentence aa

itis - 44 .44 Y 44 5 A4 5] S A - AAA - a] 24

SAA YN A S AANA S) S H A = AAJA < a] 2 4 A - aa] A

0

5.1. Traces
Formally a trace 6 € O[n] of length |§] = n+ 1, n > 0, has the form 6 = w Loy =

b o . 5 .
. Wn_1 —— w, whence it is a pair § = (8, 6) where § € [0,n] — S is a nonempty

finite sequence of stacks 0; = wy, 1 =0,...,n and 0 €[0,n— 1]+ £ is a finite sequence

of labels 0; = ¢;, 7 =0,...,n — 1. Traces # € © are nonempty, finite, of any length so
A

o= Un>o O[n].

Again concatenation is denoted by juxtaposition and extended to sets. We respectively
identify a single state w and a transition w £, @ with the corresponding traces

containing only the single state @ and the transition w Lo By abuse of notation, a

? lo— . . 4
trace @y —= w1 ... Wn_1 —— w0, is also understood as the concatenation of wg, —,
lo L
Ty v eey W1, —1>, wy, which, informally, matches the trace pattern o ... Sn_1@nSn
. £ Ly . .
by letting ¢o = @wp —=, ..., Sp1 = Wn—1 224 and sn = €. We also need the junction of
sets of traces, as follows
;A ¢ o 14 Y, / ’
TsT" = {§ —w—010 wweTAhw —0cT'Nw=w'}.

The selection of the traces in T for nonterminal B is denoted T.B defined as
B B
7B 2 (w9 loBgery.
en,— .
For the recursive incorporation of a derivation Z—°> oy ... w1 224 4 into another
one, we need the operation

(o, @'y T+ o, Hwy ... oy Z"—71> 4 2 = &w'wl...w'wn_l oy w
(@, @)1 T 2 {(@ &) tr|reT}.
Example 4 We have (4[4 — .AA], 4[4 — A.A]) T+ , HA = 0] % H[A = al A,

4= A A4 Y A S AA[A 0] S A o AAA = a) 2D HA - A4

which we can recognize as the replacement of the first A deriving into a in the derivation
for the sentence aa in Ex. 3. o

5.2. Prefix, Suffix, and Mazimal Derivations
Lo
A derivation of grammar G is a trace wq b, Wi ... Wno1 — @y, n >0 generated
by the transition system S'[G] that is Vi € [0,n — 1] : w; Ly, wir1- A prefix derivation
of grammar G is a derivation of grammar G starting with an initial state g = F. A
suffix derivation of grammar G is derivation of grammar G ending with an final state
Vo eS:VWeZ: (o, N @), so that @, = -4 by def. (1)—(4) of —. A mazimal

derivation of grammar G is both a prefix and a suffix derivation of the grammar G.
4

5.3. The Well-Parenthesized Structure of Prefiz and Maximal Derivations

Derivations are well-parenthesized so that the grammatical structure of sentences
can be described by trees. Let us define the parenthesis abstraction o for a stack
@ by a?(ww') = aP(w')o?(w), a?(F) = aP(d) = ¢ and o?([A — 0.0']) = A), for
a label, aP(a) = € for all a € 7, a?((A) = (A and o?(A)) = A), and for a trace

aP (wo Loy o B L wa oy @) = aP(Lo)aP(£y) ... aP (Ly_1)aP ().

Lemma 5 For any prefix derivation 8 of a grammar G, o?(8) € Dp & is a pure Dyck

b .
language. A mazimal derivation § = F Loy By A of G is well-

parenthesized in that oP () = oP (by)aP(41) ... aP(ln—1) € Dp & is a pure Dyck language.

PROOF SKETCH The proof is by induction on the length of 6, where the basis is true for

the prefix derivation reduced to the initial state - and the induction step is for a prefix
Lo .

derivation of the form 8 = - 2% &, . .. Wp_1 — w, where o (F N Tp_1) is

well-parenthesized by induction hypothesis is handled by case analysis using the definition

(1-—4) of the transition relation S*[G]. n

Corollary 6 A mazximal derivation 0 = Lo, w1 SN . Tp—1 i of G is well-
parenthesized in that oP(8) = oP (bo)aP(l1) ... aP(ly—1) € Do 5 is a pure Dyck language.

PROOF A maximal derivation # of G is a prefix derivation by B oy
w, which is also a suffix derivation so w, = . It follows by Lem. 5 that o (#) =
aP(lp)aP(ly)...aP(ly—1)aP(d) = aP(ly)aP (fy) ... aP(l,—1) since o (1) = e. n
5.4. Well-Parenthesized Traces
Cor. 6 leads to the definition of the set ©, C © of well-parenthesized traces
A

0, 2 [F % m . w4 e 0] aP(lo)aP(tr)...aP(fy 1) € D) -

6. Prefix Derivation Semantics

The prefiz derivation semantics s? [G] of a grammar G = (7, A, S, %) is the set of
all prefix derivations for the labelled transition system (S, ., —,), that is

= lne
Saﬂgﬂ 2 {w0—>w1...wn_1—l>wn\n>0/\wo:}—/\
Vi € [07n—1]:wie—i>wi+1}.

Lemma 7 If the prefiz derivation semantics 57 1G] of a grammar G = (T, N, S, %)
contains a prefix derivation 61wy then

e cither w="F if and only if 01 = ¢

e or the stack w has the form w = 4[4 — mAami|[As = mAzn] ... [A, —
Nnan),] where A; — n;Aip1n, € Z and A, — nanl, € £ are grammar rules and

A
0, =+ 20,

e Moreover if 01wy € 53 [G].A then necessarily Ay = A. 0

PRrROOF SKETCH The proof is by induction on the position of the stack @ in the prefix

derivation 61 w6y distinguishing the first position, w = I, the second position 61wly; =
A =4

- Y, 56, with w = 4[4 — .0] and A — o € %, observing that if 8,8, € S? [G].A

then A; = A by definition of the trace selection «.A, and for the induction step where the

lemma holds up to position ¢ and w is in position 7 + 1 that we have w; iy o where the

lemma holds for w; by induction hypothesis so that the lemma follows from the definition

(1), (2), (3) and (4) of . -

It has been shown in the more general context of [25, Th. 11] that we have the following
fixpoint characterization of the prefix derivation semantics

Theorem 8
7161 = e FL9] = ap FO[S]
where F9 [G] € p(©) — (O) is a complete U and N morphism defined as

FOIG] 2 AX-{FlUXs— . .
PROOF See [25, Th. 11]. n

7. Transitional Maximal Derivation Semantics

The mazimal derivation semantics SY[G] € p(©) of a grammar G = (7, A, S, X) is
the set of maximal derivations for the labelled transition system S*[G] = (S, £, —, F),
that is the set of finite traces starting in an initial state -, where each step is generated
by the transition relation — and terminating in a blocking state, with no possible

successor’.

sG] 2 {wo S @i w1 P w0 > 0Awy = F A (5)

Vie[O,n—l]:wiZ—i>wi+1AVw€S:V€€$:—\(wnL>w)}.

Lemma 9 A mazimal derivation of the transition system S'[G] has the form 1, H[A

¢ A
— 0] = Hwa .. g Ay where Wp1 # €. O

/

. .. £ ln—q
PROOF Observe that maximal derivations are traces w(, — @} ...@!,_; — ., neces-

A
sarily start with the initial state w(, = . Then the only possible derivation is F q—> /A
— 0] for some A — o € #Z so w) has the form —w;. Then, by induction, all states

5Tt is also possible to consider infinite traces in the style of [25] to cope with infinitary languages.

6

w} = —w; where w; is not empty do have a successor which, by definition of the transition
relation has the same form wj, ; = —w;;1. Since maximal derivations are finite and

maximal traces, the derivation must end with @) = -w, without a possible successor

in the transition relation =(Jw € S : I € ¥ : Hw, N w). The only possible one is

w,, = .

By Lem. 5, o?(+ i, 4[4 — o] L s o ooy A =(AaP(ly)...aP(ln-1)
is well-parenthesized so necessarily o (¢,,_1) =A) proving that ¢,,_; =A).

Observe that w,,_1 # € since otherwise - ﬂ) - which, by definition of —, does not
hold.]

Let us define the final traces ©7 = {0 Liweo | ©o = -}, the final traces abstraction
N
0 ZAX 07N X (so that (0, C) &5 (07, C) with 7 =AY - Y UO\ O7). As

o
a corollary of Lem. 9, the maximal derivation semantics is an abstraction of the prefix
derivation semantics, as follows

sIg] = o'(s7[g]) = S?[g]ne”. (6)

8. Bottom-Up Fixpoint Maximal Derivation Semantics

The maximal derivation semantics (5) can be expressed in structural fixpoint form.

Example 10 For the grammar G = ({a,b}, {A}, A, {4 — a4, A — b}), we have Sd[[gﬂ
=1fp- FI[G] where

A

F(T) Ao b 2 A o) 2 U

F M (A = ad)) < (HIA = @A), A — aAl) T T.A) s (A — aAl) 21 4.

The first iterates of ﬁ‘f[[gl] from IA:g = & (as defined in Sect. A.1) are

B = - qao a2
Fo= S a2 a—-n) 2

A 5 Al S A = aA] S A S aA[A - b 2

H[A = aAJ[A = 0] 2 44 = aa) 2D 4

itp FI[G] . .

Tl
€ |
I

8.1. Bottom-Up Set of Traces Transformer
More generally, let us define the set of traces bottom-up transformer ﬁd[[g]] € p(0) —
©(©) as

Flgl 2 are |J +S A5 o 2 (7)

A—cER

where FA:d[A — 0.0'] € p(O©) — p(O) is defined as

FUA = guac’] 2 AT-(HA = 0uao’]) < FUA — oauo’|T (8)
FIA = 0.Bo'] 2 AT« (A= 0.Bc'], H[A — 0B.0')) 1 T.B) s F[A — 0B.o'|T (9)
FIA— o] 2 AT-(HA- o)) . (10)
Lemma 11 For all [A — o.0'] € %", IEd[A — 0.0'], is upper-continuous. O

PrOOF By forthcoming Lem. 28, observing that AT «F Yo A, 4, AT (HA —

owao']) 25 T, AT +T.B, (1A — 0.B0’], 4{A — 0B.0’]) 1 T, 3, and concatenation are
continuous. u

Lemma 12 If all traces in T C © are derivations of the transition system SY[G] then all

traces in IA:fi[A — 0.0'|T are generated by the transition system S'[G], start in state (H[A
— 0.0']) and end in state (A — oo'.]). 0

PRrROOF The proof is by induction on the length of ¢’

For the base case 0’ = e, the trace is (4[4 — 0.]) by (10), which is a correct state in
S, whence a trace generated by S‘[G].

If ' = ao”, then (8) applies. By induction hypothesis, all traces 6 in Iefl[A — oa.d”’|T
are generated by S'[G], start in state (4[4 — 0a.c”]) and end in state (H4[A — cac”.]).
By (2), (HA — 0.ac”]) %+ (H[A — ca.0”]) is valid transition of S{[G] so the trace (-[A
— 0wa0”]) % 0 is generated by S'[G], starts with (4[A — ¢.a0”’]) and ends in state
(HA — gad”]).

Otherwise ¢’ = Bo” and (9) applies. All traces in T are assumed to be derivations of

the transition system S![G], whence so are those in the subset T.B. By Lem. 9, these

traces have the form - o 4[A = o] L ey Hwn 4 4. So all traces in (H[A

— 0.Bc"], 4H{A — 0B.c"]) 1 T.B have the form (4[A — 0.Bo"']) 1, (H[A = oB.0"][A

— .0]) SN (H[A = 0B.0"]|ws) ... (H[A = 0B« |wwn-1) e"—_1> (H[A — 0B.0”]). These
traces start with (4[4 — ¢.Bc”]) and are generated by S*[G] since the first transition
corresponds to (3) while, for the following ones, if @ £, &' is one of the transitions (2),
(3) or (4) of S'[G] then so is @w"w L ol By induction hypothesis, all traces in IA:fz[A
— 0B.0o”|T are generated by S*[G], start with state (4[4 — o B.o”']) and end with state

(H[A — oB0d".]). Tt follows that the junction, whence by (9), that IA:fi[A — 0.Bc"] starts
with (H4[A — 0.Bo”"]), is generated by S'[G] and ends with (4[4 — ocBas".]). ™

Corollary 13 If all traces in T are derivations of the transition system S'[G] then so
are all traces in FU[G]T. O

PROOF By (7), all traces in FY[G]T have the form + A9 Ay 4 where 6 is a trace
of F{(H4[A = .0])T. By Lem. 12, 0 is generated by the transition system S*[G], starts

8

in state (A — .o]) and ends in state ({4 — o.]). But , (HA — o)) is a

valid transition by (1) and (H[A — o.]) Ay 4 s a valid transition of S'[G] by (4) so

A A
F (]—> 0 —D> - is generated by S![G]. Since it ends by state - without successor, it is also
maximal whence a maximal derivation of S'[G]. n

8.2. Bottom-Up Fizpoint Maximal Derivation Semantics

The derivation semantics of a grammar § can be expressed in fixpoint form for
transformer F4[G] as follows

Theorem 14 SJ[[Q]] = Ifp- ﬁ‘i[[g]] . 0

PROOF (a) Because IA:"Z[[Q]] is continuous (indeed it preserves existing lubs), we have
Ifp" Filg] = T = Uiso T where the iterates (as defined in Sect. A.1) are T° = &,
T 2 FG)(Tm).

(b) All traces in T = &, whence by recurrence using Cor. 13, all traces in the T*,
hence all those in T% = Ifp" FI[G] are derivations of the transition system S'[G] so
itp- FU[G] C S9[G].

(¢) Reciprocally, let 6 be a derivation of S‘iﬂg]]. By Lem. 9, 6 is of the form - 1, HA —

0] Ly, g ... Hwp_1 i - where w@,,_1 # €. We must prove that 6 is in lfpg ﬁﬂi[[g]] that
is in some T, i > 0. The proof is by recurrence on the maximal height h = max{|-[4A —
]|, [Hwal, . . ., [Fwon—1|} = 2 of the stacks in 6.

By definition (7) of IA:J[[Q]]T = Uasoen 1, Iefi[A ok A, 4, it is sufficient to

prove that ' = 4[A — .o] Dy Ay Awa € FI[A — .o]T" for some i > 0.

If o is empty then, by definition (4), 8" is reduced to 4[4 — .], which by (10) belongs
to FI[A —)T for all i > 0.

Otherwise, ¢ is not empty.

For the base case h = 2, rule (3) would yield to a maximum stack height of at least 3.
Hence this rule is not usable for trace 6’. This means that ¢ may only contain terminals
so that the trace can be built using rules (2) and (4) only. By induction on the length |o]|
of o, the trace will be in F¢[A — .o]T° where T° = & using respectively (8) and (10).

For the inductive case h > 2, we solve the more general problem of proving, given
o = o'c”, that A — ¢’.0"] L, App1 . .. dwp_1 € FIA — o’.0”]T" for some i > 0
where w@,_1 # €. We can then conclude by choosing ¢/ = ¢ and ¢” = o. The proof
proceeds by induction on the length |6”| of o and there are three cases.

A
— In case 0" = ¢, then by (4), we must prove that 4[4 — o'\ A, dwgaq ... Jwop_1 €
FI[A — ¢JJT" for some i > 0 where w1 = e. Because - has no successor by —, we
have £k +1 =n — 1 but then w,_1 = €, in contradiction with our assumption. So this

case is impossible.

¢
— In case 0’ = ac”’, 4[A — ¢'.a0”"] =5 4w, 1 must be of the form 4[4 — o’.ac”’] 2

+4[A = o’a.0”'] by (2) so that £, = a and wi+1 = [A — o’a.0”’]. Since |0”'| < |o”]| there
exists, by induction hypothesis, some ¢ > 0 such that H4[A — ¢’a.0c”’]...dw,—1 € Fd [A
9

— 0'a.0""]T* so that we conclude that 4[4 — ¢’.ac”"] L, dwgt1 .. Ao € IA:_J[A —
o’.ac”'|T" by (8).
— In case ¢ = Bo"', H[A — ¢'.Bd"| L, dwgs1 must be of the form -H[A —

o' Ba'" 1, 4[A — o'B.0"|[B —] where B — ¢ € #Z by (3) so that ¢, = (B

and wi41 = [A = 0'B.0”|[B — «]. By Lem. 5, a?(§) = o? (- 1, H4[A = o] N

dwy ... 4[A = ¢'.Bd""| LN v R [A—D>) is well-parenthesized so that the

opening parenthesis (B in ¢, must have a matching closing parenthesis B) in £,, where

k <m < n—1. By definition of — and (4), we must have —w,, = w[B — .| By =

Awma1. Moreover m # n — 1 since 6’ excludes the pair of external parentheses in 6.
Observe that in 6, (1) is not applicable so that the only two transitions that can
change the stack height in 6’ are (3) and (4). The stack height is increased by one in (3)
on opening parentheses and decreased by one in (4) for closing parentheses. Since €’ is
well-parenthesized, it follows that the stack have the same height on matching parentheses.
Moreover the transitions in S*[G] never change the bottom of the stack. Since -y
= H[A — ¢'.Bd"|, w41 = 4[A — o' B.c”'][B — «] the stack around the matching
parentheses are w,,, = w[B — ¢.| = [A = ¢'B.0””||B — <.] and w = w41 = 14 —
o' B.o'"]. Moreover the bottom of the stack in between is 4[4 — ¢’ B.c”’]. Tt follows that

we can rewrite -y, Ly Hdwpa ... dom Lm, 4m41 in the form (4[A — ¢’.Bd"’], H[A

Ly L £ L
— 0'B.o")) t @), = @)y, Tw), = @), where 0 = @], =5 @, ... @), W,

—F B 4Bl AB o A

Since the maximal height of the stacks in 6" are strictly less than that in €', there
exists 4 > 0 such that #” € T, whence by definition of selection #” € T*.B since 6"
starts with label (B. It follows that —cwy Ly dwgs1 .- dom Ly doome1 = (HA —
o’.Ba""], 0") 1 € (H[A — ¢'.Bc""], H{A — ¢’B.c"’]) + T*.B. Since the fixpoint iterates
are C-increasing and (d4[A — ¢’.Bo’"], 4[A — ¢'B.0""]) 1 « is monotone, we also have
g, Ly dwgt1 - - - dom LN Hdwm+1 € (A — ¢'.Bo""], H[A — ¢'B.0’’']) 1 TP.B for
all p > 1.

Since || < |o”| there exists, by induction hypothesis, some ¢ > 0 such that
dwmt1 ... dwp—1 = A — o'B.o’”]...dwp,_1 € IEfZ[A — o’B.o"'|T7. Since the fixpoint
iterates are C-increasing and IEfZ[A — o’ B.o’"] is monotone, we also have 4top, 41 . . . Fop—1
Iefi[A — ¢’ B.c”']T? for all p > j.

If we let p = max(i,j), we have dwy Ly Awg11 .- Ao, L, dwme1 € (A —
o'.Bao""|, H[A — ¢’B.0"’]) + TP.B and w41 ... dwp—1 € IA:_J[A — o'B.0’'|TP so by
(9), Hwr 25 ADpr1 ... AT T At ... Aoao1 € FIA = 0B |TP = ((HA —
o'.Ba""|, 4{A — o' B.0"']) 1 TP.B) 3 IA:??[A — o’ B.0’"|T?, as required. n

The fixpoint structural big-step maximal derivation semantics of a context-free grammar
G in Th. 14 is “bottom-up” in that when abstracting to derivation or syntax, these trees
are constructed bottom-up (and left to right) which corresponds to the construction of
traces by induction on their length, that is smaller ones first (and left to right).

10

9. Protoderivations

Prototraces (formally defined below) are traces in construction containing nonterminal
variables which are placeholders for unknown prototraces to be substituted for the
nonterminal variables. Protoderivations are prototraces generated by the grammar,
initially a nonterminal variable (such as the grammar axiom), obtained by top-down
replacement of a nonterminal on the lefthand side of a grammar rule by the corresponding
righthand side, until no nonterminal variable is left.

9.1. Ezxamples of Protoderivations

Example 15 A prototrace derivation for the grammar G = ({a}, {A}, 4, {A - AA, A —
a}) is (the prototrace derivation relation is written B=,)

F =
B, -5 A AA]A[A_>AA]4[A_>AA] A,
b=, F 5 A4 AA] !>4[A%AA] HIA = AAJA > a] <5 H[A —

AA][A—>a]—>—|[A—>AA]

= FG—>—|[A—> AA]—>%[A—>AA}[A—>a]—>—|[A—>AA][A—>a}ﬂ>—|[A
—>AA] My A & AAJA =] % HA = AAJA — a] o4 o
AA.]—>—|. O

9.2. Prototraces

To each nonterminal A € 4 we associate a nonterminal variable representing an
unknown prototrace for A. The set of nonterminal variables is 4 = {[A] | A € A}

A prototmce 7 € II" of length |7| = n+ 1, n > 0, has the form 7 = wy ~= w; ...

Tno1 =3, whence is a pair 7 = (z, ™) where w € [0,n] — S is a nonempty finite
sequence of stacks m; = wy, i = 0,...,nand 7 € [0,n — 1] — (LU A7) is a finite
sequence of labels or nonterminal variables 7; = k;, j =0,...,n — 1. Prototraces m € II
are nonempty, finite, of any length so II = Un>0 1™ and © CII.

Again prototrace pattern matching, prototrace concatenation, set of prototraces
concatenation, the assimilation of a single state w and a transition w £ &' with the
corresponding prototraces, the junction g of sets of prototraces, the selection P.B of
the prototraces in P for nonterminal B and the stack incorporation in a prototrace (o,
w') T 7 or a set T of prototraces (w, w') 1 T are defined as for traces and sets of traces.

9.3. Prototrace Generated by a Grammar Rule

The prototrace generated by a grammar rule A — o € X is QD[A — o] where
RP € % — 1l is

11

ROA=o] 2 F YW RPAS 0] A (11)
Fz_f’ [A— owao’] 2 HA— owao’] 2 RD [A — ga.0’] (12)
R24 = 0.Bo] 2 A 0.Bo] By RP[A — 0B (13)
ﬁe_’j[A —o) = HAA—o0l. (14)

Example 16 For the grammar G = ({a}, {A}, A, {A — AA, A — a}), the prototrace
generated for the grammar rules A — a and A — AA is respectively

RP[A—a = FY 450 44— a] Do and
RO[A— 44] = F % qa o4 B qa o4 B g4 544 2 4

9.4. Prototrace Derivation

The prototrace derivation relation B=,€ p(II x II) for a grammar G = (F, A, S,
Z) (B= when G is understood) consists in replacing one or several nonterminal variables
by the prototrace generated by a grammar rule for that nonterminal.

Formally, the prototrace derivation B=,€ p(II x II) is defined as follows

7rg7r' (15)
E|n>0,(1,...,§n+1,w1,...7wn+1 GS,Al,...,An 6:/1/,0'1,...70'»”67/*2

1>

)
T = gy ! W22 .« .. STy, ! Wnt1Snt1 AV € [L,n] 1 A; — 0, € Z N

7= §1<w1, wz) T FVQD[A1 — 01]§2 . -.§n<wn, wn+1> T ﬁD[An — Un]<n+1 .

10. Transitional Maximal Protoderivation Semantics

The top-down mazimal protoderivation semantics SD[[QH € AN — p(II) of a context-
free grammar G is defined using the prototrace derivation transition relation BE=—,
as

SPIG] 2 AA-{rel|(FZ)@=, 7). (16)

where ™, n € N are the powers of relation r, r™* = Uscn 7" (so that 79 SUe=2),rt
(resp. 7*) is the transitive closure (resp. reflexive transitive closure) of r.

The protoderivation semantics SP[G] is “top-down” in that it starts from the gram-
mar nonterminal variable [4], A € .4 and expands the nonterminal variables into their
derivations until reaching a terminal derivation without nonterminal variables. When
abstracting to protoderivation or protosyntax trees, these trees are constructed from the
root towards the terminal leaves.

12

11. Top-Down Fixpoint Maximal Protoderivation Semantics

The top-down maximal protoderivation semantics of a context-free grammar G can be
expressed in fixpoint form, as follows (where post € () = () is post[r]X = {s’ € |
dse X : (s, §') er})

Theorem 17 SP [6] = lf;og IV:D[[Q]} where C is the pointwise evtension of C and the
set of prototraces transformer FP[G] € (A — (IT)) = (A = p(I)) is
FPIG] 2 g+ AA-{F D 4} Upost{m—,]6(A) . o

PrOOF By [26, Th. 10-4.3] since sD [GI(A) is the set of reachable states for F=, from
the singleton { —}.]

Example 18 For the example grammar G = ({a,b}, {A}, A, {A — a4, A — b}), we
have

ROA—b = F 4405 44 —-6) 2
RP[A—ad] = Y 4145 0d] <5 4 = ad] B 414 5 aa] 2

the first few iterates of IV:E’[[Q]] (as defined in Sect. A.1) are
= o
(R e R}
- - e 0 RP Ao, (e) RO A - ad])
S /R LA /RN R)
F A ad] S A - ad] D A - aa) 2
o= -4 (DR A, (TR [A- «ad],
F A 5 ad] s (A > @A), A - ad]) 1R A =) 2,
F A A S Al s (A = wA), A = aA)) T ROIA = ad] 25)
- E Y a2 A e A,
F A A = ad] S A = ad] B A oaa] 2
Y A o ad] % A] Y A aAg[A — b s (A - aAJ[A -

b 2 44 = ad 2,

14— ad] S A 5 ad] W 1A - aA)[A = ad] S H[A s aAl[A

DAl B A S aAJA — aA] 2 1A 5 aa] 2)

etc. m]

13

12. Abstraction of the Top-Down Protoderivation Semantics into the Bottom-
Up Derivation Semantics

12.1. Characterization of the Maximal Derivation Semantics by Prototrace Derivation
The trace derivations 6 € S‘z[[g]}.A for a nonterminal A can be constructed top-down

» A R
using the prototrace derivation E=, as (-) B=, 0.

Lemma 19 I[fT = {r € © |3A e 4 : (F 2y) @, 7} then FUA = 0.0)(T) =
(r €0 |R[A > 0u’] B, 7} -

PROOF By induction on the length |¢/| of ¢’. There are three cases.

— FYA S 0.ad’)(T)
= —oac']) e V_DA—>aa.a’ TATEO
A ’ o[k .
{def. (8), ind. hyp., and def. concatenation §
= {ncoe ﬁ_DA—>0'-a0'/7T
{ | o
{def. (15) of B=>, and F==>, def. (12) of R [A — 0.a0”]§

— FIA - 0.Bo)(T)

= ((HA—= 0.Bo'], A = oB.o) 1 {r € © | 3A € N : (- 55) B=, 7}.B)sFI[A
— 0B.o’')(T) ldef. (9) of FI[A — 0.Bo’] and def. T'§

— | {(HIA = 0.Bo'),H[A = 0B.o']) T w9 A = 0 B.o')(T) | 7 € OAF 25 H) B>,

T}
{def. (s, &) T+, ©.B, (15) of B=>, and g so that necessarily A’ = B§

— | H{HIA = 0.B0'], H[A = oB.o')) t 73 {n’ € © | R [A = 0Buo’| B, 7'} | 7 €

ont-Zs), 1) Jind. hyp.§
= [a"s7 | 7" € ©A (HA = 0.B0] HA = 0B’ B, ' ARA &

oB.0') B=, ' A7’ € ©}

{def. 3, (15) of B=>,, B=, and 7’ = (4[A = 0.B0’], 4{A = cB.0']) 1+ 7§

= {reO|HA4— s.Bd| Iv?_D[A — 0B.0'] B=, 7}

{def. (15) of B=,, B, and 7 = 7"’ g7/, def. § and FVQ_D[A — o B.o’| which starts

with 4[A — o B.o']§

= [1€0|R[A > 0.Bo) B, 7} {def. (13) of R [A — 0.Bo"]§

— FA S 0(T)
= {me€O|HA - ol [bl%gﬂ'}

{def. (10) of I%fj[A — 0.] and def. (15) of B=>, and = so that necessarily 7
= -[A — o.] since H[A — 0.] contains no nonterminal variableS§
14

— (reo R4S o) B, 1) ldef. (14) of R [A = 05 . m

Lemma 20 Let IA:fL be the iterates of IEJ[[Q]] from B¢ = @ (as defined in Sect. A.1). We

have
ﬁi:{ﬂe@‘ﬂAEJyt(l—_D(gﬂ'} 0
PROOF By recurrence on n.
— For the basis n = 0, we have {wE@\HAEf/V:(I——D gw}
= o = ﬁg {def. g = 1m, (F) ¢ © and def. iterates§
— For the induction step, assuming Lem. 20 for n > 0, we have
Fi., = FIGI(FY) {def. iterates$
- U B s R A o] B, rATc0)
A—ocER N
{def. (7) of F[G] and Lem. 19§
= |J tmeo{ H1RP[A= o] B,)
A—oceZ ;

Ldef. (15) of B=>,, (-,) 1+, R [A = 0], and (11) of RP[A — o]
= {meo|daen: (- FE,) {det. (15) of B=>, and B=5§
= F, (def. F¢,\§ . m

d o

Theorem 21 S¢[G]={recO©|3Ac A :(F —) B=, 7} . 0
PROOF

S61 = we Fgl = UJF

. neN . .
{by Th. 14 where F%, n € N are the iterates of F[G] since F?[G] preserves lubs§

= Utreolgaer: - Ly HE, {by Lem. 205

neN
= freoles: B e, mh (sicer D 4470 and def. U

n=0

- (re0|Men: (L)=, 1) {def. B
= : =g T er. QS . n

12.2. Abstraction of the Mazimal Protoderivation Semantics into the Maximal Derivation
Semantics

Let us define the abstraction

aP? 2 AP-XA-P(A)NO (17)

which collects the terminal traces (without nonterminal variables) among prototraces.
Bd

This abstraction defines a Galois connection [27] (A + p(II), C) <7: (AN = p(O),
Dd

. (6%
C). The restriction of the top-down maximal protoderivation semantics is the maximal

derivation semantics.

Theorem 22 ab‘i(SD[[g]]) =AA- SJ[[Q]].A . 0
PRrOOF

aP4(sPg])
= A-reo| - D=, 1 {def. (16) of SP[G], def. a4, and © C TI§

= A-{reo|en (- =, A

{def. selection +.A and 7 is a trace for A by def. (15) of B=, and B=>,§
= XA-SYGJ.A {Th. 21§ . g

13. The Hierarchy of Grammar Semantics

Th. 22 shows that the bottom-up derivation semantics Scf[[g]] of a grammar G is, up
to an isomorphism, an abstraction of the top-down protoderivation semantics SP[G] =

AA{mell|(F 4) @=, 7} by the abstraction aPd. We now introduce a hierarchy

of abstractions of the protoderivation semantics S [G], as given in Fig. 1. The various

semantics and abstractions in Fig. 1, (apart from SP[G] (16), SY[G] (5), and aPd (17)
which have already been defined), are described below.

13.1. [Proto]derivation Tree Abstraction o’ and o
13.1.1. [Proto]derivation Trees

[Proto]derivations can be described by [proto]derivation trees where internal nodes are
labelled with nonterminals, leafs are labelled with terminals [or nonterminal variables]
and branches are decorated with rule states.

Example 23 One possible protoderiva-
tion tree for the protosentence AaA of the
grammar ({a}, {4}, A, {A — AA, A — a})
is given on the right. It can be represented in
parenthesized form through an infix traver-
sal as (A[A — .AA] [A — AA](AJA —
AAJ(A[A — wa)a[A — aA)[A — AJAJ[A][A
— AAJA)[A — AAA) .

Welet % =2 TUN"U% and D = (2U ”ZV/)* A pmtodem’vc?tion tree § is represented
by a well-parenthesized sentence over % so that beP oy S D. We extend the selection
to p(D) whence o(P 4 5) as D.A ={(BoB) e D| B= A}U{[Bl € D| B= A} so that
D.A is the set of protoderivation trees in D rooted at A € 4.

16

top-down semantics |

SLIG] = o (S°]d]
protolanguage se-
mantics

5[] £ o*(S°[9]
protosyntax tree
semantics

$[g] = a*(SP[g])
protoderivation
tree semantics

sP19]
protoderivation se-
mantics

L

S'[9] = &“(S"[9])
terminal language seman-
tics

SLIG] = & (S°[4]

protolanguage semantics

S°[G] = o*(S°[G])

syntax tree semantics

S$91G] = o (S?[4])

derivation tree semantics

sG] = a”'(S7 [G])

derivation semantics
1 bottom-up semantics

s9[g]

prefix derivation semantics

Figure 1: The hierarchy of grammar semantics.

13.1.2. Protoderivation Tree Abstraction a® of Protoderivations
The protoderivation tree abstraction o € II — D of protoderivations is

w5 7) 2 ad(w)rad(r) aSH) 2 e
as(e) E as(sl...sn) 2 s, S1...5, €S,
as(l—) S ¢ n >0, otherwise

which is extended elementwise to af € p(II) — (D) a aS(T) = {as(w) | m € T} so that
5

) as
we get the Galois connection (p(II), C) <;—>_> (p(D), C), further extended pointwise to
5

«

ab € (AN = (1) = (A = p(D)) as ad(¢) = XA+ ad(4(A)).

13.1.8. Derivation Tree Abstraction o of Derivations
The restriction of o’ to derivation trees D = (2 U %)* where % = T U %" is
a% € © — D such that

alle) 2 e (w50 2 ad(wm)la’ ()
OF) = e
O¢H) = ¢ a(s1...5,) = sp, S1...8, €8, n>0, otherwise

which is extented elementwise to a® € 0(0) = (D) as VT € p(O) : ag(T) = {aS(O) \

0 € T} so that we get a Galois connection between sets of traces and sets of derivation
s

trees, as follows (p(©), C) <—_ﬂ/_» (p(D), C).
5
«@
. A derivation tree ¢ is represented by a well-parenthesized sentence over % so that
b€ U)y % CD.

Lemma 24 IfT is a set of derivations then
o’ ((w, @) 1 T) = {a’(w)a’ (1)’ (@) | T € T} . o

. . V4 L —
PROOF For a derivation - == —toy ... dww,—1 — -, we have

ozs((w, ') Tk L9 oy Aw ooy)

= (@)’ (N)load (@) .. 0 (@ao1)la_10°(A)a’ (&) def. (@, ') 16, a’, and a’§
= (@)’ (- 2% 4wy .. Awn oy o () {def. o
It follows that for a set T of derivations, we have a5(<w, w1 T)

= {’((w, @)1 7)| 7T} {def. (w, @') 1 0 and o’§
= {&’(@)a’ (1)’ (=) | T €T} (as shown above§ . m

18

13.2. [Protojsyntaz tree abstraction a® and o®
13.2.1. Protosyntax Trees

[Proto]syntax trees are [proto]-derivation trees denuded of the rule states decorating
the branches. We represent [proto]syntax trees in parenthesized form through an infix
traversal. We let 7 = (2 U .7 U A°)*. A protosyntaz tree ¥ is represented by a
well-parenthesized sentence over (7 U .4°) so that 7 € P g (7u.40) C T.

Example 25 One possible protosyntax tree for the
protosentence AaA of the grammar ({a}, {4}, 4, {A —
AA,A — a}) is given on the right and represented as A
(AAI(A(AcA)[AIA)A) .

18.2.2. Protosyntax Tree Abstraction of of Protoderivation Trees
The protosyntaz tree abstraction o € D + T of protoderivation trees is (A € A,
te?)

@’(o(Ao’) = o(0)(Aa’(d) o’ (0[A = ¢d'lo’) = o(0)a’(0”)
’(cA)o’) = a(0)A)a’ (o) od(ole’) = o (o)la’ (o)
o(cAle’) = o(o)Aa’ (o) a’le) = €

extended elementwise to o € p(D) — p(T) as o (D) = {a*(d) | § € D} so that we

3

get a Galois connection (p(D), C #» (p(T), C) which can be extended pointwise

<)
to (</V — p(D)) (A = o)) as a®(¢) = AA-a®(¢(A)) so that (AN p(lv)),
C) = (AN = p(T), ©).

a
18.2.3. Syntax Tree Abstraction o of Derivation Trees

The restriction o to syntax trees 7 = (2 U .7)* is a® € D — T such that (4 € A,
te?)

o*(0(Ad’) = o(0)(Aa® (o) (oA = ci'lo’) = af(0)a’(o))
o*(cA)d’) = (o)A’ (o) oi(ola’) = ad(o)la(d")
a’le) = €

extended elementwise to o € p(D) — p(T) as a*(D) = {a*(§) | § € D} so that we get
a Galois connection between sets of derivation trees and sets of syntax trees, as follows

(p(D), C) <;—>_> (p(T), C). A syntax tree 7 is represented by a well-parenthesized

sentence over J so that 7 € Pg, o C T.

18.3. Protosentence Abstraction o* and &*
13.53.1. Protolanguages
The protolanguage of a grammar G = (7, A, S, %) with ¥ £ ZU . is the set of
protosentences deriving from the grammar axiom S where protosentences n € ¥* contain
both terminals in 7 and nonterminals in .4 and the derivation consists in replacing a
nonterminal A by the righthand side o of a grammar rule A — o € Z.
19

18.3.2. Protosentence Abstraction o™ of Protosyntaz Trees

The protolanguage abstraction o € T — ¥* of protosyntax trees is defined as (we
follow the tradition of confusing nonterminals A denoting the grammatical structure and
nonterminal variables [4] for protosentence substitution since confusion between attributes
of internal tree nodes in .4 and variables in .4 is no longer possible)

ali‘(a(]Aa’) 2 a%(a)a%(a'), Ae N o (ga0’) 2 al(o)aal (o)), ae T
a%(oADa') = a%(a)aL(Va’ alle) = ¢
ol (o@e’) = al(o)Aa* (o))

extended elementwise to ol € o(T) — p(¥*) as ozi(D) = {ai(%) | 7 € D} so that we get
L

a Galois connection (p(7), C) Hig (p(?™*), C) which can be extended pointwise to
aL

ol € (AN = p(’f’)) = (AN = p(¥™)) as ai(¢) ZAA- ai((b(A)) such that (A +— p(7v'),
. ~E .
Example 26 For the protosyntax tree in Ex. 25 of the grammar ({a}, {4}, 4, {A —
AA, A = a}), we have o ((AA(A(AcA)[AA)A)) = AaA. o
13.3.3. Protosentence Abstraction &t of Syntax Trees

For syntax trees, we define the flattener o € T — p(7™*) as
ol((AcA)e’) = ({A}ual(0)al(c) ol(ac’) 2 {a}al(c') ol() = {¢}
extended elementwise to ol e o(T) — p(7*) as ak(x) éA U{cL(o) | o € S} and
pointwise to &* € p(T) — (A = (7)) as a*(S) = XA-al(S.A) so that we get the
Galois connection (p(7), C) e—éj (N = p(7),).

dL

13.4. Terminal Sentence Abstraction &*

13.4.1. Languages
The classical semantics of a context-free grammar G = (7, A, S, %) is a set of finite
terminal sentences in p(7*) [10, 11].

13.4.2. Terminal Sentence Abstraction &* of Protolanguages
Terminal sentence abstraction eliminates the sentences of a protolanguage which are
not terminal. Let us define the eraser af € ¥* — p(7*) as

>

of(Ao) = o o(ac) = aal(o) ot (e) €

extended to af € p(¥*) = p(T*) as () = J{at(0) | 0 € B} = £ N .T* so that we get
a Galois connection (p(¥™*), C) <L>—Z'> (p(7*), C) which can be extended pointwise to
At e (N = p(1%) = (N p(ﬂf)) as &t (p) = A A« af(p(A)) such that (A — p(¥*),
&) s (N > (), €)

d(

20

14. Fixpoint Bottom-Up Structural Abstract Semantics
14.1. Bottom-Up Abstract Interpreter

All bottom-up semantics S&[g]] € DF of context-free grammars G are instances of the
following abstract interpreter (which generalizes the bottom-up grammar flow analysis of
[8, Def. 8.2.18]).

6] = e Fg] (18)
where <I5ﬁ, C, L, U) is a cpo/complete lattice and the transformer ﬁﬁ[[g]] e Df — DF is
FIgl 2 e || A(FiA - o)) (19)
A—oceZ

while <I5, C., L., U.) is a cpo/complete lattice, and the transformer IA:ti € R D s Dﬂ
is

FIA = 0wao’] 2 Ape[A— o) FFA = cac’]p (20)
FIA— 0.Bo’] 2 Xp+[A— 0.Bo')(p,B)§ F{[A = oB.o']p (21)
FlA—so] 2 Xp-[A— ol (22)
with A e Dﬂ s D? abstract rooting
A — o.aal]ﬁ e bf terminal abstraction
de ([A)ti X |jﬁ) — |5lj abstract concatenation

[A— o Bor’]Ej (If)ﬁ X N) D nonterminal abstraction
gﬁ € (Dti D
[A — o. } €

) D abstract junction
DA emptiness abstraction .
Observe that Th. 14 is an instance of (18) where D} = D? is p(©) FAIG] (19) is the

set of traces bottom-up transformer FA[G] € p(0©) — p(O) (7), and FIA — o.07] is FI[A
— 0.0'] € p(O) — p(O) as defined in (8)—(10), which is exactly of the form (20)—(22).

14.2. Well-Definedness of the Bottom-Up Abstract Interpreter

The existence of the least fixpoint is guaranteed by the following
Hypothesis 27 For all [A — o0.0'] € %, Ap-Aﬁ(IE?[A — .0p) € Df s D s upper
continuous for the ordering C on D6, O

Hyp. 27 is guaranteed by the following local continuity conditions

Lemma 28 If A® is continuous, o is continuous in its second argument, [A— J.Ba’]a
s continuous in its first argument, ¢ is continuous then Hyp. 27 holds. 0

PROOF SKETCH The upper-continuity of = [A — 0.0’], by induction on the length |o’| of

o' -

6Indeed monotony is sufficient [28].

21

Abstract se— Maximal Derivation Syntax Proto — lan—

mantics $*[G] derivation S*[G] tree S°[G] tree S°[G] guage S”[G]
ol 0(0) o(D) o(T) A =)
C c c c c
€ @ @ @ &
u U U U U
D! 0(©) (D) o(T) p(77)
C. c c c c
1, %) %] %) %)
L, @] @] @] @]
A (X) A x A (AX A) (AX A) ALxy®
(A — owao’)? (HA = 0wad’]) 2 [A— cwao']a a® a
K (3)
[A = 0.Bo') (p, B) | [A = 0.Bo")(p,B)® [A— 0.Bo'| p.B p.B {B}Up(B)
g 3
[A = ol H4[A — ol [A — ol e® €

where ﬂ[ﬁt?a%b]]:a, ([mf?agb]]:b, Qﬂf?aﬂ[ﬂt?bSCD:b, ([[ﬂf?aﬂmf?bSCD:q
ete., M AL(X) 2 XA - (A= A% {A}UX 3], @ a (and €) is a shorthand for {a}
(and {e}), ® sentence and language concatenation . is denoted by juxtaposition, extended
pointwise, and @ [4 — 0.Bo"]%(p, B) 2 (H[A — ¢.Bd"], H[A — ¢B.0"]) 1 p.B.

Figure 2: Semantic instances of the abstract bottom-up grammar semantics (18).

14.8. Instances of the Bottom-Up Abstract Interpreter

The hierarchy of semantics discussed in Sect. 13 is obtained by the instances of the
bottom-up abstract semantics (18) given in Fig. 2. Classical semantics and flow analyzes
also have the same form given in Fig. 3. These facts are proved in the following Sect.
15 for the bottom-up semantics and in Sect. 19 for bottom-up grammar flow analysis.

14.4. Soundness and Completeness of the Bottom-Up Abstract Interpreter
Definition 29 An abstract semantics S*[G] € D" is sound and complete with respect to
a concrete semantics S'[G] € D¥ for an abstraction (D, C%) % (D, CY). if and only

if a(S*]G]) = S*[G]. 0

This global soundness and completeness condition on the abstraction is implied by
the rule soundness and completeness condition

(A (FHA = w0]p) = AHFHA = .olalp)) (23)

22

Abstract se—

Terminal

First e—Produc— Nonterminalx’pro—

mantics S*[G] language S‘[G] S'[9] tivity S°[G] ductivity S [F]
D N o(TY) N (T U{eD) N s BY N B
C C < = =
I & AN -0 AN -0
L U U \Y \Y
D o(T*) o(7 U {e}) B B
C. c c = —
1. @ @ i i)
L, @] @] \Y \Y
AF(X) A(x)® ANX)®A(X)® A (X)®
[A— (7.(10’]ﬁ a a i i
DB @1(4) A /\
[A = 0.Bo'}(p, B) p(B) p(B) p(B) p(B)
Sﬁ @1(4) /\ /\
[A— a.]13 € € it it

where W B = {iF, i}, @ A/(X) = AY(X)=AA - (A =48 X 0], ® A(X) = A%(X)
24 ([A’ =A7 X3 [Fﬂ], the first abstraction @' of language concatenation is defined

in Lem. 72, and &' s its pointwise extension.

Figure 3: Flow analysis instances of the abstract bottom-up grammar semantics (18).

23

Theorem 30 The local soundness and completeness condition (23) implies the soundness
[

and completeness of the abstract interpreter a(SE[[Q]]) = oz(lfpEn = [G]) = lf;fli ﬁﬁ[[g]] =
Sl o

Note 31 The local soundness and completeness condition (23) can be weakened according
to the hypotheses of one of the fixpoint abstraction theorems of Sect. A.2 such as
Cor. 101 or Cor. 106. O

PROOF (OF Th. 30) The main point is to show the commutation property

aFla)) = ol | [A4S o)) (def. (19) of FH[G]5
- |_|ﬁ a(A(FEA — 2];?@ la preserves lubs in Galois connections$
- AD'?% ANFHA = ola(p)) {by local soundness cond. (24)S§
— ﬁﬁiw> (def. (19) of FF[G]S . m

The local soundness and completeness condition (23) is implied by the stronger local
soundness and completeness conditions on the abstract operators, where (Iﬁh, C.%) <L—>

o
([A)ﬁ7 C.*) and for all p € D? and z,y € D?,

ao&(@) = Aafe), alAd=0BoT(pB) = [A~ 0BT () B),
a([A — U.aaj}h) = [A— (T.aal]u, a.(x gh y) = a(z) g* (){, (v), (24)
a(zly) = a(z)day), a([A=o])) = [A—oal).

Corollary 32 The above local soundness and completeness conditions (24) imply the

N §oan
soundness and completeness of the abstract interpreter o(S*[G]) = oz(lfpE FiIG)) =

ch oA

- Fg] = Sg]. :
PROOF SKETCH We observe that

a(FlA=00lp) = FA—o0o(alp) (25)
and so Cor. 32 follows from Th. 30 and (24). n

We now consider the instances of the abstract bottom-up semantics given in Fig. 2.
The grammar flow analysis instances in Fig. 3 are considered in Sect. 19.

24

15. The Hierarchy of Bottom-Up Grammar Semantics

15.1. Fizpoint Bottom-Up Derivation Tree Semantics
15.1.1. Derivation Tree Semantics

The derivation tree semantics S°[G] € p(D) of a context-free grammar G = (7, N,
S, %), is the set of derivation trees generated by the grammar G. It is defined as the
derivation tree abstraction of the derivation semantics, as follows

S’[g] = a’(s[q]) - (26)
Lemma 33 SS[[Q]] €EPgpy - 0
ProOOF By Lem. 5 and definition of ol n

15.1.2. Fizpoint Bottom-up Structural Derivation Tree Semantics
Let the transformer FO[G] € p(D) — p(D) be defined as follows

FIg] 2 AD- U 4 FS[A = .0]D A) (27)
A—oeZ

A

where IA:‘S[[Q]} € Z+— p(D) — p(D) is

AD«[A— oo’ a F[A - ca’|D
AD-[A— ¢.Bo’) D.B F9[A — ¢B.o'|D
AD:[A—oal].

FO[A — ouac’]
Fs [A — 0.B0’]
Fo [A = o]

1>

1>

The derivation tree semantics of a grammar G can now be expressed in fixpoint form for
transformer FO[G] as follows

Theorem 34
gl = w FLI] :

Example 35 The derivation tree semantics of the grammar ({a}, {A}, A, {4 — AA, A —
a}), is the least fixpoint of the equation
D = U{(]A [A—] a[A— a)] A)}
{(A[A—.AA] o [A— AA] o' [A— AA] A) | 0,0’ € D} O

PROOF SKETCH (OF Th. 34) We apply Th. 30. By def. o, we have ozs(l— Yo,)

= (A a‘g(T) A)). To get (23), it remains to define F9 such that
o o FUA = 0.0'] = FI[A = 0u0'] 0 0’ . (28)

We proceed by structural induction on the length of ¢’ in [A — o.0']. We let T C

lfpg Fd [G] so that T is a set of derivations. We prove (28) for T, by case analysis on the

prefix of ¢’. This implies the commutation property a® o IE‘Z[[Q]] (T) = Fo [G] ° as(T) for

sets T of derivations so that we conclude by Cor. 106. n
25

Lemma 36 For all [A — 0.0'] € %#*, IA:‘S[A — 0.0'] € p(D) — (D) is upper continu-
ous. o

PrROOF By Lem. 28, observing that, given an increasing chain D;, i € N of elements of
p(D), we have (AU, e DiA) = U,;en(AD;A) so A% is continuous, 5°, which is concate-
nation .°, is continuous, and [A — 0.B0”] ;e Di-B = [A = 0.B0"] ;e Di-B {def.
selection «. B = |J;cn[A — 0.Bo’] D;.B by continuity of concatenation, whence [A —

0.Ba’']? is continuous in its first argument. =

15.2. Fizpoint Bottom-Up Syntax Tree Semantics

15.2.1. Syntax Tree Semantics

The syntaz tree semantics S*[G] € p(T) of a context-free grammar G = (7, A, S,
%) is the set of syntax trees generated by the grammar G for each nonterminal. Tt is
defined as the syntax tree abstraction of derivation tree semantics, as follows

S°[G] 2 o*(S°[9]) - (20)
Lemma 37 S°[G] € Py o . O
PRrROOF By Lem. 33 and definition of o®. n

15.2.2. Fizpoint Bottom-Up Structural Protolanguage Semantics
Let the transformer F*[G] € o(T) — o(T) be defined as follows

1>

0] ASe | (AF[A— .05 4) (30)

A—oEZR
AS-aF[A— ca.o’]S
AS+S.BFA— oB.0']S
AS-e.

F3[A — o.ao’]
F3[A — 0.Bo’|
FS[A = o]

e lie e

The syntax tree semantics of a grammar G can be expressed in fixpoint form for transformer
FS[G] as follows

Theorem 38
gl = w 9] .

Example 39 For the grammar ({a}, {A}, A, {A — A, A — a}), the above syntax tree
semantics is the least fixpoint of the equation

S = {(AaADU{(AcA)|oeS).

The iterates (as defined in Sect. A.1) are

26

S0 = o
st = {(Aa A}
S? = {(AaA),(A(Aa A) A}

5" = {(A"a A)F 1<k <n}

s = UJS" = {(A"aA)"n>1} = {4 A .. A ..} o

n>0 | ‘ |

a A A

| :

“© 4

|

a

PRrROOF (OF Th. 38) We apply Cor. 32 and prove (24). For T, T" € p(7A'), we have, by

definition of o®, a®(Y5 T 2%) = (4 &¥(T) A), o* (|4 = 0uac’] @) = a, &*(T T') =

a*(T)a*(T"), a*([A — 0.Bo’'] D.B = o*(D.B) = o*(D).B, by def. selection, and o®([A
— o) =€ ™

Lemma 40 For all [A — 0.0'] € %, F[A = 0.0') € o(T) — o(T) is upper continu-
ous. O

PRrROOF By Lem. 28, since concatenation .° is continuous and given an increasing chain
Si, i € N of elements of p(7), we have a (J;cy Si) = U;en(a Si) by continuity of
concatenation so that A® is continuous, (e Si)-B = U;en(Si-B) by def. selection +.B

proving that [A — 0.Bo’]® is continuous. n

15.8. Fizpoint Bottom-Up Protolanguage Semantics
15.3.1. Protolanguage Semantics

We define the protolanguage semantics st [G] € A — p(¥™*) of context-free grammars
G as the abstraction of their syntax-tree semantics, as follows

stigl 2 al(s*[g]) . (31)

15.3.2. Fizpoint Bottom-Up Structural Protolanguage Semantics
We define the protolanguage transformer”

"Recall that UxEQJ f(x) = @ so that the protolanguage for a nonterminal with no production is empty.

27

FEGl 2 Ap-xd- | {AJUFHA— o)y (32)
A—oceX
IA:L[A — 0.a0’] 2 Apra IEL[A — oa.0’]p
FLIA — 0.Bo'] Ap+ ({BYUp(B)) FL[A = oB.o')p
IA:L[A — o] Apee

1>

I12

so as to characterize the protolanguage generated by each nonterminal of the grammar G
in fixpoint form,

Theorem 41

stigl = w FLIg]. .

Example 42 If, for the grammar ({a}, {A}, A, {A — AA, A — a}), we abstract away
in the fixpoint equation of Ex. 35 the syntax trees for the nonterminal A by the tips of
their subtrees, we get the prototype language equation

X = {A}uf{ajuxx.

This fixpoint equation is p = FL [G](p) or equivalently p(A) = IEE[[Q]] (p)(A) that is
p(A) = {A} U {a} U p(A)p(A), which is X = {A} U {a} U XX where X = p(A). O

PROOF SKETCH (OF Th. 41) By Cor. 32 since by def. of &L in Sect. 13.3.3, we have
&L (A%(9)) = aL((ASA)) = AB-(B = A ? oL((ASA).B) 2 @) = AB-(B= A 7%
ai((]ASAI)) 30) =AB-(B=A7%{A}U ai(S) 30) = Aﬁ(aﬁ(S’)). It remains to define
FL such that

al o F{[A > 00 = FLA = 0w0’]oak. (33)

We proceed by structural induction on the length of ¢’ in [A — 0.0”] and case analysis
on the prefix of ¢’. Having proved the commutation property X o F¥[G] = FL[G] o &L,
we conclude by Cor. 106. -

Lemma 43 For all [A — o.0'] € Z*, IEL[A — 0.0'] € (V™) — (V™) is upper continu-
ous. o

PROOF By Lem. 28 since AL = AL+ AA’- (A= A7 {A} UL 3 @) is pointwise
continuous, the junction 3=, which is concatenation ., is continuous, and [A — ¢.Bo’]"

= Ap+{B} U p(B) is continuous. =

28

15.4. Fizpoint Bottom-Up Terminal Language Semantics
15.4.1. Terminal Language Semantics

We define the terminal language semantics S'[G] € A +— ©(T*) of context-free
grammars G by abstraction of their protolanguage semantics, as follows

S‘Igl = a“(s*Ial) - (34)

15.4.2. Fizpoint Right Bottom-Up Structural Terminal Language Semantics
In order to get the classical equational definition of the language generated by a
grammar [29, 30], let us define the language right transformer

F[9]

>

Aps XA | FlA-.0)p (35)
A—cER

Ape+a FA = oao’)p
Ap-p(B) F{[A = oB.o’]p

FYlA = o.ao]
F/[A — 0.Bo]
FIA = o]

1>

112

Apee.

We call F{[A — 0.0"] the right transformer because it describes the derivation of o/, on
the right of the dot. So it is defined by induction on the grammar rule right handside
from left to right.

The language generated by each nonterminal of the grammar G can be characterized
in fixpoint form, as follows

Theorem 44 (Ginsburg, Rice, Schiitzenberger)
191 = w F9] 0

Example 45 If, for the grammar G = ({a}, {A}, A, {A — AA, A — a}), we abstract
away the nonterminals in the fixpoint equation of Ex. 42, we get the language equation

X = {aluxx,

which least solution is, according to the Ginsburg-Rice/Chomsky-Schiitzenberger theorem
[31, 29, 30], the language defined by G. By defining X = p(A), this is p(4) = {a} U
p(A)p(4) or equivalently p(4) = FY[G](p)(A), that is p = F[G](p). ;

ProoF (ofF Th. 44) By Cor. 32, proving the local soundness and completeness condi-
tions (24). In particular, by def. of &* and of, &*(AA"+ (A’ = A 3 {A}UL 3 9))
=AA (A = A2 o({AJUL) 2 o/(@))) = XA (A = A ? /(L) 3 @) and
a'({B}Up(B)) = o (p(B)) = &' (p)B. "

Lemma 46 For all [A — 0.0'] € %, FI[A — 0.0'] € o(T*) — o(T*) is upper
CONEINUOUS. 0

PROOF According to Th. 109, by continuity of FL (Lem. 43), commutation af o IEL[A

4
— 0.0'] = F{[A — 0.0'] 0 &' (25), and o is onto in (p(7*), C) <_7—Z_» (T,). =

@

29

Abstract vSef Protodverivation Protodervivation Protosyntax tree Protolvanguage
mantics $°[G] s”[g] tree S°[G] S°[G] S* 9]

D¢ p(1) (D) o(T) o)

C - c c c

1 %] 6] %] %]

U U @] @] U

Ag] & (@ (@ {4}
THGI6(A) | postlB—>,] post[E—] post|E=] post =]

Figure 4: Semantic instances of the abstract top-down grammar semantics (36).

16. Fixpoint Top-Down Abstract Semantics

16.1. Top-Down Abstract Interpreter

All top-down semantics Sﬂ[[gl] € N s DF of context-free grammars G in the hierarchy
of Sect. 13 are instances of the following abstract interpreter (which generalizes the
top-down grammar flow analysis of [8, Def. 8.2.19]).

S{g] = o FA[G] where FI[G] 2 Ag- AA- A[GIUTHGlo(4) (36)

and <I5B, C, 1, U) is a cpo/complete lattice extended pointwise to (A — Dﬁ, C, 1,
L)) and (A — DF) s (A — D), £, 1, (1), the abstract seed is A*[G] € D, and the
top-down post-transformer is T# 6] € Df s D,

16.2. Well-Definedness of the Top-Down Abstract Interpreter
The existence of the least fixpoint (36) is guaranteed by the following

Hypothesis 47 T [G] is upper continuous for the ordering C on N + DEs, 0

16.3. Instances of the Top-Down Abstract Interpreter

The hierarchy of semantics discussed in Sect. 13 is obtained by the instances of
the top-down abstract semantics (36) given in Fig. 4 (post[r] preserves U whence is
upper-continuous). Observe that by Th. 17, the maximal protoderivation semantics
SP[G] is of the form (36) for FP[G] is given in Fig. 4. The study of the other instances
of the top-down abstract interpreter is forthcoming, in Sect. 17 for top-down grammar
semantics and in Sect. 20 for top-down grammar analysis.

Classical top-down flow analyzes also have the same form given in Fig. 5.

8Indeed monotony is sufficient [28].

30

Abstract IvSef Follow semantics Accessibility semantics
mantics $*[G] s'[4] S*[9]
D p(7U{4}) B
C - =
1 1%} i
] @] V
A'[g] {(H14=5) (4=7)
T[G16(A) U Gl denu \/ e
B—oAc'€Z [[6 € S1[G](c") 2 ¢(B) s QD B—oAc'€R

Figure 5: Flow analysis instances of the abstract top-down grammar semantics (36).

16.4. Soundness of the Top-Down Abstract Interpreter

We can define the soundness of an abstract top- down interpreter S&[gﬂ with respect
to a concrete mterpreter Sh[g]] as &(SY[G]) O sﬁ[[g]] where OJ denotes either C, = or
Jand <Dh Ch = A_+ (Lﬁ IZu) is a Galois connection extended pointwise to (A" Df,

Eh> (N~ LA, Eﬁ>. Then the sufficient soundness condition given in Cor. 101
OL

in the form of the commutation condition V6 € O : & o [G1(F%) O ?ﬁ[[g}] o &(F?) is
implied by the following local soundness conditions on the abstract operators

a(AG]) O Afg] and aoTHG] O Tigloa.

Note 48 By Cor. 101, the condition can be restricted to ¢ o 'T'B[[g]]((b) | 'T'E[[Q]] o &(9)
where ¢ is an iterate of =& [G], or, by Cor. 106 when O is =, we can assume that

¢ Chipp FAG]. o

Theorem 49 The above local soundness conditions imply the soundness (and complete-
ness whenever O is =) of the abstract top-down interpreter o'z(SE‘[[Q]]) = éz(lfpEu = [G]) ©
w FI) = S'19). e
PrROOF We apply Cor. 101, proving the commutation property
aoFI[GI(0)A = a(FI[G](4)A) {def. o and pointwise def. &§
= a(4[g]) Ua(T[Glé(4))
{def. (36) of = [G] and lower adjoint of Galois connection preserves lubs§
O A[G)uTGla(9)(4)
{local soundness conditions, LI is CJ-monotonic, and pointwise def. &§

— (F[G] > &)()A ldef. (36) of F{[G] and o§ . m

31

17. The Hierarchy of Top-Down Grammar Semantics

17.1. Fizpoint Top-Down Protoderivation Tree Semantics

17.1.1. Protoderivation Tree Semantics

The protoderivation tree semantics S°[G] € A +— (D) of a context-free grammar G
= (T, N, S, &), is the set of protoderivation trees generated by the grammar G. It
is defined as the protoderivation tree abstraction of the protoderivation semantics, as
follows

S92 ¥ (SPLaD) - (37)
Lemma 50 VA € .4 : SO[G)(A) € P, , - o
ProOOF By Lem. 5 and definition of al. n

17.1.2. Protoderivqtion Tree Derivation
Let us define R® € Z — D as

RA—>o] 2 (AR A= 0] 4) (38)
where §6 € X — Dis
Iifi[A —0wo’] = [A—=owao']a Iié [A = oa.o’] (39)
rf [A—= 0.Bd'] = [A— 0.Bo| ?f [A — 0B.0’] (40)
RA=o0] 2 [A- o) (41)
so that
S B, &' (42)

N y
= In>0,61,...,6n+1,41,. .., Ap E N, 01,...,0, €V : 0 =1[A1]S2 - - Sn[AnlSnt+1 A
Vi e [l,n]: A; = oy ERNY zglli‘;[Al —>01]<2...<an€6[14" — onlSnt1 -

17.1.8. Fizpoint Top-Down Protoderivation Tree Semantics
Theorem 51
S'IG] = w F[g]
where FIG] = Ao+ AA-{[A} Upost[a—=](4(A)) . 0

PROOF We apply Th. 49. In the proof, we assume that ¢ is an iterate of FD [G] whence,
by (17), ¢(A) = post[E=,]({- —}), as shown in Ex. 107. Let us calculate

32

— oA Sy - aa-m {def. o’

— PN A-postB=,l0(4) = AA-{I I ea’(B(4)) m=, '}
{def. post and o, provided we can define G, such that {045(71'/) | 3r € ¢(A) :
T B, 7'} = {0'| 30 € a’($(A)) : § @=>, 8"}

= AA-post[E=](a’(¢)(A)) {def. post and o _§

— QR = SR Aol) def (1) of R and ofS
— (AR[A = .0]A)

by defining FVQ?[A — 0.0'] = aS(FVQ_D[A — 0.0’]) by induction on the length |¢’| of ¢/, as
follows

— R 0a0] = [A-car]add®A 5 ca’))

ldef. B, (12) of R[4 = ac’], and af§
= [A—ocwo']a Fefé[A — 0a.0"] lind. def.§
— B USeBe] = [A—0Bo|B RV S 0B’

{def. & (13) of & [A = 0.Bo’], and o’ §
= [A— 0.Bd] ﬁf [A — 0B.0’] lind. def.§
— RUAso] = [A—ol Jdef. B, (14) of RV[A = 0], and af

By induction on |¢’|, we observe that a5(<w’, w') 1 Ii_D[A — ow0’]) = FVQ?[A —ow0’]. Tt
follows that
5 N4 BD _ 4 %3 N AN (o
— ’({w, @)TR[A—=0]) = o’ (w)(AR.[A = o.0']4)a’(w’)
{def. (11) of RD, ad and (w’, @') 1, and since ozg((w’, w') 1 ﬁ?[A — o.0']) =

R[4 = 0.0’]§

= o (@)RIA = 0]dd (&) {def. (38) of RO[A — o] .§
Let us examine the pending condition

{o* (') | 3m € p(A) : 7w B=>, 7'} C {3 | 3 e o ($(A)) : 6 B> &'}
—=Vred(A):Vr': (nB=, ') = (I 9/5(¢(A)) L6 B, o (7)) {def. C§

= Vr,n (nB=,) = (a5 (m) =, (1)) {choosing 6 = o (7) .§

This sufficient condition leads to the design of =, as follows

T B4 7’
33

= In > 0,61, ,Snt1, @1y, Tnt1 € S, A1,..., A, € N, 01,...,0, € V" :

ol (m) = v V
a® ()0 (1) a8 (@3)a’(s3) . .. (sn)x 5(wn) V @ (@ni1)e’ (s, v} AVi €
[Ln] + Ay = 0 € ZANa () = a’(q)a ((wl, wy) 1t RP[4, —

1))’ (s2) .’ (sn)a’ (@n, @ni1) TRV [An = 00])a’ (n41))
{def. (15) of B=>,, =, and a°§

< In > 0,61, Spt1, @1, - wnﬂ € SAl,.. A, € No1,...,00 € 2
a’(m) = a’(q1)a’ (w1) [A] @ (w@2)a’ () ... a’ (G) (wn)-a (@nt1)a’ (Sus1) A
Vi o€ [Ln] A — o € Z A a‘;(w) = p (1)’ (@)RO[A; —

0110 (207 (62) .0 (60)0 ()R A — 0] (1) (6051)
{since a5(<w w>TRD[A—>cr}) —a()R‘S[A—mr} 5(o))
<~ In > 0,¢,....641,41,..., 4, € N,o,...,00 € PV a6(7r) =
QA Al s AV € [ILn] 1 Ay — 05 € RN (x') = JRY[A; —
o1]ch ... <L RI[A, — OnlShit {by letting ¢/ = a%(¢;)a’ (@), i =1,...,n+1§
= o) E= ol () (by defining G, as in (42) .§

For the inverse inclusion, we have

{51 36 € a®(p(A)) : 6Vg 5 C{a’ () | Ired(A) : 7 B—, 7'}
— V" € g(A) : ¥ : (@’ (7") @=, &) = (O € $(A) : I w By AY
(7))) {def. C and since § € ad(¢ (4))
— V'’ € ¢(A) : ¥ : (P(n") BE=, 8) = G’ a B=, 7 AV = aO(n)
{choosing 7 = 7" §

We have " € ¢(A) so (F H) @=, 7" hence, by def. (15) of E=>,, 7" has necessarily
A A
the form ¢;wo; 262 + + + S 1 T m—1 Wmsm where m > 0 (m = 0 if 7" has no
nonterminal variable). It follows that
ozg(w”) H=SY
= In>0,6,. %41, T1,---,@nt1 €S, A1,..., An € N ,01,...,00 € V"
Ar
7’ = quw En W22 - - - SnTn ! Wn+1§n+1 AVi € [1 n| V: A; — o0; €
AN = (<1) (W1)R5[A1 = o]l (@:)0 (%) ... 0’ (6)a’ (wn)RO[A,
Un]aé(wn+1) (§n+1) . y .
{def. (42) of @=>, and def. o’ so that ¢ = a®(c1)a’(w@1), ..., Shyy =
aé(wnJrl)O‘é(gnJrl)S
- 3n>0,§1,...,§n+1,w1,.. wn+1€S Al,.. A, GJVUl,.. crne”I/*
A n
/v' = qw WaS2 - . . ST, ! wannH AVi € [1 n):A; = o0i € ZN o =
0/5(?1)0/5(@1, wz) T RD[Al — a1])a’(2) ..o’ (s *(@ns @nt1) T R[4 =
on])® (Gng1) Zblnce oz5(<w w') T RD[A — a}) = o (w)R5[A — a}a‘s(w’)s
— I 1" B, 7 A =0 (n) {def. @® and (15) of B=,§ . m

34

Observe that as a corollary of this proof, we have just shown that

Corollary 52

{QS(W)IHAG«/V:(Fﬂgw} = {§|3Ac A B=,d} . .
Corollary 53
SI6] = AA-{3eD|@E=,d} . .

PrOOF By Th. 51, S°[G] = 1fp~ FO[G] where FO[G] = A¢p+ A A+ {[A} U post[@=>,
1(6(A)) so SU[G](A) = 1fp~ A X « {[@} U post[m=,]X by Ex. 105 whence S°[G](A) =
post[@=,]({{A}) = {0 € D | A @ 5} by (A.1). .

17.2. Fizpoint Top-Down Protosyntax Tree Semantics

17.2.1. Protosyntax Tree Semantics

The protosyntaz tree semantics S°[G] € N +— o(T) of a context-free grammar G
= (7, ./, S, #) is the set of protosyntax trees generated by the grammar G for each
nonterminal. It is defined as the protosyntax tree abstraction of the protoderivation tree
semantics, as follows

SIG] = 5(S°[G]) - (43)

17.2.2. Protosyntax Tree Derivation
Let us define R® € #Z — T such that

RI(A—0] = (AR[A—.0]A) (44)
where Fvié eR — T is
Iv?S[A —owao’] = a |§S [A = oa.o’] ﬁs [A— 0.Bo'] = Iis [A — o0B.o’]
Iv?é[A —o) = €
so that
F =, ¥ (45)

A v
= E|TL>0,§1,...,§n+1,A1,...,An EJV,O'17...7Jn E’V*ZT:§1§2...§n§n+1/\
Vie[l,n]: Ai = o0 € ZNT =R [A] = o1sa ... uR¥[An = 0n]sni -

35

17.2.8. Fizpoint Top-Down Structural Protosyntax Tree Semantics
Theorem 54

A

S[G] = i FS[G] where FS[G] 2 A¢ AA-{[@} Upost[m—,|6(4) . o

PROOF We apply Th. 49 where Th. 51 provides a fixpoint characterization of S° [G] =

1fp- F9 [G]. Given an iterate ¢ of Fé [G], we have to check the following local soundness
and completeness conditions

— FAAA{@Y) = aA-{@) {def. a®§

— o¥(AA-post[E=4]p(A) = XA« {a*(8') | 36 € p(A) : § =, &'} {def. post, a’§
= XA{#|IF €a’(¢(A)): ¥ @=>, 7'}
{provided we can define =, such that {a*(§") | 36 € ¢p(A) : § =, §'} =
{#| 37 € a®(¢(A)) : ¥ @=, 7'}
= AA-:post[E=](a’(¢)(A)) {def. post and o*§

The design of E=, follows from the evaluation of the condition

{a%(8") |36 € p(A) : 6 W=, 0"} C{#' | IF € & (p(A)) : 7 =, 7'}
= Voep(A): Y : (0 m=,) = (37 € *(¢(A)) : 7 B=, a*(¢')) {def. C, 3§
— Ve p(A): V(0 m=,) = (&°() @=, (")) {choosing ¥ = a*(8)§
as follows
6 B, ¢
= dn > 0,¢1,-..,611,41,..., 4, € N, o1,...,00 € Y* aé(g) =
aé(gl)a%(gg)...ag(gn)a§(§n+1) AYi € [Lin] : Ay = 0; € Z A a8 =
o (c1)a* (R[4 = 01])a’(s2) . .. a(sn)a* (R°[An — o)) (Gus1))
{def. (42) of =, =, and &*§
— In > 0,5, 641, A1, Ay € Nou,...,0n € V5 P =
@ (s1) Ao’ (s2) - .. () A (sny1) AVi € [1,n] : A — 0 € Z N8 =
o (R AL — 01]a*(52) ..o ()R [Ay — o]0 (5041) V
{by defining R* as in (44) so that o (R°[4 — o]) = R¥[4 — 0]
= In > 0,,....chi1, A1, Ay € No,...00 €V 1 (6 5) =
SIAdSh - ShAalshis AVi € [I,n] @ A — o € ZAP(E) = RY[A
o1)sy ... <L R¥[A, — oS4t {by letting ¢/ = a®(s;),i=1,...,n+ 18
= () @=, () {by defining F=, as in (45)3

Inversely, we must also check that

{(# |3 € a¥($(A)) : F @=, 7'} C {*(8') | 30 € $(A) : § =, 5’}
= V' € p(A) V(@) B, 7)) = (B € p(A) T =, S AT =
o’(8") {def. C and since 7 € o (¢(A)) so 38" € ¢(A) L7 =af(8")§
36

We have 6" € ¢(A) and ¢ is an iterate of Fo [G] hence, [S] @=, 0", so by def. (45) of
G, 5" has necessarily the form ¢;[Af]c2 ... ¢n[AL|Smy1, m = 0.

o (5") me= ¥

— dn > 0,¢, g, AL, Ay € Non,...,0n € Vi aP(8") =
Gi[Ails2 - -sn[Anlsna1 A Vi € [I,n] + A — o0 € ZNT = gllv?g[Al —
o1sa ... ¢, R® [An, — onlSnt1 {def. (45) of EF=,§

= I > 0y A Ay € ANoon €Y (6" =

e
o (AT () .M ()AL (Shar) A Vi € [Ln] : A > 0, € BAF =
o (¢))R[4y —>01] () - @ (IR [An = oula’(sp)
{def. a® so that ¢; = a®(¢)), i =1,...,n+ 1§
<~ dn > 0,¢,...,5041,41,....,4, € N,o1,...,00 € V" : (8" =
(A’ (ch) ... a(sh) Al (shyr) AV € [Iin] + A — 0 € ZNF =
(¢’ (R[A1 = 01))a’(3) ... @ (s})a* (RO[An = o))’ ()41)
{by def. (44) of R¥ so that a(R*[A — 0]) = R¥[A — o]§
— 3B € d(A) : In > 0,61, 6041, A1,..., Ap € N,o1,...,00 € V* 1) =
sifAdse .. Gu[AnlGni1 AVE € [In] + A — 0y € ZNF = a(q)a (Ré[A —
11)0%(52) - 0 (60)a (R3] A = 7)) (6041) N
{by choosing ¢ = 0" which, since a®(0") =
o (A (sh) - - o () Al (spp0) and 0" = §{'[A)sd ... s [Ap]smia
so, by def. of a®, m > n and 5" has the form S1[A1]s2 - - - Sn[AnlSni1 With
() =a’(s),i=1,...,n+1§
— 35 e ¢pA) 3 :TIn > 0,9, .41, A1, Ay € N 01,00 € V*
5 = Gi[Ads2 - Sn[AnlSnt1 A VI € [I,n] ¢ A; — o; € RN = §1|§5[A1 —
o1z ... ganis[An — Oplongt AF = a(d)
{by def. a® and by defining 5 = qlﬁg[Al — o1]s2 . ..gnlis[An = On)Snt1)
= e Pp(A): 3 S E=, I AT =a () (def. (42) of GF=,§ . m

As a corollary of this proof, we have shown that

Corollary 55
{(P) |FAc N A E=,0} = {F|IAc A @A ET=,7}. q
Corollary 56

S°IG] = AA-{FeT|M@A =, 7} . -

PrOOF By Th. 54, S°[G] = lfp~ F*[G] where F¥[G] = A¢+ AA+ {[A]} U post[E=>,
Jp(A) so S*[G](A) = Ifp~ AX - {.} U post[E—=>,]X by Ex. 105 whence S*[G](A) =
post[@F=,|({[@}) = {7 € T | A = 7} by (A.1). u

37

17.3. Fizpoint Top-Down Protolanguage Semantics
17.83.1. Protolanguage Semantics

The protolanguage semantics st [G] € A& — p(¥™) of a context-free grammar G =
(T, N, S, %) is the protolanguage generated by the grammar G for each nonterminal.
It is defined as

silgl 2 o™ (S°[4]) - (46)

17.3.2. Protolanguage Derivation
Let us define the protolanguage derivation =, for a grammar G = (7, AN, S, XZ)
(= when G is understood)
nE=>g (47)
2 In> 0,61, sSnt1, A1,y Apy01,y ey 0n i =61 A162 -« . S ARS+1 A
Vie[l,n]: A =0, € ZNN =015 ... Sn0nSnt1 -

This is [8, Def. 8.2.2] for n = 1, the difference being that we allow several simultaneous
substitutions.

17.8.8. Fizpoint Top-Down Structural Protolanguage Semantics
The protolanguage semantics can be defined in fixpoint form as

Theorem 57

A

SL[g] = ip" FL[G] where EL[G] 2 Xg+ AA-{A}Upostl=old(4) . o

c

PROOF We apply Th. 49 to the fixpoint characterization Th. 54 of S*[G] = 1fp~ F*[G].

We have a“(A A+ {[A]}) = A A+ {A} and given an iterate ¢ of F*[G], we have

o (A A+ post[@=>,]6(A))
= AA-{aE(#) | I e d(A): ¥ G—, 7'} {def. oL and post§
= XA |3 € a"((A) :n =o'} V
{provided we can define =4 such that {a*(¥') | 37 € ¢(A) : ¥ F=, ¥} =
{1 3n € a®(B(4) s = 0’}

= AA-postf=](a(s)(A)) {def. post and ozLS
The design of =>4 derives from the condition
{oh(#) | 37 € 9(4) : 7 @= 7'} C {nf | In € ol (8(A)) 1y =g)

= VFEG(A) YV (F B=>, ¥) = (@n € oL (¢(A)) : n == al(#)) {def. C, 3§

(
— VFeg(A):VF : (F B=,) = (@F(F) =0 aP(#)) {choosing = oL (F)§

as follows

38

v v/
TEF=g T

= dn > 0(1,...,gn+1,A1,...,An € N,o,...,0n € V* ai(%)
« (gl)Ala (62) .. (gn)A a (§n+1) AVi € [Lin] + A — 0y € ZN af‘(N =
ok (a)al (R¥[4; —>01]) Hs2) ... al(sn)a" (R¥[An — onl)at (Sut1))
{def. (45) of E=>,, =, and ol

<~ dn > Ogl,...,§n+1,A1,...,An e N, o1,...,0n € V¥ at(%)
(q)Ala (s2)...al () A, o L) AVi € [I,n] : Ay — o5 € %/\ai(%’) =

at(q)ora” (<2)-- L (Gn)onar (<n+1)

{def. o and (44) of R® so that a (RS[A — o)) =0
= In > 0,541 A1,..., Ay € N,o1,...,00 € YV aL(%) =

A ... Aps AV E L]t Ay = 0y € ANl (#) = g{algé e Sh O = St
{by letting ¢! = a®(s;),i=1,...,n+ 1§
— a"(F) =g oM (F) {by defining =, as in (47)§

Inversely, we must also check that

{0 | In € aX(8(A) 1 n =o'} € {a"(F) | IF € §(A) : 7 @y 7
= neal(@(A): V0 : (e) = GF € 6(4) : 3 7 =g ¥ An = ol ()
{def. C§
= Ve g(A) iV (QF(F) e) = (3F € 9(A) ' F B, B AN =
o’ (#)
{since n € ozL(¢>(A)) son= af‘(%”) for some 7' € ¢(A)§
We have 7/ € ¢(A) and ¢(A) is an iterate of F*[G] hence [S] @, 7 so by def. (45) of
=g, 7" has necessarily the form ¢ [Af]<5 . . . <}, [Ar.]S/, 41 Where m > 0.

at(%“) =

= I >0,6,. . s Al Ap, o, o s 0P (F) = qAIG . uAnugr AV E

1,n]: Ai >0, EZNAN =61016 . . Su0nSnt1 Zdef (47) of =g}

= In > 0,¢{,. . i1, A1, LA o, o, 2 T = §1m§2 Ssh[Al]snq A Vi €
[1,n] : A‘%ozE%An—fa(qﬁna(%) ok (s)onal (s)l)

{since 7" = glmg2 gmm§1/n+1 so al(#) _

aF(Aal(h) ol ()AL (hyy) = aAiG...nAnSa1 hence,

by def. of o, 7 has the form ¢f'[A7]<}...<//[Ap]s/, with ozL(ng’) _
P=1, 1

= In > 0,¢ ..., AL, An,al,...,an 7 = g{’qé’...ggcg+1 AVYi €
[L,n]: A = 0y € Z A1 = a"(a)a (Rb[Al - 01]) L().. ai(cn)ai(lié[fln —
on))a (<n+1) {def. ok and (44) of R® so that oL (R¥[A — 0]) = o
= 3 € ¢A4) : In > 0q,...,1, A, Apon 0 0 T =
Gi[Als2. - u[An]sni1 AV € [Lin] @ Ay = 05 € Z AN = ol (G R[A; —

Ul]§2 ce §n|§§[An — UnJ§n+1)
{def. o, renaming ¢/ as ¢;, i = 1,...,n + 1 and choosing ¥ = 7"§

39

— I e ¢(A) : I : In > 0,¢1,... .11, A1,.. ., Ay € N, 01,...,0, € PV :
T = G1[As2 .. Sn[An]Snt1 A Vi € [1,n] A > o € ZNTF = qR[A —
o1lsa - saR¥[A, = ulsnir A1 = ol (F {def. 3§
= FFep(A): I Fm=,F An =l (F) {def. (45) of GF=.5 . m
As a corollary of this proof and (16), it follows that
Corollary 58

AA-{al QP @) | (F =) By 1) = AA-{n| Ao 0} .

so that we also have the classical definition of the protolanguage generated by a grammar
[8, Def. 8.2.3]

Corollary 59

SIIG) = MA-{ne V" |[A=n}. .

PROOF By Th. 57, SL[G] =1tp" FL[G] where FE[G] = X ¢+ X A« {A}Upost[=]¢(A)
so SEG](A) = lfpg A X « {A} Upost[=>,]X by Ex. 105 whence S*[G](A) = post[==¢
J({A}) = {ne 7| A=>¢ n} by (A1) "

17.4. Eztension of the Fizpoint Top-Down Structural Protolanguage Semantics to Gram-
mar Rule States

The protolanguage semantics SZ[[Q]] € N +— p(¥*) can be extended to grammar rule
—.
states SL[G] € Z* — p(?™*) as follows

SLIGIA = 0wao’] 2 aSE[G]A = oau] (48)
SLGIA = 0.Bo] 2 SE[G)(B)ST[GIA — 0B.o]
SLIGIIA — o]

€

so that
Corollary 60

SLIGIA = 0u0’] = {c€ ¥ |0 Eg). .

PRrROOF By induction on the length |o/| of o’.

— SLG)A— cac] = aSL[G]A— sao] {def. (48) of S L[G]S
= af{se?V |0 Egc} {ind. hyp.S§
= {Je?V |ad =,¢} {def. concatenation, == 4, =, and letting ¢’ = a c§
— SL[GlA— 0.Bo] = SE[GI(B)SEIG]A — 0B.o'] {def. (48) of S L[]S

40

* %V
= {ne¥* | BE=,n}STG]A = 0B.0]
ne? I Be=gni{ce V" |0 =}
= {(eV | Bo =<}

{Cor. 59§
{ind. hyp.§
{def. concatenation, ==, =, and letting ¢’ = 1§

{det. SLIG]S
{def. =g and ==4§ . n

— SLGA—o] = e
= {seV e}

18. Abstraction of Top-Down Grammar Semantics into Bottom-Up Seman-
tics

In Sec. 11 and Sect. 17, we have constructed a hierarchy of top-down semantics
while in Sect. 8 and Sect. 15, we have constructed a hierarchy of bottom-up semantics,
as illustrated in Fig. 1.

Top-down semantics compute grammatical structures with nonterminal variables
replacing these nonterminal variables by a function of the right-hand side of corresponding
grammar rules A — o. When no nonterminal variable is left in the structure, we get a
grammatical information which can also be computed bottom-up. As shown in Sect. 12
by Th. 22 in the particular case of protoderivations, bottom-up semantics can, up to an
isomorphic projection, be understood as abstractions of top-down ones by restriction to
terminal structures, that is, without any nonterminal variable.

As shown in Fig. 1, this can be extended to the hierarchy of semantics, up to an
isomorphic projection, as follows.

Top-down concrete | Abstrac- | Bottom-up abstract Isomorphic
grammar semantics tion grammar semantics projection
Protoderivation SD [G] Ozb‘72 Derivation Sd[[g]} A AT AA-T.A
Protoderiv. tree S [G] 88 | Derivation tree S [G)| = EAT - AA-T.A
Protosyntax tree S*[G] 88 Syntax tree S[G] |7 = AT+ AA-T.A
Protolanguage S¥ 61 = Protolanguage S” [G] k21
Protolanguage Si[[g]} at Language S‘[G] ™21

This shows that although the top-down grammar semantics and bottom-up grammar
semantics differ in the way derivations, derivation trees and syntax trees are built, they
do coincide for protolanguages whence for terminal languages and therefore define the
same language, although in different ways.

One level of abstraction in Fig. 1 (where the isomorphic projections are omitted for
simplicity) can be described as shown in Fig. 6.

Lemma 61 If ©° is a bijection, Sﬁﬂg]] = aB(SE[[gﬂ), Sﬁ[[g]] = aﬁ(SE[[g]]), ot ot =gt
af ort ol o (SH[G]) = xH(SEG]), then af(SH[G]) = 7 (SFG]). -

PROOF
41

top-down semantics | mt Sﬁ[[g]] = aﬁ(sﬁ[[g]])

" i 1 bottom-up abstract se-
o mantics
SH[G] £ a(S[G]) :
top-down abstract se- N N 1 o
mantics ool o 7t
; i a
@ SH[G]
o bottom-up concrete se-

v o mantics
S*[g]
top-down concrete se-
mantics 1 bottom-up semantics

Figure 6: Top-down to bottom-up abstraction.
o (SF[g])
= ot o a(S7[G)) (since SE[G] 2 af(S[G]) and def. o§
R . 1 A . . N N 1 -
= 7woafornt oaf(SH[G]) {since a*f o of = 7F o af o o A
. . =1 PO PP P
= nfodfont oni(SH[G]) (since a8 (S[G]) = 7*(S*[G])§
= 7*(S*[G]) {since 7% is a bijection and S&[[g]] = aa(SE[[Q]])S . n

18.1. Abstraction of the Top-Down Protoderivation Tree Grammar Semantics into the
Bottom-up Derivation Tree Semantics

Let us define the abstraction a® = AT+ XA+ T(A) N D such that

(N s p(D), €) gy (N s (D), C)

(XSJ

which collects the terminal derivation trees (without nonterminal variables) among
protoderivation trees.

Lemma 62

aoad = APe N pIl)s XA+ (aP4(P)A) .

PRrROOF Given P € A +— p(II), we calculate

= a%@’(P)) = AA-a’(P(A)ND {def. a% and o
= AA-{a’(n)|7me P(A}ND
{def. a® € I+ D where D 2 (PUX)* and % 2 T UN°URS
42

= AA-{a%(0) |0 € (P(A)NO)}
{where o’ cO@—D D2 (PUX)* and U = T U % since ag(w) € D if and
only if 7 has not nonterminal variable in .4 that is 7 € ©§
= AA-d’(P(A)N0O) {def. a® where (P(A) N ©) € p(0)§
= AA-d(aPi(P)A) (def. oD g

The protoderivation tree semantics is a top-down way of defining the derivation tree
semantics, by restriction to terminal trees, as follows

Theorem 63
aP(SIG]) = AA-SGLA = AA-{$e€D|@A @=, 0} . o

PROOF As shown in Lem. 61, we have:

oSG = a®(a’(SP[A])) Ldef. (37) of SP[G]5
= AA-P@PIUSPIGNA) = AA-aP(SYGJ.A) by Lem. 62 and Lem. 22§
= AA-S9[g].A ldef. o and (26) of S°[G]§
Moreover

oM (SOIG]) = AA-{a’(n) | 7€ SPIGIA)IND {def. a8, (37) of S°[G], and & §

= Al [relar B) Ee, ninD {def. (16) of SP[G]5
= MA-. {055(71') |FA e AV :m eI AL =) g 7w} A ND {def. selection e.e§
= AA-{§|FAc N A E=,6}.AND {by Cor. 52§
= ANA-{6€D|MA =, o} {def. selection «.« and N§ . n

18.2. Abstraction of the Top-Down Protosyntax Tree Grammar Semantics into the Bottom-
up Syntazx Tree Semantics

Let us define the abstraction a® = AT+ XA+ T(A) N 7T such that

38

(AN = 0T, C) =5 (N = o(T), ©)

which collects the terminal syntax trees (without nonterminal variables) among protosyn-
tax trees.

Lemma 64

a¥oa® = AT €N p(T) AA-a*(a®®(T)A) q
PROOF Given T € A — o(T), we calculate

43

= *@(T) = XA-STANNT {def. &% and o§
= AA-{P(0) | beTAYNT

{def. o where o € D — T, D = (WU?V/)*, Y ETFUNUR, T2

(PUTUN) and T 2 (2UT)*S
= AA-{a’(0)|0eT(A)ND}

{by def. af since a*(d) € T if and only if § contains no nonterminal variable in

NE :chatAisgef?whEzref)é(,@Ué/)* and @Vé ﬂu??-j R

= AA-{a’(0)|0€(T(A)ND)} {by def. @® and o which coincide on D§
= AA-f(a®(T)A) ldef. o and a¥§ . m
The protosyntax tree semantics is a top-down way of defining the syntax tree semantics,
by restriction to terminal syntax trees, as follows

Theorem 65
o (S°[G]) = AA-S[Gl.A = XA-{feT|@Am=,7}. .

PROOF As shown in Lem. 61, we have:

S = 0¥ (S[9]) (def. (43) of S[G]
= XA (a®(S°[G])A) {by Lem. 64§
= AA-a*((S°[G]).4) {by Th. 63§
= AA-S°[G].A {def. o, selection ..., and (29) of S°[G]§
Moreover

AA-S[G].A = AA- ag((Sé[[g]]).A) {as shown above§
= AA-P({deD| A =, d}) {by Th. 63§

AA-({a?(0) |6 €eDA3A € N : [A =, §}).A) {def. selection «.. and a*§

= A-{a*0)|deDA3Ac N [A B, 6}).A
{by def. o® and o® which coincide on D §
= AM-({*0)|FAec A AE—=,0}NnT).A
{by def. a® since a®(4) € T if and only if § contains no nonterminal variable in
A that is § € D where D = (A,@U?A/)* and % = T U RS
= AM-{7|FAeV A E=,7INT).A {Cor. 55§
= A-{FeT|A =, 7} {def. N and selection «.¢§ . n

18.3. Abstraction of the Top-Down Protolanguage Grammar Semantics into the Bottom-
Up Protolanguage Semantics
We consider the abstraction aP € p(¥#* x #*) — A — p(¥™) defined as

A

aP(r) = XA{oeV*|{(A og)er} = XA-post[r]{4})

. p .
so that (p(¥™* x ¥*), C) ’Y@p (N = (™), C), pointwise.

«

44

Lemma 66 Let F™, n € N be the iterates of FL [G] from @ (as defined in Sect. A.1)
with limit ifp- FLIG] = Fv = Upen F™. oP(@) = XA+@ = F°. Forn >0, we have
ap('%g) = Fn, O

PRrOOF We first prove that Vn > 0 : FL[A = 0.0'](aP(E,)) = {c | 0/ S <} by
natural induction on the length |o’| of o/. We have three cases.

— FLA 5 0uad|(0P(E5,) = aFLA > 0ao’](0P(E,) (def. FL & 2505
= af{s|d Foc} {ind. hyp.§
= {J|ad' =4} {def. concatenation, ==, ==, ¢’ = ag, def. F=4 & =
— FYA = 0.Bo')(aP(E>))

= ({B}U{c|B&>,c}) FLIA = 0B.0')(aP(22,)) {def. FL and oP§
= {c| BES, ¢} FLIA = 0B0’)(aP () {n>0s01CHES,S
= {cIB=oc}{d o' F=o ¢} (ind. hyp.§
= {"|Bo' ¥=4<"} {def. concatenation, ¢ = ¢¢’, def. F=4 & = §

FLIA — 0 (0P(E5) = {e} = {c| e, ¢} ldef. FL, By = 1, BS54 & =4

The proof of the lemma is by recurrence on n. For the base case n = 1, we have

AP(E=,) = adPQ)UaP(=,) (def. B, aP preserves lubs, and def. E=§

= x-{41u |J {0} {def. aP & =
A—oc€EZ . N

= A-{A}u | FHA—0](AB-2) {def. FL§

. A—o€EZR .

= FLGI(F° = F? {def. FL[G], and iterates FO, F§

For the induction step n > 1, we calculate aP(E=,)

= AA-{A}U U {¢|oFE=¢s} {def. B=5, , P presering lubs, o & =
A—oc€EZR .

= AXA-{A}U U FLIA = 0] (aP(E,)) {as shown above§
A—oeZ

_ f:iﬂgﬂ (aP(E=,)) = EL [GI(F™) = F™' (def. FL[G], ind. hyp., and iterates.; m

The classical characterization of the protolanguage generated by a grammar [8, Def. 8.2.3]
is

Theorem 67
SLIG] = XA-{oeV* | A=, 0} . .

PROOF We must prove that S% [G] = aP(E=¢). We have
45

Sﬁ[[g]] = Furtu U " {Th. 41, FL[G] preserves lubs and def. | J§

n>1

= aP(Eo) U [aP(Ey) {by Lem. 66§
n>1
= aP(| | B, = off(U U =) {aP preserves lubs andd def. == §
n>1 n>1li<n
= oP(|J =) = aP(==y) ldef. J and F=¢5 . m

neN

It follows that the bottom-up and top-down protolanguage semantics of a grammar
are identical (which was not the case at more concrete levels of abstraction).

Corollary 68

stlg] = skg]. .
PROOF SL[G] = AA+{o € ¥*| A=, 0} = SL[G] by Th. 67 and Cor. 59. -
It follows that
Corollary 69
XA-al(a¥(S°[G))A) = oF(S*[9]) - .
PRrROOF
AA-al(@¥(S*[gNA) = SEg] {def. &L and (31) of SE[G]S
= siig] = oL {by Cor. 68 and def. (46) of SE[G]§ . m

However, in general, we have aL(T) £ ANA- ozﬁ(ozg‘é(T)A), as shown by the following
counter-example.

Example 70 By the choice of T represented by its graph so that T'(A) = {(A A)},
we have

o) = A {AE @AY = A {AAEA}) (def ok
= AA-{o"(A@A @A A))} {def. a*§
£ Ad-o = AAd-al(o) A-df({A@m@m AN nT

>

A

(def. ol and T £ (22U .7)* with no terminal variables [A] € NS
= AA-af(0¥(T)A) ldef. o and T = {(4, {(A S

46

18.4. Abstraction of the Top-Down Protolanguage Grammar Semantics into the Bottom-
Up Terminal Language Semantics

Applying the terminal language abstraction, we get the classical definition of the
terminal language generated by a grammar [8, Def. 8.2.3]

Theorem 71

SUG] 2 afSEIG) = AA{oe T | A=, o). .

PrROOF We calculate

SIG] = AA-{oeV | A=, o)) {def. S‘[G] and Th. 67§
= A-{ce T |A=, 0} {def. &, o, and ¥* N T* = T*§ . n

19. Bottom-Up Grammar Analysis

Classical grammar analysis algorithms such as FIRST [8, Sect. 8.2.8], nonterminal
productivity [8, Sect. 8.2.4], and e-productivity e-PROD [8, Sect. 8.2.3] are abstractions of
the bottom-up grammar semantics and are instances of the bottom-up abstract interpreter

(18).

19.1. First
The first abstraction a* € 7* — (.7 U{e}) of a terminal sentence is the first terminal

of this sentence or € for empty sentences. o' = Xo+{a € .7 |30’ € T*:0=ao'} U{e|
o =¢}. It is extended to terminal languages a! € p(7*) — (7 U{e}) in order to collect

the first terminals of the sentences of these languages a! = A X « Upes @'(0) and finally
extended pointwise &' € (A +— (%)) = (AN = (7 U{e})) on terminal languages

derived for nonterminals as &' = XL+ XA« a'(L(A)).
The first abstraction of language concatenation is

Lemma 72 For all ¥,%' € o(7*) and F, F' € p(.7), a*(B¥') = o (Z) &' o} (X))

where F&'F = (FF 402 (F\{)U[lec F?F s2)s02)
and {a}@'F = ([F 427 {a}s9). 0

Proor We calculate

— J(ZY) = U al(o) = U a'(o102) {def. o' & language concat. ¥Y'§
ey’ 01E5,02€5
= {a€eJ|3o,01,00:01 EX N0 €Y Nojoa =ac}U{e|ee X nee X'}
{def. al, U, & sentence concatenation 003§
= {a€ 7 |3Jo1,02:a01 €N €Y }U{a€ T |Joz:e€XNaoy €X'} U{e|ee
LAeeX'} (o109 = ac with 01 # ¢ or 01 = €§
47

= (Y422 (({ac T |3o1:a0 €X}U{e|eecTP\{eHU{aec T |Toz:cc
YAaoy € XIU{e|e€XAheeX}sa) (Bog:0 €Y =Y £Tand e g T§

= (Y#£27a®)\{Uleca (D)7 (X):2):0)
{def. ot (¥), conditional, and a! so that € € ¥ <= ¢ € a}(%)§

= (@@ #£22d@\{JUlecal@) 2 (X)s2)30) = (X))

{def. ol so that X # @ <= ol (X') # @ and def. & §
— {a}a'F = (F#2o%{a}\{jU(ec{a}?F :2):0) {def. ®'§
= (FF#27%{a}:9) le¢faiS m

The first concatenation is monotone (hence upper-continuous since . is finite)
Lemma 73 If Fy C F| and Fy C F} then Fy &' F» C F] &' F}. O
Proor

Fo'F = (42?2 (P \{)U(ce F,? F32)s2) {def. @' in Lem. 72§

(Fs#£2% (Fi\{)Ulee 1 ? Fea)s o)
{since Fy C Fj so Fy # @& implies Fy # @ and U is monotone§

C (Fi#2% (F\{)U(ec F| 2 Fy32)30)
{since F; C F| so € € F} implies € € F| and U is monotone§

C (B#£2% (Fi\{e})Ulec F{ ? I :2):02)
{since Fy C F] so (F1 \ {€}) C (Fy \ {€}) and U is monotone§
(Fs# 2% (F{\{e)U(e€ F{ ? Fy32)32) (since F, C F} and U is monotone$§
= Fo'F {def. @' in Lem. 72§ . g

N

N

The first semantics S*[G] € N +— (7 U {e}) of a grammar G is

S'gl = aM(s'IgD) - (49)
The classical definition of the FIRST derivation of a grammar [8, Def. 8.2.33] is
Theorem 74

SHG] = AA-{a€T|Foc T :A=sa0}U{e| AE=, €} . 0

ProorF We calculate

SUG] = &MSYgl) = AA-a'(SYG](A)) {def. S'[G] and &'
= M-ad'({c e T | A= o)) {Th. 71§
= A{a€eT|FoeT A= actU{e| A=, €} {def. o and €§ m

48

The first semantics S'[G] € A — (7 U {e}) of a grammar G (49) can be extended
t0 SIG] € ¥* (T U{e}) as

S'Gle 2 e, S'Gl@) 2 {a) (50)
S'al4) 2 SUGl4) S'[Ol(mow) 2 S'[G)(o1) &' S [l (o)
so that
Theorem 75
SUG] = Ao-{a€T |30 € T 0>, a0'}Ufe|o=¢}. .
PROOF By induction on the length |o| of o using Th. 74 for nonterminals. -

For parsing, the input sentence is often assumed to be followed by the final mark -,
so it is useful to extend S'[G] to S'Y[G] € A+ (T U {-}) as

SUG] = AA-{aeT|Foec T A=z a0lU{d| A=, €} . (51)

The FIRST algorithm [32, Sect. 4.4] is indeed a fixpoint computation [8, Fig. 8.11] since

Si[g] = 1fp F! [G] where the bottom-up transformer F'[G] is (19) instantiated as given
in Sect. 14°.

19.2. e-Productivity

The classical definition of e-PROD [8, Sect. 8.2.3] provides information on which
nonterminals can be empty. The corresponding abstraction is a° AT ([e eEX P WD
extended pointwise to af = AL+ A A+ af(L(A)) so that

€

(N > 0(T7), &) = (N =B =)
«
The e-productivity semantics S[G] = a“(S'[G]) = a(S'[G]) since a® = af o &' and
S'[G] = &' (S*[G]). This is the classical definition of e-productivity for a grammar [8,
Sect. 8.2.9] since S°[G] = A A« A == €. The e-PRODUCTIVITY iterative computation [8,
Fig. 8.14] is indeed a fixpoint computation S¢[G] = 1fp ~ F¢[G] where the bottom-up
transformer F¢[G] is (19) instantiated as given in Sect. 14.

19.3. Nonterminal Productivity

The classical definition of nonterminal productivity [8, Sect. 8.2.4] provides information
on which nonterminals of the grammar can produce a non-empty terminal language. The
nonterminal productivity semantics of a context-free grammar is indeed an abstraction of
its first semantics

S*IG] = a"(S'[Gl) = &"(S'IGD) - (52)

9The classical definition [8, Fig. 8.11] is simpler since all grammar nonterminals are assumed to be
productive.

49

where the nonterminal productivity abstraction is defined pointwise on terminal languages
derived for nonterminals ¢® = AL+ AA-a®(L(A)) as true if the nonterminal can

produce a non-empty terminal language and false otherwise a® = A% » ([E £ 30 ﬂFD
so that

(N 0T, &) e (N B =)

&
The productivity iterative fixpoint computation [8, Ex. 8.2.12] is S®[G] = 1#p F*[]]
where the bottom-up transformer F®[G] is (19) instantiated as given in Sect. 14.

The classical definition of productivity for a grammar nonterminal [8, Def. 8.2.5] is

Theorem 76
SPIG] = AA-Toec T A=, 0. O

ProOOF We calculate
SP[G] = a®(S°[G]) = a®*(MNA-{o€ T | A=, 0}) [def. S*[G] and Th. 71§
= Ao T A=go0 {def. &®§ . m

Corollary 77 We say that all nonterminals of a grammar G are productive if and only

if VA€ N :SP[G](A) = W, in which case
Vnev *Ioe T inE=g0 . a
PROOF By induction over the length |n| of . By cases,

— ifn =an thenJo € T* : 1 E=, o by induction hypothesis son = an’ E=, aoc € T*
by def. E=,;

— if p = A/ then 30 € I* : A E=, 0 by Th. 76 and J0’ € T* : f/ E=, o’ by
induction hypothesis so 7 = An' E=, 00’ € 7* by def. E=;

— if p =€ then n E=4 € € .7* by def. E= . n

20. Top-Down Grammar Analysis

20.1. Follow Grammar Analysis

20.1.1. Follow
The classical definition of FoLLOW [32, Sect. 4.4, p. 189], [8, Sect. 8.2.8] provides

information on the possible right context of nonterminals during syntax analysis.
The follow abstraction af € ¥* v+ (N +— (T U{})) is

o) & XNA{ae T | 0 n=n0A" NI € T* :q E=gan’'} U
{_' ‘ Eln/’/r]// . 77 — TI/ATI// /\,r/// '£>g 6}
50

where we use the classical convention that sentences derived from the grammar axiom
S are assumed to be followed by the extra symbol 4 ¢ ¥ (d is $ in [32, Sect. 4.4] and
in [8, Sect. 8.2.8]). This is extended to af (X) € p(¥*) = (A = (T U {4})) as
ol ()= AA- Uyes af(n)A so that
5
0% .
«

The definition of FoLLOW [32, Sect. 4.4, p. 189], [8, Def. 8.2.22] can also use that of
FIRST since

Theorem 78
(X)) = AA- U §>1[[g]](n”)[e/4] where X[a/b] = (X \{a})U{b|ae X} .
n'An’’€x
PROOF
(X)) = XA U {ae 7|3 0" in=n0An"AI" € T* 0 =g an'}U{H|
nes
I 0" i =n'An" A0 E=g €} {def. o/ §
— —
= XA | SGIMN\ A u{H]eeS IGI0")} (by Th. 75§
n' An’’ €y
%
= xA- |J S'GI0M)e/A) (by def. X[a/b]§ . m
n' An’’ €

20.1.2. Follow Semantics
The follow semantics Sf[G] of a grammar G is

S'[G] £ of (SL[G](S))

so that we get [8, Def. 8.2.22]

Theorem 79
SIG] = AA-{ac .| 8=, nAan} U{d|3In: 5=, nA}.
PrROOF
SI[G] = XA- U{{a eT | I n=n0A" A" € T* 0 E=qan”JU{H]|

I " =n0An" A E=g €} | S E=o) {def. ST[G], Cor. 59, and def. af§
= A-{ae T |30 :SE=enAan’}U{H | In: SE=g nA} (def. U& E=o§ . m

51

20.1.3. Fizpoint Top-Down Structural Follow Semantics

By abstraction of the fixpoint characterization Th. 57 of SL[[Q]], we get the classical
FoLLow algorithm [32, Sect. 4.4, p. 189] as an iterative fixpoint computation [8, Fig.
8.13]

Theorem 80 S/[G] € lfpg F/[G] where
FIIG] £ X¢-AA-{H4|A=5}uU
U S'G1e)\{)) Ule €S [G](e") ? 6(B) s 2) .

B—oAc'€Z

and € denotes = if all nonterminals in G are productive (as defined in Sect. 19.3) else
C denotes C. 0

Proor We have

= S[61 = of <a¥(s"S])
{def. ST[G] where oS is the abstraction of functions at point S of Ex. 97§
= ol (1fp” A X+ {S} U post[=>4]X) {by Lem. 82§

so that we apply Th. 49 to this fixpoint definition.

— af({g})i = XN<{ac T |0 :S=0A" A" € T*: 0 =4 an’'}U{H|
I ,n" S =n'An" Ay E=q €} {def. of§
= AA-{Hd]|A=5} {def. sentence equality and F=§

— of (post]=4]X)
AA- U{?l IG10" e/ | 3n,n' :m e X Anpe=¢ A"} {Th. 78, def. U, post§

%
=)‘A.U{Sl[[g]](n”)[e/4] | dn > Oagla"';§77,+17A17'"7An7017"'30—n .
A6 .. suAnsnir € X AV € [I,n] + Ay — o, € Z AN - gAY =
S10162 -+ - SnOnSnt1} {def. (47) of =4 and 3

%
= AA- U{S G100 e/ | Fors 62, Avy 01 s1A16e € XAAL = 01 € ZNT - Ay’ =
§10162} {choosing n = 1§

%
= XA JSTIGI0 e/ | 36t 6120 Aron A Argy € X N Ay = 0y € B AT =
_)
o152} U U{Sl[[g]](n”)[e/ﬂ | 31,62, A1,01,07 : cq1A1e € X N Ay — o1 Aoy €
ﬁ
<@/\77” = gi’§2}UU{S 1[[g]](’r]”)[6/—|] ‘ 3§1,§é, Al; (o4 §1A1§5A7’]” € X/\Al — g1 S %}

{since A must appear either in ¢1, o1 or ¢§

= A UBMGI)/ | 3or s A A € XA AL - o1 €) U

UGS 91eY2)e/-] | 30,4105 : A € X A A — ojAdt € &} U
U{?l[[g]](n")[e/—i] | 361,65, A1,01 1 1 A165AN" € X N Ay — 01 € #}

— =
{by Th. 74 so that S'[G] (s A12) = S[G](s]o152) whenever A; — o1 € %S
52

N

In this expression, let us first consider the term

%
U{S LGI(oYs2)le/] | Fs1, Av, 07 i s1A12 € X A Ay — 0y AcY € #}

U U ("9l # 2 2 56107 \ {e}) U e € S'[6] 7 S [G)ee ¢
A1 =0 Aoy ER 1 A162€X
2) s 2)[e/ {def. U, by (50), @' in Lem. 72 and def. ®' in Lem. 72§

U U B'Gls #2072 G000\ () ule e 5100 25 [Glle/

A1—ol Aoy R 1 A162€X

o) s 2)
{def. X[a/b] so that (X \ {a})[a/b] = (X \ {a}), D[a/b] = @ and X = @ iff
X[a/b] = &§

{E denotes = if all nonterminals in G are productive (as defined in Sect. 19.3)
%
in which case S [G]s2 # @ else C denotes C§
— — -
U U S'Gloy \ {eh) U e € SM[Glo7 7 S [Gleale/] s 2)
A1 =0 Aoy ER 1 A162€X
{by Th. 76 extended to protosentences

— =
U GG\ () Ule € SG10) 7 of (X)A, 2 2]
A1 =0l Aol e
(def. conditional and by Th. 78;§

Second, in the above expression, the term
UGS 91 Arsa) /] | 3}, 01 S| A Ary € X A Ay = 01 €)
is either @ or, by Th. 78, is C-over approximated by af (X)A;
Third, and finally, in the above expression, the term
U{?l[[g]](ﬁ")[e/ﬂ | 361,65, A1, 01 : 1 A1 A" € X N A — 01 € X}
is either @ or, by Th. 78, is C-over approximated by of (X)A.

It follows from the above calculation that

— If all nonterminals of G are productive, then

FIIgI’ (X)) € o/ ({S}upostl=4]X) < F/[G](a! (X)) Ual(X)
pointwise and so, by Cor. 101,
it F/[G] € of(fp” AX - {S}Upostf=,]X) C 1tp AX-F/[G)(X)UX
pointwise. By Ex. 103 applied pointwise, we have
itp F/[G] = 1p AX-F/[G)(X)uX
so that of (Ifp~ A X + {8} Upost[=,]X) = 1tp~ F/[G];

53

— Otherwise, we have
of ({S} Upostl=¢]X) < F/[G](af (X)) Ual(X)

so that ozf(lfpg A X« {S}Upost[=¢]X) C ifp- AX - FIIGI(X)UX = Ifp- F/1G]

We conclude that oﬂc(lfpg AX + {S}Upost[=,]X) € ifp- F7 [G], whence by equality or
monotony, S/[G] = of (1fp~ A X + {S} Upost[=4]X) C 1tp~ F/[G]. -

20.2. Nonterminal Accessibility

The classical definition of accessible nonterminals [8, Def. 8.2.4] provides information
on which nonterminals of the grammar are used in the definition of the language generated
for the grammar axiom.

20.2.1. Accessibility Abstraction of Protosentences
The accessibility abstraction is defined on protolanguages as the characteristic function
of the set of nonterminals appearing in the protosentences of this protolanguage

a A

a® = AXAA-(Fo,0 €¥*:0Ad € B)
so that

a

(N (1), &) =5 (N =B, =>).

e

20.2.2. Accessibility Semantics
The nonterminal accessibility semantics is

SU[G] 2 a(SLIGI(5)) = a®oaS(SLg]) . .

where o is the abstraction of functions at point S considered in Ex. 97.

This is the classical definition of productivity for a grammar nonterminal [8, Def.
8.2.4] since

Theorem 81
S[G]l =AA«Fo,0’ € V*: SE=, gAo’ . 0

PROOF We calculate S4[G]

AA(Fo,0' € v*i0Ad’ € () € ¥ | SE=¢ '} 2 W ()
(def. S*[G], Cor. 59, and def. a® §
AA+3o,0' € V* : SE=g 0 Ao’ {def. €§ . ™

54

20.2.3. Fizpoint Top-Down Structural Accessibility Semantics
We can project the top-down protolanguage semantics on a given nonterminal, in
particular the start symbol S, as follows

Lemma 82

oS(SLIGD) = fp AX - {S} Upostl=>4]X .

PROOF We have SE[G] = 1tp” FL[G] where FL[G] =X ¢+ XA« f(A, ¢(A)) with f(A, X) =
{A} U post[=4,]X by Th. 57 whence, by Ex. 105, o5(SL[G]) = 1fp- AX + {S} U
post[=¢]X. n

The accessibility semantics S*[G] has the following fixpoint characterization

Theorem 83

S'IG] = up FU[G] where FU[G] 2 Ag-AA-(A=S)v\ 4B). g

B—oAc'€Z#

PROOF Let us calculate a®({S} U post[==4]X°)

= AA-(A=9VvIne X I, ne=en Ay’
B {a® preserves lubs, def. o® and post§
— AA-(A=9)V
(377 E X(s . 3,,7/7 77//7 n///’ 7]////’ B S o E % T’ — ,r]/An// /\ 77 — n///Bn////) \/
(3B = 0Ad’ € Z : a*(X?)(A)) {def. a*§

There are four possible cases for subformula
(37,] e Xé . Eln/,nl/, n///,nl”/,B Ny 6 % . 77 — 77,1477” /\,'7 — n///BnHN) , (53)

as follows

LYy,n" : n # A, in which case (53) is false so a®({S} U post[=4]X?) =
Fe[G](a®(X?)) where FO[G](¢) E XA+ (A=25)V (3B = 0cAd’ € Z: $(B));
2. Iy, " :n=1n'An", with three subcases
(a) neither i’ nor i contains a nonterminal B so that Vn', n"" : n = n'An" #
7" By in which case (53) is false so a®({S}Upost[=4] X %) = F*[G](a*(X?)),
(b) for all nonterminals B in either 1’ nor n”, their is no corresponding grammar
rule Vo : B — o ¢ % in which case (53) is true so a®({S} U post[=4]X°) =
F*[G (" (X)),
(¢c) either i’ or " contains a nonterminal B such that B — ¢ € £, in which
case (53) is equal to F(a®(X?)) where F(¢) = AA+(A=2S)V ¢(A)V (3B —
cAc' € #: $(B)).

55

Moreover F¢[G] = F pointwise, so
FIGI(a(X%) = a*({S}Upostl=]X°) = F(a"(X"))

and so by Cor. 101,

B

itp F[G] — o®(itp- AX +{S}Upostl—¢]X) — 1fp F.

By Ex. 103 applied pointwise, we have 1fp F*[G] =1fp F so by def. (53), Lem. 82
and antisymmetry, we conclude that S*[G] = 1fp F*[G]. ™

The accessibility semantics of a context-free grammar is an abstraction of the follow
semantics since, if all nonterminals are productive (as defined in Sect. 19.3), a nonterminal
is accessible if and only if it has a non-empty follow set.

Theorem 84

(All nonterminals are productive) = (S°[G] = ax(Sf[[g]])) } o

PROOF Assuming all nonterminals to be productive, we prove that a® = & o of, as
follows

a* (ol (%))
= ([U{a ce T | I n=n0A" ANJo € T 9 E=5actU{d]| I, 0 n=
nex
A Ay E=g el # @7 s) ldef. 4%, o, and o §
= ({(WAy" €X|3oec T) E=go} #2 3 Us) {def. T*§

= ([{(WAn" €Z}#£22HeMm)
{(Cor. 77 so that 3o € T* : / E=¢ o by productivity hypothesis§
= a%2) {def. a®§ . n

21. Grammar Problem

Knuth’s grammar problem [1], a generalization of the single-source shortest-path
problem, is to compute the minimum-cost derivation of a terminal string from each
non-terminal of a given superior grammar that is a context-free grammar, with rules of
the form A — g(44,...,4,),n = 0 (where ‘g’, ‘(’, *,’, and)’ are terminals), equipped
with a cost function val such that the cost of a derivation is val(4 — g(A41,...,4,)) =
val(g)(val(Ay),...,val(A4,)) and val(g) € R} — Ry, Ry S{zeR|z>0}U{c0}, isa
so-called superior function [1], a condition weakened in [2] where Knuth’s algorithm is
also given an incremental version.

Knuth’s grammar problem [1] can be generalized to any bottom-up abstract grammar
semantics $*[G] by considering a(S*[G]) where (D?, C) % (R4, =) is a Galois connection
and (R4, >, oo, 0, min, max) is a complete lattice.

56

Knuth considers the particular case when S[G] = S/[G] and (D, C) = (p(S), C)
where S is a set (indeed S = p(.7*) in [1, 2]) with a(X) = min{val(z) | z € X} and
y(m) = {x € S | val(x) > m}. Since « is antitone, the corresponding abstract semantics is
taken in terms of greatest fixpoints for < [2]. Knuth’s monotony hypothesis [1, 2] ensures
the existence of the greatest fixpoint. The rule soundness and completeness condition (23)
then amounts to Knuth’s hypothesis that for every nonterminal A, every string in S/[G] A
is a composition of superior functions a(g(z1,...,z,)) = val(g)(a(z1),...,a(zy,)).

Knuth superiority condition [1] and its variant [2] ensure that the greatest fixpoint
can be computed by an elimination algorithm (generalizing Dijkstra’s algorithm to solve
shortest path problems [33]). However in general one must resort to an infinite fixpoint

1 1

iteration as shown with the choice of S = p(I*), val(z) = f] so that val(g)() = 3

m which, for the grammar A — a(), A — b(A4, A)
requires an infinite iteratioil and a passage to the limit 0.

Our generalization also copes with implicit abstractions of a grammar considered by
[1, 2] where a grammar is “recoded” into a superior grammar, which can indeed be defined
by an appropriate a.

and val(g)(z1,...,z,) =

22. Bottom-Up Parsing

Given a grammar G = (7, A, S, #) and an input o = 0109...0, € T*, n > 0,
parsing consists in proving either o € S*[G](S) or o ¢ S*[G](S), that is, by Th. 71,
providing an algorithmic answer to the question S E=, o?

Bottom-up parsing is an abstraction of a bottom-up grammar semantics by restriction
to a given input sentence. This is illustrated with the Cocke-Younger-Kasami or CYK
algorithm [4, Sect. 4.2.1] attributed by [34] to John Cocke, [35, 36]). It is traditionally
restricted to grammars G = (7, A, S, %) in Chomsky normal form with rules of the
form A — BC and A — a where A,B,C € A4 and a € 7. We now design CYK by
calculus for arbitrary grammars.

22.1. The Concrete Semantics and its Abstraction
CYK is an abstract interpretation of the terminal language semantics S[G] (34) by
aYE = Ao AX-{(i, j) €DYE(0) | 0s... 001 € X} (54)
where
DEYK 2 Xo-{(i,j)|i€ Lol +1Aje[0]ol|Ai+j<|o|+1}
so that (i, j) denotes the subsentence of length j from position i in ¢ (in particular

o| + 1, 0) denotes the empty sentence € after o = ge¢). Given o € 7*, we have
(lo| pty ;

CYK(O_)

* ¢ 2 B
The pointwise extension to .4 is
oK 2 Xg e AX AAaYE(X(A)) (55)
so that
. (o) 2 OvK .

57

22.2. Soundness of the Parser

The correctness of this parsing approach is proved by the following

Theorem 85 o € SY[G](S) <= (1, |o|) € a“YE (o) (S[G])(S) -

o
Proor (1, |o|) € a“YE(0)(SY[G])(S)
— (1, lol) € {(i, j) € DYE(0) | 0s... 04151 € S[G](S)} {def. (55) of aCYKS
— o cSIG](S) (def. € and 01 ...014§ . n

22.8. Design of the Parser

The CYK algorithm is derived by abstracting the fixpoint definition Th. 44 of
S[G] = 1tp" FY[G] by aCYE.

Theorem 86 B o
a“"T(0)(SINES) = yp FOF[GI(0)

where
IECYK[[Q]] c p(DCYK) — p(DC’YK)
FOYKIGT = Xp-xA- | FOM[A— .ol
A—oeR

FOYKIA 5 owac’] = Ap-{(i, j) € DYE(0) | os = a A
(i+1,j—1) e FOK[A = ga.o’]p}
FOYKIA = 0.Bo’] = AXp+{(i, }) €D (0) |3k : 0< k< j: (i, k) € p(B)

Ali+k, j—k) e FCYK[A = 0B.o']p}

FOYKIA s 0] 2 Xp{(i, 0) | 1<i< o}

Proor We apply Cor. 106.

a @ (o) (F[G](p))
= a%()xA- | FA—.0lp) {def. (35) of F[G]$
A—oc€EZR
= {(i,5)eD (o) |0i...oej1€ |J FlA—.0lp} {def. (55) of aCYK
A—oeZR
= U oYK (5)(F'[A = .o]p) {def. € and (54) of a®YE§
A—oceZ
= U FA S 0l 0)0))
A—oceZ
{provided we can define FEYEK such that oYK (0)(F{[A — a.0']p) = FOYE[A
— 0.0'[(a“(a)(p))$§

We proceed by induction on the length |o’| of ¢/, with three cases.

aYE(G)(FIA = cwad’]p) = aYK(0)(a FI[A = ca.0’]p) (def. FY[G]§
58

= {(,) eDYE(0) | 0y...004;1 € (a F'[A = ca.0’]p)} {def. (54) of aCYK§
= {(, /) eDYE(0) oy =an(i+1,j—1)€a’T(0)(F'[A = ca.0’]p)}

{def. concat., €, and (54) of a“YX§
= {{h, j) €DK (o) |y =a (i +1, j—1) € FOE[A 5 0a.0")(aTK (0)(p))}

A {ind. hyp.§
= FOK[A = 0.a0') (a5 (0)(p))
{by defining FEYX[A = 0.a0’lp = {(i, j) €D (o) [ai =an(i+1,j—1) €
FOYKIA — oa.o']p}§

— a%%(0)(F[A — 0.Bd')p) = YK(U)((B) F{J[A = oB.0'lp) {def. F[G]§
= {(, j) €DK (o) | oy.. alﬂ 1 e((B) FY[A = 0B.0o']p)} (def. (54) of aCYK
= {(i,5) €D (o) |3k:0< (i k) € a K (p)(B)A(itk, j—k) € @K (FI[A
— aB.o']p)} Zdef concatenation, (54) and (55) of a®YK§
= {40,) €DK (o) | B0 <k < (i, k) € aC K (p)(B) A i+ k, j— k) € FOYK[A
— 0B.0'|(a“YE(p))} {ind. hyp.S§

= EOK[A 5 0.B0") (0" (o) (1))
{by defining FCYX[A — 0.Ba’]p = {(i, j) € DYE(o) | 3k : 0 < k < j : (4,
k) € p(BYA(i+k, j—k) € FCYK[A = 0B.o'|p}§

— VK@) (FlA—=alp) = {0, 7)€DY (o) |0i...004 ;1 =€}
{def. F*[G] and (54) of a©YX§
= {(i,00]1<i<]|o]} = FOK[A = 0)(ak(0)(p)) {def. equality of sentences
and by deﬁmng FOYKIA s olp = {0, 0) |1 <i < |o]}§ . n

The original CYK algorithm is only defined for grammars in CNF (Chomsky Normal
Form) whence we get a generalization to arbitrary context-free grammars.

22.4. Parsing Algorithm
Because the abstract domain (4 — p(DCYE(0)), C) is finite, the iterative compu-

tation of lfpg FCYK[G] (o) terminates whence by Th. 86 and Th. 85 so does the CYK
parsing algorithm. The CYK dynamic programming algorithm organizes the computation
of the pairs (i, j) € DEYX () in order to avoid repetition of work already done.

23. Top-Down Parsing

23.1. Nonrecursive Predictive Parser

The general idea of the formal derivation of parsers by abstract interpretation is that
a parser is an abstraction of a grammar semantics by restriction of this semantics to a
given input sentence.

A nonrecursive predictive parser is formally derived from the prefix derivation semantics

X [G] of Sect. 6 by applying this idea with the abstraction

59

ot 2 AT Ao AX - {(i, @) | 39:woe—°>w1...wm,1£m—_§ w, € X.S:
te0,|o]]Aa™ (@) =01...0; Nw =}

where the terminal abstraction o™ € © — J* collects terminal labels of derivations, as
follows

a0 W) 2 aT(8)am(62) (@) & ¢ weS
aT(Gl A—D> 02) é O[T(el)OZT(02) aTO_) = €
o (0 25 0,) = a7 ()aa”(0y), ae T a’(d) = €.

The interpretation of the pair (i, w;) is that in the left-to-right scanning of the input
sentence ¢ up to position 4, the prefix o; ...o; (¢ when ¢ = 0) has been recognized by a
prefix derivation from the start symbol S. The stack w allows for the recognition of the
rest of the sentence, if possible.

Let us write p1(S) = {{z} | 2 € S} for the set of singletons of a set S and let
a® € 1(S) — S be a*({z}) = z. We have

Lemma 87

Voe®,:a’(0) = a'oaeoaﬁoa‘éoaé(ﬁ). O

PrROOF Given a well-parenthesized trace § € ©,, we prove, by induction on the length

of traces, that a o al o @® o a?(f) is a singleton and a7 () = a® o a’ o al o a® o a2 (h).
We proceed by cases.

— If 6 contains parentheses in &, then by definition of well-parenthesized traces in

Sect. 5.4, the trace # must have the form 6 = 0w, (]i> 0o ﬂ> wab3 where (A and
A are matching parentheses. Therefore

. s A A
a®oatoaloa®s a5(91w1 q—> 0 —D> wal3)

= a%oa’oa(a’(a’(01)a (0 (@1))(A0® (0 (82)))’ (o (@2))a’ (0’ (63))
ldef. o® € © D and o® € D T
= a”oa o al(a¥(a5(6:))(Aa (05 (62)) A)ad (05 (65))
) Zd?f. o’ €O ’lA)Aand asle D 7' S0 thflt Vo e S: aé(ag(w)) =€}
= a%oaf(a"(a*(@’(61)({A} Uat(a®(a’(82))))a" (a(a’(63))))
{def. ol and well-parenthesization hypothesis
= a*(@’(a®(a’(@’ (1))’ (o (a’ (a(82))))a’ (o (a’ (a’(63)))))
{def. f and, by ind. hyp., concatenation of singletons which is a singleton§
= a*(a’(a(a®(a’(61)))))a" (@' (a" (a®(a’(B2)))a® (o (a (a®(a’ (65)))))
{def. * and concatenation of singletons

= o (01)a"(02)a” (03) {by ind. hyp.§
60

= of(&lwl qi) 92 A—D> WQed) Zdef OéTS

—_ a'oagoaLoaéoa5(91L>92)

= a®oa’(af(@*(a’(0r){akal (a* (a%(62))))
{def. b e 15, of €D '7Ad7 and ol since 02 and 6 are well-parenthesized §
= a®(a’(a"(a’(a’(61)))))aa® (o’ (o (a’(a’(9)))))

{def. of and a® and concatenation of singletons by ind. hyp.§

= a7 (0))aa"(6) = a’ (6 = 6y) {by ind. hyp. and def. a™

— a*oaloaloats aé(l—) = a'(U{{e}}) ldef. o’ €O D, a* €D T,
al e T p(7*), ol € p(#*) = p(T*), and of € ¥* > p(T*)§

= a'{e}) = e = a(FH) {def. |, a®, and a7 §

— a'oo/oaﬁoagoozg(—i) = oz'oo/oozﬁoag(ﬁ) {def. aje@»%ﬁs

= a"(d) = e {as shown above and by def. a”§ . n

Fixing the start symbol S and the input sentence o, we have a Galois connection

The correctness of this parsing approach is proved by the following

Theorem 88
0 €S [G)E) <= (lol, 1) € " (3)(0)(S?[G]) - O

PrOOF We calculate o € SY[G](S)

— oea(a(ad(a’(s[9).3)))
{def. (34) of S*[G], (31) of sL IG], (29) of S°[G], (26) of SS[[Q]], &*, Sect. 13.3.3
of o'cﬁ, o, a® and selection «.5 §

— 30 cSYG]S : o€ at(al(a®(a’({6}))))

{since af o a’ o a® o a’ is the lower adjoint of a composition of Galois

connections whence of a Galois connection, whence preserves lubs hence
o€ a(X)=alU,exi?}) =U,ex a{r}) ifand only if 3z € X : 0 € a({z})]
— 3 ecSUGL.S:0=a"ca(a(’(a’({h}))))

{def. a® and the image of a singleton by of, «
ERS S‘j[[g]} S:a’(P)=0c (Lem. 87§
36 e (53 [G].5N©7):a™ () = o {by (6) so that SCZ[[Q]] N [G] N O™ & def. ..S§
30 = @y b, W1 e W1 gm—_§ W € S%g}].?m o a’(f)=0c

{def. (5) of s? [G] (so that 6 = g TR by @m)$
61

L a® or o is a singleton §

111

— 30 =1 b, WL Tt ém;% e 55[[g]].§: a"(0)=0o
{since w,, = - by def. 7§
= (ol, 4 € {G, @) | 30 = w0 > @wy... 0wy =D wm o€ SP[G]T ;i €
0,|c]Aa™ (@) =01...0; AN =} (since 0 = 01 ...0|, and def. €§
= (ol.) € a"E(S)(0)(s” [G]) def. a*4(S)(@)5 . m

To get a correct parsing algorithm, it remains

e to express o (S) (o) (55 [G]) in fixpoint form by abstraction of the fixpoint definition
Th. 8 of S? [G] (as shown in Th. 89), and

e to prove the termination of the fixpoint iteration (as shown in Th. 91 for non
left-recursive grammars).

Theorem 89 R
a"E@S)()S7[GD) = i FEEG](0)
where

FEEIG](0) € p([0, |o]] x 8) = p([0, |o]] x S)
FELIGI (o) = AX < {(0, B)Y U {(0, H[S =) | (0, F) € X AS = n € %}

U{{i+1, w[A = nan']) | (i, @[A = nan']) €e X Na=0;41}

U {{i, w[A — nB2'][B — «]) | (i, w[A — n.Bn']) € X AB — ¢ € %}
U{{i, w)| (i, w[A = nl) € X} . .

PrOOF We use the fixpoint characterization of 7 [G] in Th. 8 as s7 6] = Ifp Fo 61
and apply the commutation condition to the transformer Fo [G] = AX - {F}UX5—s.
Assuming X to be an iterate of Fo [G], we calculate oL (S)(o)({F} U X5 —)
= o9 (0)({F}) UL (S)(0)(X5 —) {lub preservation in Galois connections]
= {0, N} Uat(E)(o)(Xs —)

{def. o“*(S)(o) with i =050 0y ...0; = € and {F}.§ = {F}§
We go on with the evaluation of a**(S)(c)(Xs —)

= S S [0S we X Aw s w e—) {def. sand —§
= SIS A g0 S rexAAspeRIU (A)
{0 55 @[A = nuan’] < w[A — naa)] | 0 - w[A — nuan’] € X A (B)
A — cac’ € #}U
0% (A = 0.8y Y o[A = BB —] | (€)
0 5 w[A > By € XANA— 0B € RAB — ¢ € R}+U
05 oA o0 S wAdspeXAASneR) (D)

{by cases (1), (2), (3) and (4) of the def. of —§
= a"(S)(0)(A) UatH(S)(0)(B) Ua(8)(0)(C) U (S)(a)(D)

{lub preservation in Galois connections
62

We now have four cases, as follows

— a™(8)(0)(4)
= LL(S)(0)({6 IR H[A —] | 0 L reXNAo neR}) [def. case (A)§
= (7)(0)({F—>4[A% g |FeEXNA—neR})

(X is an iterate of Fo [G] so included in the prefix derivation semantics s? 4]
hence, by Th. 7, the only trace of the form 6 ks)

= (@ W =m D m =k E B JAF e XAS e RN €
[0,]c]]ANa"(0) =01...0; Nw =101} {def. oL (S) (), selection .S, and €§

= (@) | =m0 o =F S A eXAS sce@nic|0|of]Ae=
o1...0; Nw =101} {def. a7 §

= {{0,HS =) |FEXAS —ceR} {since e =07 ...0; <= i =0§

= {{0,H[S = «]) | (0, F) € " (S) (o) (X)A S — ¢ € #} {def. olL§

— a"(8)(o)(B)

= oM @) 0)({6 L w[A = nuan’] % @A = naay] | 0 - @A = nan] € XAA —
ocao’ € #}) {def. case (B)§

= aL(S)(0)({0 -5 w[A = nuan’] - w[A — naa] | 0~ w[A — nan’] € X})

because X is an iterate of FO G] so, by Lem. 7, [A — n.an’] can be on the
n.an

stack only if A — cao’ is a grammar rule in %}
¢

= {(ih, @) | W=wm0 > @...0m1 2 wm {0 -5 A = nay] - D [A >
nan] |0 - @'[A — nan] € XS} i€ [0,]0]] A (0) = 01...0i Aw = wm}

{def. oL (S) (o) and selection +.S§

= {@, @) | 3" = w Lo, Wi...Wmo1 € X.5, wm 1 = @A = nan'], b1 =

a, @y =@ [A = nan’]:m = 1Ai € [0, |o]|Aa” (0” 3 W) =01... 0 AT =W}

ldef. € with 0 = 0" ™} ,.§

= {(, @[A = nan]) | 0" = @0 <5 @1 ... € X5, = ' [A = nuan] i €

[0, |U| A T(G”)a =01 .. .Ui}
{def. o™ and setting the dummy variable m to m — 1 > OS

= {6, @'[A = naaf)) | 36" = @0 2 @1 ... € X5, w0m = @[A = nan’] i
[L]o]Aa™(0)a=01...0:} {since a7 (0")a = o7 ...0; implies 1 < i < |U|S
= {(i+1, @[A— nan]) | 30 = @ -S> @1 ... Tm EX.g,wm =w'[A = nan] i
[0, o] — 1] AN (0a=01...0141} {setting the dummy variable i to i + 18
= {{i+1, @[A— na]) | 39":w0 Loy oy € XS, = @ [A = man] i €
0,|c| =1 Aa™(0")=01...0; Aojy1 = a} {def. equality of sequences

€m71

= {@+1, w[A%nan]) | 360 = wq L oy Tt 2 wm e XS i€ [0,]o]] A
a’(@)=o01...0i Nw[A — nan’] = wm Aa =041}
{since o;41 = a implies i + 1 < |0

= {i+1, w[A = nan']) | (i, @[A = nan']) € oL (S) (o) (X)Aa=oi1}
63

{def. € and oL (S)(0)§

o™ (9)(0)(C)
(S 0) ({0 - w[A — 0.By] B @A - nBAIB = «] | § - w[A >
mBn'l€e XNA—oBo' € ZNB — s € Z%}) {def. case (C)§

LS (0) (10 5 w[A — n.By] L5 @A = BB —] | 6 - w[A =
nBn'| € X ANB — s € %})
{because X is an iterate of F? [G] so by Lem. 7, [A — 7.B7] can be on the
stack only if A — ocBo’ is a grammar rule in %§
{(i, @) | 30 = @0 ~% @1 ... @1 Dt o € {0 5 @'[A = 1.By] 15, w'[A —
nBa|[B —] |0 - w'[A = nBy) € XSAB <€ R} i€ 0,|o]] AaT(0) =
01...0, AW = W} {def. oL (S) (o) and selection .S
{(i, w) | 30" = wo Lo, @1 mo1 € XS, wm1 = @[A — 0B, b1 =
(B, wm = w'[A = nBa)][B—] :m>1ABceZNie(0,|o]] AaT(0" 3
W) =01...0; N =W} {def. € and 6 = 0" Zm—fi wm
{{i, @'[A = nB0'][B = «]) | 30" = w0 Lo . e € XS, wm 1= [A—
B m>=1AB—=ceZNi€0,|o]|Aa"(0")=01...0:} {def. a7 §
{(i, w[A = nBa|[B = «]) | 30 = @0~ @1 ... @m-1 o€ XS i
0,|c]]AQ”(0) =01...0; A\w[A = 0By] =wn AB — < €%}
{setting the dummy variable m to m —1 > 0 and § = 6”§
{{i, w[A — nB2][B — «|) | (i, @w[A = n.Bn]) € a*“(S)(0)(X) A B — s € #}
{def. € and a*L(S)(0)§

a""(S)(a)(D)
LS () ({0 S oA o] L w0 S wAsnle XAA S eR))

{def. case (D)§

aLL(S) (o) (10 - w[A - n) 25w |0 4 w[A = n) € X))

{because X is an iterate of Fo [G] so, by Lem. 7, [A — n.] can be on the stack
only if A — 7 is a grammar rule in Z§
(G, @) | 0 =m0 2 @1 Tt 7w € {0 - D [A] [0 @ [A
n] € X.S}:iel0, o] Aa"(0)=01...0i AN\w =1} {def. aLE(S) (o) & «.5§
{(i, @) | 30" = wo L B Ty € {60’ N @'[A = n. Ay | ¢ £ w'[A —
ml € X.St:iel0, o] A" (0")=01...0i N\w[A = n] =@m_1}
{setting 0 = 6" bmoy w@Wm with £, 1 =A), w, = @ and @, 1 = w[A — n.]
since a” () = a"(6")§
(G, @) |30 = w0 2% @1 mey =3 wm € X5 i€ [0,|o]] AaT(@) =
01...0, Nw[A = n] =wn} (def. € & setting dummy variable m to m — 1 > 0§
{(i, @) | (i, w[A — n.]) € o™ () (0)(X)} {def. € and "L (S)(0)§ m

64

28.2. The Nonrecursive Predictive Parsing Algorithm

Observe that, by Ex. 107, 1fp~ FL- [G] (o) is exactly the set of reachable states of the
transition system ([0,]o]] x S, —=) where

(0,F) =5 (0, H[S = .q]) S—neRr (56)

(i, wlA = non]) = (i+1, w[A = noia]) (57)
(i, w[A = n.By]) == (i, w[A = nB2][B—«]) B—oceZ (58)
(i, wW[A=nl)) = (i, =) (59)

with initial state (0, F). By Th. 88, parsing is therefore reduced to proving that the final
state (Jo|,) is reachable (which can be done by computing the iterates of FX2[G] (o) or

equivalently by exploring the descendants of the transition relation — with backtracking
when reaching a dead-end [4, Alg. 4.1, Sect. 4.1.3]).

Example 90 Consider the grammar G = ({a,b}, {4}, 4, {4 — A, A — a}). For the
input sentence o = a we have

(0,) =% (0, H[A — .a]) {from initial state by (56) with rule A — a§
(1, H[A = a.]) == (1, H) {by (57) since o1 = a and (59), which is a final state .§

On the other hand, the transitions for ¢ = b either lead to dead ends or do not terminate

(0, F) 25 (0, H[A — .A])
{from initial state by (56) with rule A — A since A — a would lead to a dead
end because o1 = b # af
= {0, A — .AJ[A — .A))
{by (58) with rule A — A since A — a would lead to a dead end because
o1 = b # QS
{0, H[A — JAJ[A — LAJ[A — LA

{by (58) with rule A — A since A — a would lead to a dead end because
o1 = b 75 G,S

LL

{ete, ad infinitum, without any possibility of success or failure in a blocking
state. § O

Theorem 91 The nonrecursive predictive parsing algorithm for a grammar G = (7,
N, S, R) terminates (i.e. the transition relation =25 has no infinite trace for all input
sentences o € T*) if and only if the grammar G has no left recursion (that is 3A € A :
Inev*: A=, An). o

PROOF By reductio ad absurdum, assume that there exists an infinite trace for some
input o.
65

Because (56) is only applicable in the initial state (0, F) and (57) strictly increases ¢
which is bounded by the finite length |o| of the input sentence o, there must be a point
in the infinite trace where only (58) and (59) are applicable and the stack has minimal
height (no stack appearing later in the trace can have a strictly less height).

This stack cannot be reduced to - since in this case the state would be final or blocking.
So the corresponding state has necessarily the form (i, w[4; — n1.A2n]]) (the stack
cannot be of the form w[A — n.] since then (59) would strictly reduce the height of the
stack nor of the form w[A — n.an’] which would be a dead-end since (57) is no longer
applicable). All later state in the trace correspond to the position ¢ since (57) is assumed
to be no longer applicable in the trace. Moreover no later state in the trace can be of the
form (i, w[A1 — n1Aan).]) since (59) would then strictly reduce the height of the stack,
which would be in contradiction with the minimality of the height of the stack from now
on. So there is a later position in the trace of this form with 7} of minimal length.

Assume, by induction hypothesis, that the trace contains a later state of the form (i,
w[A1 = mAam] ... [Ax = MeeArs1n;]) with 77, of minimal length (no later state can be
of the form (i, w[Ay — 1 Aanya] ... [Ax = nraAfmi]) with |yl < p.).

The next state is then (i, w[A1 — mA2n] ... [Ar = MeAr+10)[Ak41 — 1)) by (58).
All later states have necessarily the form (i, w[A; — n1A2a)]. .. [Ax = N Aks10)) [Aks1
= M 1o Ap 2y]) With gy F=g e and nj, # e

e We have 7, # e since the stack cannot be of the form (i, w[A; — i Azumy] ... [As
— NeApr1m)[Ars1 — n.]) since then (59) would strictly reduce the height of
the stack in contradiction with the minimality of 7}, nor of the form (i, w[A; —
mAzam] .. [Ar = Ak] [Arr1 — Mrr1.0m;,,]) which would be a dead-end
since (57) is no longer applicable).

e It follows that the only applicable transitions to reach (i, w[A; — n1A2m]]
A = A1) [Ar s = Mg Ary2ny]) from (i) w[Ay = miAga] .. [Ag
= MeArr 1M [Arr1 = Mer1Art2m)y0]) are (58) with B — ¢ € # immediately
followed by (59) so that ¢ = e proving that 71 =g €.

So there is one later state of the form (i, w[A1 — mAani] ... [Ax = MeAr+1.7%][Ak+1 —
N1+ Ak 12M),1]) With m;_; of minimal length. This means that this construction can go
on for ever.

Since there are only finitely many grammar rules, some rule, say A; — 11 Aanf, must
be applied at least twice. So we have a finite sequence of grammar rules A; — 1y Asn),
ooy A = M Agany, kB > 1, where we have shown that 71 = €, ..., n =>¢ € and
Agy1 = A;y. Tt follows that we have a left recursion for A; since by def. (47) of =, we
have Ay E=g Apan) - .15 = Al .. 1.

Because there are finitely many nonterminals, terminals and grammar rules, the
transition system has a finitely bounded nondeterminism. So if all traces are finite,
there are finitely many of them, whence the iterates in the iterative computation of
Ifp- FELIG] (o) do converge in finitely many steps. n

23.3. Nonrecursive Predictive Parsing with Lookahead

The nondeterminism in predictive parsing can be reduced by driving the right context
in derivations (as approximated using FIRST and FOLLOW).

66

23.4. Right Context in Derivations

We start by elucidating the role of the right context in derivations.

Given a stack w = 4[A; — many] ... [Ap = mpay], p > 0 where @ = + when p = 0,
we define the right context w” of w as

A A ’o !
w = Nplp—1---Tl2T

with 7/

1 - - M) = € when p = 0.

¢ 0 & o ;
Theorem 92 Let wy —= w1 ... W1 —» Wi —= Wiyl ... Wnho1 — @, € SYG] be a

mazimal derivation of the grammar G = (T, A, S, #) with i > 0. Then

yaN * T l; Ln—1
Wi = « (wi —> Wi41 .. -Wp-1 — wn) . 0

i Ln— . .
We call o™ (w; Ly Wigl .- Wp1 — wy,) the terminal right context of w;.
PROOF The facts that n > 1, wy = F and w, = - follow from Lem. 9. By Lem. 7,
the stack w; has the shape w; = H4[A1 = mni]...[4p, — np.n;], p > 0 when i > 0. The
; e
proof is by induction on the length of the suffix w; N Wit - Wp—1 223 On.
— Ifi=nthen w; = w, = 14s0 ;> = MMyt --- M1y = € F=g € = o’ (4) = o™ (wy)
. Lo)
= o (w; LN Wigl -+ Wpo1 — wy) by def. @™ and i = n.
— Otherwise, for the induction step, i < n. By def. (5) of the transition-based maximal

derivation semantics S‘j[[g]]7 w; Ly, w;+1 is a transition of the labelled transition system
(S, &, —, F). We go on by cases.

; A
— The case (1) of a transition w; Ly wip1 = F 1, 4[A —] is impossible since
1 > 0 so w; is not the initial state F

— In case (2) w; N wip1 = w[A = nan’] % w[A — naa'], we have w; >

AN
= AW, 41

(since w; = w[A — nan’], def. (w[A = nuan'])>, def. (w][A = naa’'])> and
wit1 = w[A — nan']§

E=e aa” (wisg by, Wito Wno1 by Wn) {ind. hyp.S§
= o (w; Ly, Witl - Wn1 eE) wy) {def. a7 since ¢; = a € T§
— In case (3) w; Ly wWit1 = w[A = n.B7] 1, w[A — nB#][B — «], we have
w;® = Bow® def. @2 = (w[A = n.By'])"§
=y so'w? (def. (47) of == since B — ¢ € Z by def. (3) of ES
= @i ” {def. w12 = w[A = nBa][B — «]§
e o (wit1 by Wita .. Wn1 =y W) {ind. hyp.§
= o’ (o, N Wit - W1 oy wy) {def. a7 since ¢; = (BS§

67

* l; L — *
and so @;® E=¢ a7 (w; —= Wit1.. - Tno1 ik wy) by def. of =, as the
reflexive transitive closure of =>4

— Finally, in case (4) w; N Wit1 = wW[A — 1] A, @, we have w; "

= w12 {since @; = w[A — ., def. (w[A = 1)), and @41 = ©§
E=e o (wig Kii) Wit - W1 ZS wWp) {ind. hyp.§
= o’ (w N Wit - W1 45 wn) (def. a7 since ¢; = A)§ . =

28.5. First Approximation of the Right Context in Derivations

In order to approximate the right contexts in derivations by their first symbol, we
define

SUGNA = pa] 2 SGI() @ STIG](A) (60)
= (STI91(4) # 2 2 (S G1n) \ {e}) U (¢ € S [G1() 2 ST[G](A) £ @) & 2)
= (S'I61(A) £ 2 2 S G101\ {e}) U (S [91(r) @ ST[91(A) ¢ &) 2 2) .

£i_ i Ly 7 =
Corollary 93 Let wg b, Wy .. . Wil — w; SN Witl .- Wn—1 2 @, € S4[G].S,
i > 0 be a marimal derivation of the grammar G = (7, AN, S, %) from the grammar
start symbol S. Then

4; Ln—1
o (w; = Wig1 ... Wpo1 —> @Wp)1 = ac

where w; = wi[A = n'], a e TU{H}, 0 € (T U{H})* and

a € SGIIA =] . .

PrOOF By Lem. 7 and ¢ > 0, we have w; of the form w; = 4[4; — nA2.n1][A2
— noAsah] ... [An = mnan)] = wi[A — '] where w] = H[41 — mAlni][A2 —
n2Azamp] .. [An—1 — 77n—1An-77;L_A1]7 Ap=A,ny=nandn, =17
Since the trace belongs tcLSd[[g]] .S, the definition of the selection «.S and Lem. 7
imply that Ay = S so @; = S = 1 Agam|[A2 — n2Azums] . . . [An, — 1nany,] Where, again
by Lem. 7, S — nAony] € &, Ay — 2 Asnh € R, ... Ap — munl, = A = nn’ € X are all
grammar rules. o
It follows, by induction on n and def. (47) of =>4, that S =, M A =g
MmNz Asmony . Eg Mz 1Aty TN = M2 a1 ATy T g
MN2 -« N1’ Ny - . . m4m} proving that
S F=e Mz o1 Al e
and S E=¢ miNe.. u_1nn'nh_q...m5m)
We have n’(wg)A
68

= w2 {def. «* and since w; = w/[A — 1.1'], as shown above.§
x ; loo
e o (w; L, Wigl .. Wno1 —F W) {by Th. 92§

o’ (o = ey w@,)1 € (Z U{H})T is not empty whence of the form ac
where a € U {d} and ¢ € (7 U {d})*. We have

a € {a} = §>1 [G](ao) {by def. € and Th. 74§

— G (@ o i S w)H)

{since ac = a" (w; Ly Wi W1 e”—71> @)

= {a€ T |3oe T :a (w N Wit - Wn—1 oy @) E=g ac} U {4] a” (w; N
Wil - Wn_1 ZS W) E=g €}

{def. (51) of the extension of §>1 [G] to ¥*{H} — (T U{d})§

{ac T |Foec T 0 (@) E=gact U{H| 7/ (@) E=g €}

3

N

{since 0 (@) E=y o (w; L it Tt oy w@,) and E=>, is transitive§
MG (w)A—i) Zdef (51) of the extension ofg>1 [G] to ¥*{H} — (T U {H})§
'G1(n") & s [6]((})>H) {by (50)§

Moreover Sl[[g]](() =)
= SYGN(AL — mAwni][Az = Asad] - [An 1 = oy A, 1]))
{since @) = 4[A1 = M A2.m]][A2 = n2Asmb] .. [An—1 = Dn_1Ann),_1]S
= SUGNs) (det. 25
= {lae T |3oe T inny..nh_1 E=gactU{H|niny...nl_1 E=¢ €}
{def. (51) of the extension of §>1 [G] to ¥*{-} — (T U{4})§
= {a€ T |30€ T 8 mm. 1Ay T AT -1y Fg

aok U{H | S == mnz 1A,y 0y ATRTS -1y Fbg €}
(since S E=¢ mn2...Nn_1A4n,_; ...n5n}, as shown above§

0| n|

- {lac T |30e T SE=cmne.. . m_14ac} U{H| SE=cmne. .. 014}

{def. B=, and =, so that n == 'n" and 5" == """ implies n == n'n"’
and e neutral element of concatenation§
{a€e 7|30 :SE=g nAan’} U{H|3n: S E=g nA} {def. 3§
ST[G](A) {by Th. 79§
~ ~ ~—
By def. ®', we conclude that a € S[G] (1) &' S[G]((w])*) C ST[G](n') &' ST[G](A)
—

= SUGIIA =). .

If the input sentence o derives from the start symbol S then the right context w?®
of the stack w in (i, w) should derive in the rest o;11 ..., of the input sentence. In
order to introduce a lookahead, this can be approximated by the fact that, according to
Cor. 93, the first symbol of this right context should be ;1 (which, by definition, is -
when i = n so that 0|41 = 4).

69

oFFD 2 XSG Xo e AX - {(i, w) | 30:w0€—°>w1...wm_1 bmy w, € X.S:
i€0,lo]]Aa"(@)=01...00 N\w=w, AV’ €S, A—=nn € Z:

(@ =='[A = naf| Ai < |o]) = (0141 € S '[G]A = nn'])} .

The correctness of the nonrecursive predictive parser with lookahead is established by the
following

Theorem 94 o € S[G](S) <= (|o], 1) € OZLL(l)(g)(U)(Sg gl) - u]

ProOF ¢ € SY[G](S)

= W=wo > @1... Tt " wm € Sﬁﬂg]]ﬁ ol €0, |o[]Aa”(0) = o1 ... 010 A
4=y {as shown in the proof of Th. 88§

= (ol, 4 € {G, @) | 30 = w0 2 wi...wmy ™ wm o€ SP[G]T ;i €

0,]c]]Aa™(0) =01...00 N& = o AV € S, A > € Z: (w = @'[A —
%
| Ni < lol) = (oi1 € STGIA = nay'])}
{def. € and Vo' € S : VA = € Z : 1+ w'[A = na/]§
= (o], 4) € a"* N (E)(0)(s7 [9]) ldef. "V (S)(0)§ . m

The nonrecursive predictive parser with lookahead is obtained by expressing the abstract
semantics in fixpoint form

Theorem 95 aLL(l)(g)(U)(Sg [G]) = ifp~ FLLG]) (o) where FEEM[G] (o) € p([0, |o|] x
S) — p([0,]0]] x S) is

FEEOG)(0) = A X+ {(0, 1)} (61)

U0, 45 =) | (0, F) € XAS —n€ZNo1 €SGS —)}
U{{i+1, @w[A = nan']) | (i, w[A — nan']) € X A

%
a=0i41 Aoiys € S[G][A — nauan']}
U{(i, w[A = nBW'|[B = «]) | (i, w[A = n.Bn']) € X A
%
B—cge e%/\O'H,l) 1[[9]}[3 — -C]}
Ui, @) | (i, w[A =) € X} o

Proor The proof is similar to that of Th. 89. We have o*M(S)(0)({F}) = {(0,
F)} by def. oX1)(S)(o) with i = 0 s0 01...0; = € and {F}.§ = {F}. We go on
with the evaluation of a**()(S)(0)(X5 —) = oFM(S)(0)(A) U oM (S)(0)(B) U
MU (8) (o) (C) U a M (S)(a)(D) as in the proof of Th. 89. We now have four cases,
as follows

ot (8)(0)(4)
14

oD (S (o) ({0 — + 1A, A — . |6 L eXAA— n € X}) (def. case (A)§
70

oM () (o) ({- Y H[A 5] |[F € XA A=y eR))
{X is an iterate of Fo [G] so included in the prefix derivation semantics 7 61
hence, by Th. 7, the only trace of the form 6 Lbis)

{(i, @) | 30 = w0~ @1 ... Wm_1 fmy wme{l—g—|[§—>.g]|l—eX/\§—>ge
R}y :i€|0o] Aa"(0)=01..0i. N\w=w, AV €S, A= € Z: (w=w[A
=0 Ni < |o]) = (0441 e?l[[g]] [A = na']D} {def. oM (S) (o) & .5

(G, @) |30 =wo S m =F s 4 JAFe XAS s ceZnic|o|of|Ae=

o1...00 Nw=w AV € S, A = € Z: (w =T[4 = nf]Ni < |o]) =
_>1 !
(0i41 € STIGIA — n'])} {def. € and a"§

(@) | 3= 2 o =F B 4SS s WJAFe XAS s ceZnic|o|of]Ae=

=1 —
01...01»/\w:w1/\0i+i68 [[QH[S—>.g]} o
sincew=w; =[S >] =@'[A—>nn]sow’ =4, A=S,n=eand ’ =¢§

{(0, A4S = <) [FEXAS s ceEZNTy E?l[[g]”s*)_g]}
{since e=07...0; <= i =0§

{00, 4[5 = «a]) | (0, F) € AP O (D) (0)(X) AT = c € BAor €S [G][S —]}
{def. a=EM)§

o0 (8) (0)(B)
" EO (S () ({0 - w[A = nan] 2 @[A = naaf] | 0 - ©[A = nay] €
X NA = oac’ € #}) {def. case (B)§

o FD (S (o) ({0 LN w[A — nan'] 2= w[A — naa’] | 0 N w[A — nan'] € X})

{because X is an iterate of Fo [G] so, by Lem. 7, [A — n.an’] can be on the
stack only if A — oao’ is a grammar rule in %}
{(i, @) | 30 = @0 % @1 ... D1 o € (0 5 '[A = nan] % o'[A
= naa’] | 0 -5 @'[A = nay'] € XS} i € [0,|o]] AaT(0) = 010N =
W AV €S, A= € Z: (w=w'[A—naf] Ni < |o]) = (041 € S'[G][A —
')} {def. a1 (S)(o) and selection «.S'§
{(i, w) | 30" = wq Ly oy € XS w1 = @A = nan], b1 =
m—1

a, W, =@ [A—nan]:m=1ANi€0,|c]] Aa” (0" fmy W) = 01...0; Nw =
%
o AV €S,A—=m' € Z: (w=o'[A—nn]Ni<|o|) = (0,41 € S[G][A —

')} {def. € with § = 0" fmy @wm
{(i, w) | 30" = wo Loy oy @ € XS wyo1 = @[A = nan], b1 =

a, @, = @' [A = nan']:m>=1Ai€0,|o]] Aa” (0" fmy W) = 01...0;, Nw =
_>
@m A oir1 € SHGIA — nan']}
%

{since @ = w,, = @'[A — na.n’] so 041 € S[G][A — nan']§

{(i, @'[A = nan]) | 30" = wo = @1 ... 0m € XS 0m = @ [A = nuanf] 1 i €
T 2 —>1 /
[0,]c]] ANa™(0")a=01...0; Noi+1 €S T[G][A — nan']}
71

{def. o™ and setting the dummy variable m to m — 1 > 0§
{(i, @'[A = naa’]) | 30" = @0 -5 @1 ... wm € X.5,wm = @'[A = nuarf] 1 i €

_>
[Llo]Aa™(0")a=0y1...0; Noi1 € ST[G][A — naa']}
{since o™ (0")a = oy ...0; implies 1 < i < |o]§

{(i+1, @'[A = nan’]) | 30" =@ -5 @1 ... 0 € X.?,wm =w [A—>77.ar]] (i€

%
[0,|0] =1 A" (0")a=01...0i41 Aoisa € SHG][A — naa]}
{setting the dummy variable i to ¢ 4 1§

{(i+1, @'[A = nan]) | 30" = @0 5 @1 ... wm € X5, @m = @'[A — near] i €

%
[O, |U| — 1] A\ OéT(QH) =01...0i\N0Oi4+1 =aN0j42 € S 1[[9]][A — 7’]&.77/]}
{def. equality of sequences

(i+1, @A = naa]) | 30 = @0 2% @1 ... 0m1 =3 wm € X5 i€ [0,|o]] A

%
Q" (0)=01...0; Nw[A = nan] = wm Aa = 0i11 Ao € ST[G][A — naa']}
{since 0,41 = a implies i + 1 < |0

{(i+1, @[A = naq]) | 30 = @0 - @1 ... @m1) meXSiie [0, |o|] A

(0) =071 . Uz/\’w[A — 77.(17]/] = wm/N\a = 0;41N\0;41 € ?l [[Q]] [A — 77.0,77/]/\0'i+2 €
%

[G][A — naw']} (since SY[G][A — nwan'] = {a} = {oi41}§

(41, w[A = naa]) | 30 = wo 2% @1...wmo1 =2 wn e X5 :ie0,|o]] A
a’(0) =o1...0i Nw[A = nan] = o Aa = oi1 AV € S, A — 'y € % -

«
)
St

(wm = W/I[A/ S of"af"INi < Jol) = (41 € S [GIIA" = 0" ") Adisz € S [G][A
— na.n']} ZWlth A’ =A,n"=nandn” = nﬁa since w,, = w[A — nan’]§
iﬁi +1, w[A = nan')) | (i, @w[A = nan']) € PP (S) (o) (X)Aa =041 Aoiys €
SGNA — naa']} {def. € and oM (S)(0)S§

mBn'l€ X NA— oBd' € Z A B — s EA}) {def. case (C)§
oV (S (o) ({0 N w[A = n.B1y'] — R w[A = nB2|[B — «] | 0 N w[A —
n.Bn'l€e X AB — ¢ € %})

{because X is an iterate of F? [G] so by Lem. 7, [A — 7.B7] can be on the

stack only if A — 0B’ is a grammar rule in Z§

(i, @) |30 = w0 25 @1 w1 2 @ € {0 - & [A - By] L5 '[A

%
nBa][B = «] |0 -5 @&'[A = n.By] e XSAB = ce R} ielo, o) A a7 (8) =
o1...0i ANw = wp, AV € S, A - ' € Z: (w = @"[A = 0" nNi <

% J— —
lo|) = (0i11 € SHG][A — "))} {def. o) (S)(o) and selection .S
{(i, @) | 30" = wq b, @1 mo1 € XS, wm_1 = @[A = 0B, b1 =
(B,wm =@'[A—=nBa][B—«]:m>=21AB—=sceZNiel0]|o]]Aa” (0" fm—y
W) = 01 . ..ai/\j =w, AVo" € S, A' —=n'n" e#: (w=w"[A — 77" n"INi <
lo|) = (0i11 € SHG][A — v} {def. € and 6 = 6" fmy Wi §

72

{{i, @) | 30" = wq b, @1 mo1 € XS, w1 = @[A = 0B, b1 =
(B,wm =@'[A—=nBa][B—«]:m>=21AB—=>ceZNiel0]|o]]Aa” (0" fmy
%
W) =01...0; ANw = @, Aoy € SHG][B — «]}
{since w = wy—1 = w'[A = nB2'][B = «] so w”’ = w'[A = nBw'], A’ = B,
,'7// =€ and ,'7/// — gS
{(i, @'[A = nBx|[B — «]) | 30" = @wo 25 @1 ... 0m1 € X5, w1 = [A >
%
By :m>1AB—=ceZNic|0|o]]Aa”(0")=01...0; Noip1 € ST[G][B —
<]} {def. a™§
{(i, w[A = nB.][B — «]) | 30 = wq Lo, WL .. W1 fmy wm € X.S5:i €
%
[0,]o]]AQ™(0) =01...0i N\w[A =By =wn AB —¢€RNaiy1 €SI B —
<]} {setting the dummy variable m to m —1 > 0 and 6§ = 0"
{(i, w[A = nB.][B — «]) | 30 = wq Loy oy fmy wm € X.S5:i €
%
[0,|o]]Aa”(0) =01...0i ANw[A — n.By] =wm AB =€ RNoit1 €SG]A—
%
0B A i1 € STG]B — «]}
= = =
{since S[G][A — n.Bn'] = S[G][B — «] by def. (60) of S[G]]
{(i, @[A = nB2|[B — «) | 30 = wo = @1...0m1 ot o e XS i
0,lc]Aa™(0) =01...0; N\w[A = nBy] =@, AB > € ZANVo" € S,A" —
_)
7]//77/// 6%% (wm — w//[A/ N n//.n///] /\'L < |0,‘) _ (0,7+1 G S 1[[g]][A/ N 77//.77///]) /\
oir1 € S'GI[B =]}
{since w,, = w[A — n.Bn] so that A’ = A, n’/ =n and """ = By’§
{{i, @w[A —>_17B.17'}[B — «]) | (i, w[A = n.By]) € oD@ (0)(X)AB = ¢ €
RN oir1€SHGB —]} {def. € and o*L(M)(S)(0)§

oM (9)(0)(D)
aLL(l)(g)(U)({g AN w[A — . ﬂ w |0 N wA=n]|eXNA—>neX})

{def. case (D)§
oM (S)(0)({0 -5 @A = 1] L w |0 -5 w[A -)] € X))
{because X is an iterate of Fo [G] so, by Lem. 7, [A — n.] can be on the stack

only if A — 7 is a grammar rule in Z§

(G, @) |30 =m0 % @1t ™ e {0 - @A) w0

@'[A—=n] e XS}:iel0|o]Aa’(@) =01...0i AN\w = @, AV € S, A —
77//17/// c %. (w _ w//[A/ - r’7//.{’7///] /\Z < |O_|) . (O—,LJ’,I c ?17[[g]] [A/ N n//.n///])} B
{def. o) (S)(o) and selection .S
{ti, @) | 30" = @ % w1... om0 € {0 5 D[4 =] | 0 5 D[4 -
n) € X.S}:i€[0,|o]]Aa™(0")=01...0i Nwm—1 = w[A =] AVZ" € S, A" —
_)
W € B (= (A = "] i < fol) = (011 € SIGNIA = "))
{setting 6 = 6" zm—fi @y, wWith £y,—1 =A), @, = w and w1 = @w[A — 7]
since a”(6) = a7 (6")§

73

= {(i,® | 30 == 5 ©..om € XS :m = 1A0€[0o] Aa"(0) =
o1...0 Nw[A = | = o AVE" € SSA = 'y € #: (w = @A —
, —
0" N i < of) = (0ir1 € STIGIIA — 0" "))} (def. €5
= (i@ |39 =w 25 @y wm ™ @ € X5 i€ [0,]0]] AaT(0) =
o1...0 NwlA =] = o AVE" € SA = ') € #: (w = T[4 —
, —
0" Ni < of) = (0ir1 € ST[GIIA — 0" "))}
{setting the dummy variable m to m —1 > 0§
= {{i, @) | 30 = m Loy @ T fmy wm € X.S 1 € [0,]0]] Aa”(0
o1...0 Nw[A = n] =w, AV € S, A" > 0" € % : (w[A — n) = "[A
. -
0" Ni < o]) = (0ir1 € STIGIA — 0" "))}
{since 0 = wg N W .. W1 by @m € X.S so that by Lem. 7, w@,, = w[A
= 0] = 4[A1 = mA2mi][As = Az .. [An—1 = na—1A0,][4 — 0
and therefore w = _|[A1 — ’IhAQ.T]H[Ag — 7’]2143.’[75] - [An—l — nn—lA'n;lfl]
with Ap—1 — 14,1, [A — 0 € Z that is necessarily w” = H[4; —
mAsmi][Az — neAsmh] ... and [A" — """ = [Ap—1 — nn—1A4),_1] so
- = -
SHGIA" = 0" = SHG][An—1 — M-1Aup, 1] = S'[G][A = n.] by def.

(60) of 3] B -
= {{i, @) | (i, w[A = n)) € D (G)(0)(X)} {def. € and oM (S)(0)§ m

N

Again, observe that, by Ex. 107, 1fp- FLEM[G](0) is exactly the set of reachable states
LL(1

of the transition system ([0, |o|] X S,) where

0, 4[5 —) Sone®noreSGIS —]

%
i+1, wlA = noin]) o2 € STGI[A — nady]
i, A= Ba|[B—«]) B—s€RNoii €SGIB — «]}
w

~

with initial state (0, F). This is essentially the algorithm suggested at the end of [4, Sect.
4.1.4] to speed up top-down nondeterministic parsing.

Indeed the lookahead may been done freely between the two extremes of everywhere
in Th. 94 and nowhere Th. 88, as follows

Corollary 96 If FFLW[G] (o) C F[G](0) C FEE[G] (o) then
o €SUGIS) <= (o|, 1) € F[G](0) -

The iterative computation of Up FIG](o) terminates for all o if and only if the grammar
G has no left recursion. 0

74

PROOF — We have FEEM[G] (o) C F[G] (o) C FEL[G] (o) s0, by Cor. 102, 15p~ FXXM[G](0)
C 1p” F[G](0) C 150~ FEL[G](0).

It follows that o € S[G](S) implies (|o|,) € aLL(l)(F)(J)(55 [G]) by Th. 94 and
therefore (|o|,) € 15p~ FLLD[G] (o) by Th. 95 whence (|o|,) € 1p~ F[G] (o).

Reciprocally, (o],) € 1tp~ F[G](c) implies (|o|, =) € 1tp~ FLL[G](o) whence (|o],
) € aLL(E)(U)(Sg [G]) by Th. 89 so o € S‘[G](S) by Th. 88.

— If the grammar has no left-recursion then by Th. 91, 1fp~ FLE [G](o) has only finite
traces whence so has 1fp " F[G] (o) C Ifp- FLEIG] (o).

Reciprocally, if the grammar is left-recursive, then by Th. 91, there is an infinite trace
in 1fp FIG] (o) C Ifp- FEL[G] (o). To show that it is also in Ifp- F[G] (o), it is sufficient
to shown that it is in 1fp~ FLL() [G] (o) C Ifp- F[G] (o) which follows from the fact that
the lookahead conditions prevent none of these transitions by Cor. 93. ™

23.6. Correspondance with the Classical Nonrecursive Predictive Parsing Algorithm

Our presentation of LL(1) parsing differs from the classical introduction in [32] or
[8], mainly because, for practical efficiency and simplicity reasons, only the table-driven
deterministic case is classically considered.

24. Conclusion

Many meanings assigned to grammars (such as syntax tree, protolanguage or terminal
language generation) and grammar manipulation algorithms (such as grammar flow
analyses or parsers) have quite similar structures. We have shown that this is because
they are all abstract interpretations of a grammar small-step operational semantics to
derive sentences together with their structure.

The verification of compilers is an old and challenging problem [37] which has recently
made significant progress [38, 39]. Indeed [37] originated the use of abstract syntax in
order to get rid of the concrete parsing problem. Having formalized parsing by abstract
interpretation, one can hope that the parser correctness can be integrated in the full
compiler correctness proof, together with the validity of the concrete to abstract syntax
translation. Because abstraction can be constructed by calculational design [40], as shown
in our formal proofs, proof assistant or theorem provers can be used to automatically
check or perform these calculations. This has been done for simple abstract interpreters
in restricted cases excluding the use of Galois connections [41], whence some progress
in automatic verification/proof checking is still needed before this paper can be entirely
checked mechanically, which is the ultimate “proof by construction” goal in abstract-
interpretation-based designs.

The results obtained in this paper directly extend to the semantics and static analysis
of resolution-based languages [42]. Future work should include the extension of the
approach to context-sensitive grammars such as contextual grammars [43, 44] or to mildly
context-sensitive grammars attempting to express the formal power needed to define the
syntax of natural languages by tree rewriting such as (multicomponent) tree adjoining
grammars or, more generally, range concatenation grammars [45].

(0]

Acknowledgements. We thank Tom Reps for drawing our attention to [1, 2].

(1
2]

(3]
(4]
(5]

[6]

[7]

(8]

[9]

(10]

[11]
(12]

(13]

(14]

(15]

[16]
[17]
18]
[19]
[20]
[21]

(22]

(23]

D. Knuth, A generalization of Dijkstra’s algorithm, Information Processing Letters 6 (1) (1977) 1-5.
G. Ramalingam, T. Reps, An incremental algorithm for a generalization of the shortest-path problem,
J. Algorithms 21 (2) (1996) 267-305.

J. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase structure grammars, Z.
Phonetik. Sprachwiss. Kommunikationforsch. 14 (1961) 143-172.

A. Aho, J. Ullman, Parsing, Vol. 1 of The Theory of Parsing, Translation and Compiling, Prentice-
Hall, Inc., Englewood Cliffs, 1972.

U. Méncke, R. Wilhelm, Iterative algorithms on grammar graphs, in: H. Schneider, H. Gottler (Eds.),
Proceedings of the Eight Conference on Graphtheoretic Concepts in Computer Science (WG’82),
Hanser Verlag, Munchen, 1982, pp. 177-194.

U. Moéncke, Generierung von systemen zur transformation attributierter operatorbdume; kompo-
nenten des systems und mechanismen der generierung, Diplomarbeit, Universitidt des Saarlandes,
Saarbriicken (1985).

U. Moncke, R. Wilhelm, Grammar flow analysis, in: H. Alblas, B. Melichar (Eds.), Attribute
Grammars, Applications and Systems, International Summer School SAGA, Prague, 4-13 June ,
1991, Proceedings of the, Vol. 545 of Lecture Notes in Computer Science, Springer, Heidelberg, 1991,
pp. 151-186.

R. Wilhelm, D. Maurer, Ubersetzerbau. Theorie, Konstruktion, Generierung, Springer, Heidelberg,
1992.

P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints, in: Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM Press, New York,
Los Angeles, 1977, pp. 238-252.

N. Chomsky, Three models for the description of language, IEEE Trans. Information Theory 2 (3)
(1956) 113-124.

N. Chomsky, Syntactic Structures, Mouton, de Gruyter, 1957.

A. Oettinger, Automatic syntactic analysis and the pushdown store, Proceedings of Symposia in
Applied Math. 12.

H. Rutishauser, Automatische Rechenplanfertigung bei programmgesteuerten Rechenmaschinen, Z.
Angew. Math. Mech. 32 (1952) 312-313, mitt. Nr. 3 aus dem Inst. f. Angew. Math. der ETH Ziirich,
45 p., 1952, Birkhauser, Basel.

C. Boehm, Calculatrices digitales. du déchiffrage de formules logico-mathématiques par la machine
méme dans la conception du programme. dissertation eth ziirich (1952), Ann. Mat. Pura Appl. (4)
37 (1954) 5-4T7.

F. Bauer, K. Samuelson, Verfahren zur automatischen Verarbeitung von kodierten Daten und
Rechenmaschine zur Ausiibung des Verfahrens, deutsches Patentamt, Auslegeschrift 1094019,
B441221X/42m. Anmeldetag: 30. Mérz 1957. Bekanntmachung der Anmeldung und Ausgabe der
Auslegeschrift: 1.Dezember 1960. Dr. Friedrich Ludwig Bauer und Dr. Klaus Samuelson, Miinchen,
sind als Erfinder genannt worden. Erteilt 12.8.1971, DE-PS 1094019 (1957).

K. Samuelson, F. Bauer, Sequentielle formeliibersetzung, Elektronische Rechenanlagen 1 (4) (1959)
176-182.

F. Bauer, From the stack principle to ALGOL, in: M. Broy, E. Denert (Eds.), Software pioneers:
contributions to software engineering, Springer, Heidelberg, 2002, pp. 26—42.

P. Naur, The European side of the last phase of the development of ALGOL 60, in: R. Wexelblat
(Ed.), History of Programming Languages I, ACM Press, New York, 1978, pp. 92-139.

N. Chomsky, Context free grammars and pushdown storage, quarterly Progress Report 65, MIT
Research Laboratory in Electronics, Cambridge (1962).

J. Evey, Application of pushdown store machines, in: Proceedings of the 1963 Fall Joint Computer
Conference, AFIPS Press, Montreal, 1963.

M. Schiitzenberger, On context free languages and pushdown automata, Information and Control 6
(1963) 246-264.

H. Hoogeboom, J. Engelfriet, Pushdown automata, in: C. Martin-Vide, V. Mitrana, G. Paun (Eds.),
Formal Languages and Applications, Vol. 148 of Studies in Fuzziness and Soft Computing, Springer,
Heidelberg, 2004, pp. 117-138.

J. Autebert, J. Berstel, L. Boasson, Context-free languages and pushdown automata, in: G. Rozen-
berg, A. Salomaa (Eds.), Word, Language, Grammar, Vol. 1 of Handbook of Formal Languages,
Springer, Heidelberg, 1997.

76

[24]
25]

(26]

27]

28]
(29]
(30]

31]

(32]
(33]
[34]
(35]
(36]

(37]

(38]

(39]

(40]

[41]
[42]
[43]

(44]

[45]

[46]

S. Ginsburg, The mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.
P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation, Theoretical Computer Science 277 (1—2) (2002) 47-103.

P. Cousot, Semantic foundations of program analysis, invited chapter, in: S. Muchnick, N. Jones
(Eds.), Program Flow Analysis: Theory and Applications, Prentice-Hall, Inc., Englewood Cliffs,
1981, Ch. 10, pp. 303-342.

P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Conference Record of
the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ACM Press, New York, San Antonio, 1979, pp. 269—282.

P. Cousot, R. Cousot, Constructive versions of Tarski’s fixed point theorems, Pacific Journal of
Mathematics 82 (1) (1979) 43-57.

S. Ginsburg, G. Rice, Two families of languages related to ALGOL, Journal of the Association for
Computing Machinery 9 (1962) 350-371.

M. Schiitzenberger, On a theorem of R. Jungen, Proceedings of the American Mathematical Society
13 (1962) 885-889.

N. Chomsky, M. Schiitzenberger, The algebraic theory of context-free languages, in: P. Bradford,
D. Hirschberg (Eds.), Computer programming and Formal Systems, North-Holland Pub. Co.,
Amsterdam, 1963, pp. 118-161.

A. Aho, R. Sethi, J. Ullman, Compilers. Principles, Technique and Tools, Addison-Wesley Pub. Co.,
Reading, 1986.

E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269-271.
D. Hays, Introduction to Computational Linguistics, American Elsevier, New York, 1967.

D. Younger, Recognition and parsing of context-free languages in time n3, Information and Control
10 (2) (1967) 609-617.

T. Kasami, An efficient recognition and syntax analysis algorithm for context-free languages, Tech.
rep., Air Force Cambridge Research Laboratory, Bedford (August 1965).

J. McCarthy, J. Painter, Correctness of a compiler for arithmetic expressions, in: J. Schwartz (Ed.),
Proceedings of the Symposium in Applied Mathematics, Vol. 19, Mathematical Aspects of Computer
Science, American Mathematical Society, Providence, 1967, pp. 33-41.

X. Leroy, Formal certification of a compiler back-end or: programming a compiler with a proof
assistant, in: Conference Record of the Thirtythird Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM Press, New York, Charleston, 2006, pp. 42-54.

X. Leroy, Coinductive big-step operational semantics, in: P. Sestoft (Ed.), Proceedings of the
Fifteenth European Symposium on Programming Languages and Systems, ESOP 2006, Vienna,
Lecture Notes in Computer Science 3924, Springer, Heidelberg, 2006, pp. 54-68.

P. Cousot, The calculational design of a generic abstract interpreter, invited chapter, in: M. Broy,
R. Steinbriiggen (Eds.), Calculational System Design, Vol. 173, NATO Science Series, Series F:
Computer and Systems Sciences. I0S Press, Amsterdam, 1999, pp. 421-505.

D. Pichardie, Interprétation abstraite en logique intuitionniste : extraction d’analyseurs Java certifiés,
Ph.D. thesis, Université de Rennes I (December 2005).

P. Cousot, R. Cousot, R. Giacobazzi, Abstract interpretation of resolution-based semantics, Theo-
retical Computer Science 410 (46) (2009) 4724-4746.

G. Pdun, Marcus Contextual Grammars, Studies in Linguistics and Philosophy, Kluwer Academic
Publishers, Dordrecht, 1997.

A. Ehrenfeucht, G. Pdun, G. Rozenberg, Contextual grammars and formal languages, in: G. Rozen-
berg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 2, Springer, Heidelberg, 1997, pp.
237-293.

P. Boullier, From contextual grammars to range concatenation grammars, Electronic Notes in
Theoretical Computer Science 53 (2001) 41-52, http://www.elsevier.nl/locate/entcs/volume53.
html.

B. Davey, H. Priestley, Introduction to Lattices and Order, Second Edition, Cambridge University
Press, Cambridge, 2002.

7

http://www.elsevier.nl/locate/entcs/volume53.html
http://www.elsevier.nl/locate/entcs/volume53.html

Appendix A.

A.1. Posets, Booleans, Maps, Iteration, Fixpoints

A poset (P, <) is a set P equipped with a partial order < [46]. If X C P then Y X
denotes the least upper bound (lub) of X and A\ X denotes its greatest lower bound (glb),
if any. A complete lattice has all lubs whence all glbs, an infimum 0 and a suppremum
1. A complete Boolean lattice is a complete lattice with unique complement — (i.e.
VeeP:(zY-~x=1)A(x A~z =0).

We let B = {0F, 8t} where [F is false U is true be the Booleans ordered by implication
ff = fF = & = W. It is a complete Boolean lattice (B, =, @F, &, v, A, =). The
conditional ([b P yD is « if b holds and y otherwise that is [[[Ht P yD = z and
([HTT 7 xs yD = y. We sometimes write ([b D s WD for b, a redundancy emphasizing the
computer boolean encoding of b.

If (@, C, U) is a poset, we say that the map f € P — @ is monotone if and only
if Ve,y € P: (x <y) = (f(x) C f(y)). f is lub-preserving whenever the existence
of Yy 2% in P implies the existence of Ls f(z?) in Q such that f(Yp 2P) = Ls f(z?).
f is upper-continuous (continuous for short) if and only if it preserves existing lubs of
increasing denumerable chains z,,, n € N, that is if Vn € N : z,, < 2,41 and the lub
Y new Tn does exist then | |, o f(z,) exists such that f(Y,cn2n) = Len f(@n)-

The transfinite iterates of F € P +— P from a € P are partially defined as F° =
FOt1 2 F(F%) for successor ordinals and FA = Ysx F? for limit ordinals A [28]. This is
well-defined only when the lubs Y do exist in (P, <).

If (P, <) is a partial order and F' € P — P then lfpj F denotes the least fizpoint of
F on P, if any, that is F(lfpj F) = ifp” F and Vz € P : Flz) =2 = ip” F =<z, If
P has an infimum |, F' is continuous (in particular F preserves existing lubs) and the
iterates of F from L have a lub F* then F* = 1fp F [8, Sec. 8.2.5]. Hereafter we use
the notation 1fp~ F only when it exists (most often because (P, <) is a complete lattice
and F' preserves lubs or is continuous [28]).

A.2. Abstraction, Fizpoint abstraction

In this paper, all abstract interpretations [27] use Galois connections (P, <) % (@,
C) that is, by definition, (P, <) and (@, C) are posets, « € P — Q and v € Q — P
satisfy Ve € P:Vy € Q : a(z) C y < = < y(y). It follows that «a preserves lubs existing
in P and, by duality, v preserves greatest glbs existing in). Given a lub-preserving «
(resp. glb-preserving), there exists a unique v (resp. «) such that (P, <) % @,).
« is onto if and only if 7 is one-to-one, written (P, <) % (@, C). Dually, v is onto
if and only if « is one-to-one, written (P, <) «—%—) (Q, C). A Galois isomorphism is
written (P, <) «_Z>—_> (@, D).
Example 97 (Function abstraction at a point) If (L, T, T) is a poset (L, C) with
supremum | and x € L then we define the abstraction of functions in L — L at point x
by a® = X f e« f(x) and v* = Av - As+(s=x27vsT). Wehave (L — L, E><’Y_—T><L,

o

C).

PRrOOF For all f € L+ L and v € L, we have o®(f) Cv
78

— VseL:f(s)C(s=2%vsT) {def. o® and T is the supremum of L§
— fEY"(v) {def. pointwise ordering and 7*§ m o

Let o be the composition of relations or functions. The composition of Galois connections

(P, <) <v—_1> (@, C) and (Q, C) <V_—2> (R, <) is a Galois connection (P, <) <71—L> (R,
Qg a2 Qa200]

<).
We use a weaker variant of the fixpoint abstraction theorem [27, Th. 7.1.0.4(3)] as
follows

Theorem 98 If (P, <, 0, V) is a poset with infimum 0, F' € P — P is monotone, the
iterates of F' from 0 are well-defined with iteration order e, (@, T, L, L) is a poset with
infimum L, F* € Q — Q is monotone, the iterates of F* from L are well-defined with
iteration order €', then lfpj F and lfpE F* do exist. Moreover, if for all ordinals § € O,
the maps as € P — @Q satisfy the correspondence property

5
Vo : (Jé(;(F(s) [A ,
where O denotes either C, T, =, J or 1, then

= c #
amax(e,sﬁ)(lfp F) 8 yp F*.

PROOF By monotony and well-definedness, the iterates of F' form an increasing chain,
ultimately stationary at rank e, with lub F¢ = ifp I [28]. Similarly, the iterates of F*
form an increasing chain, ultimately stationary at rank €f, with lub F° = lfp; F* [28].

By stationarity, we have amax(ewen)(lfpﬁ F) = Qmax(e,et)(F€) = amax(e’iu)(Fmax(e,e”))
OF _ gt L

umax(s,en)

Corollary 99 If (P, X, 0, V) is a poset with infimum 0, F € P — P is monotone, the
iterates of F from 0 are well-defined with iteration order e, (Q, T, L, U) is a poset with
infimum L, F* € Q — Q is monotone, the iterates of F* from L are well-defined with
iteration order €' then lfpj F and lfpE F*® do exist. Moreover, if, for all ordinals § € O,
the maps a5 € P — Q satisfy the commutation property

V8 €0 :asi 0 F(F®) O Ffoas(F),

where O denotes either T, = or J, ag(0) O L and for all limit ordinals A, ax(V 5 FP)
O [gen ag(FP) then V8 : as(F°) O Ft and

= c #
amax(e,eﬁ)(lfp F) g ifp F* .

PROOF By monotony and well-definedness, the iterates of F' form an increasing chain,
ultimately stationary at rank e, with lub F€¢ = lfpj F [28]. Similarly, the iterates of F*
f
form an increasing chain, ultimately stationary at rank ef, with lub F#* = lfpE F*%[28].
We have ao(F?) = ap(0) O L = Pt Assuming as(F°) O Fo° by induction
hypothesis, we have a1 (F°+!)
79

a1 (F(F®) O Ffas(F?)) {def. iterates and commutation hyp.§

O Fn(Fn(s) {ind. hyp. & monotony of F# (when O is, C or J) or equality§
= gt {def. iterates.§
For limit ordinals, ay(F?)
= ax(\/ FA o |_| ag(FP) {def. iterates andlub approximation hypothesisS§
B<A B<A
O |_| 2l {ind. hyp. & monotony of the lub§
B<A
- {def. well-defined iterates (so the lub exists)§
We proved V4 : as(F°) O F** and conclude by Th. 98. =

Note that we may have € > ¢ as in P = {0}, F(0) = 0so e =0, Q = {1, T} with
L= 1L <T=T,F{L)=FYT)=Tsoe =1, ap(0) = L and a;(0) = T.

Corollary 100 Cor. 99 holds with the stronger commutation property
VzGP:lefij:>a5+10F(x)QFﬁoa,;(x). 0
Corollary 101 If (P, <, 0, V) is a poset with infimum 0, F € P+ P is monotone, the

iterates of F are well-defined with iteration order ¢, (Q, T, U) is a poset, F* € Q + Q is
monotone, the Galois connection (P, <) % (Q, C) satisfy the commutation property

V6 €0:ao F(F°) O F* o a(F?),

where O denotes either =, = or 1, then V6 € O : a(F‘;) O Fué and lfpE Ft does exist
such that

alfp F) O ifp F'.

Proor We apply Cor. 99 with V6 € O : a5 = a. (P, <) % (Q, C) implies that «(0)
is the infimum L of @ and « preserves existing lubs, so the iterates of F* do exist and for

all limit ordinals A, ax(V 5y Ff O Lg<x ag(FP) by reflexivity of CJ. n

Corollary 102 If F and G are monotone transformers on a cpo (P, <, 0, V) and F <X G
pointwise, then lfpj F= lfpj G. 0

Proor By Cor. 101 with a = 1p. n

Example 103 (Common least fixpoint) If F' is monotone on a cpo then lfpj F
ifp- AX « X UF(X).

PROOF 1fp~ F is a fixpoint of AX « X UF(X) solfp AX+XUF(X)=1p F. F =<

A X« X U F(X) pointwise so by Cor. 102 ifp” F <1fp AX XL F(X). We conclude

by antisymmetry. -
80

In the particular case when O is =, we can weaken the hypotheses in Cor. 99 as follows

Corollary 104 If (P, <, 0, V) is a poset with infimum 0, F € P+ P is monotone, the
iterates of F are well-defined with iteration order e, (Q, C, L) is a poset, FteQw— Q,

the Galois connection (P, <) %) (Q, C) satisfy the commutation property

V6 € 0:ao F(F°) = F* o a(F9),
then V6 € 0 : a(F°) = F and
=< e
alifp F) = F*

with € < e. Let F* | It be the restriction of F¥ to its iterates I* 2 {Fﬁé |0<d < eﬁ},
f

Then F'© = lfpE Ft | I' and if F* is monotone then Ft© = lfpE Ft. O
PRrOOF We apply Cor. 101 since it is not necessary to assume F* to be monotone for
these iterates to be increasing since they are the image of an increasing chain by the
monotone .

By the commutation property and definition of €, F¥(Ft) = F¥(a(F¢)) = a o F(F°)
= a(F°) = F* proving ¢ < e.

i #
We have F#° = lfpE F*t] I* since F'° is the only fixpoint of F* on its iterates. In

1
general, F1© = lfpE F* as shown by the following counterexample

However if F! is monotone and Fﬁ(ac) = x then by induction V¢ < el Fﬁ(S C x so
C
Ft = Ifp~ Ft.]

Example 105 (Fixpoint abstraction at a point) Continuing Ex. 97, let (L, C, L,
T) be a poset with infimum | and supremum T, z € L, S be a set and F =
Ao Az f(z,¢(2)) where f € (S x L) — L) is such that F € (S — L) — (S — L) is
monotone and the iterates of F' are well defined. Then o* (lfpE F)= ifp- AX - f(z, X).

PROOF We apply Cor. 104 to F and discover F* = XA X « f(z, X) by calculus o®(F(¢))
81

= a"Az-f(20(2) = [l 6(x)) {def. F' and a”§
= f(z,a%(¢)) {def. a® so we let F¥ = XX « f(z, X)§ . mo

The particular case [40, Th. 2] is

Corollary 106 If (P, =, 0, V) is a cpo, (P, <) % (Q, C), F € P~ P is monotone,
F* € Q — Q and the commutation property

=
VeeP:ax=<ifp F= aoF(z)=F"oa(x)
holds, then V6 : a(F°) = Fﬂg, ifp” F as well as ifp- F* do exist such that
alfp F) = 1ifp F!

and the iteration order € of F* is less than or equal to that € of F. If (P, <) % (Q,
C) then we can choose F* = a o F o1. O

PROOF We apply Cor. 104. The iterates for a monotone F do exist in a cpo. If (P,
j}%(@, C) then yoa=1g so ao F(z) = ao Foyoa(r) = F*oa(z). ™

Example 107 (Reachable states) Let (X, 7) be a transition system (where X is a
non-empty set of states and 7 € p(¥ X X) is a transition relation). The reachable states
from initial states I C ¥ by 7 is the right/post-image of I by 7* that is post[7*]] where

post € p(X) = p(X) is post[r]X = {s' € £ | 3Is € X : (s, s') € r}. We have
A

post[T*]] = ifp £ where F 2 AX-JU post[T] X (A1)

= —=6
where the iterates of F satisfy V6 < w : F' = post[r®*]].
PROOF We apply Cor. 106 to 7* = 1fp~ F with F = Az +1x U (x o 7) with abstraction

o = Arepost[r]] such that (p(X x ¥), C) % (p(X), C) using the commutation

condition a0 F' = F o o to design the abstract transformer F. We have a0 (Az+ 70Uz o
7) = A + post[7°]T U post[z o 7|I by def. o, a preserves lubs, and def. a.

— post[rl I ={s' |3scT:(s,s)c{(s,s)|s€cS}}=1 {def. post, 70 = 1y, €§

— postlzor|] = {s'|Isel:35" €8 :(s,s"yexn(ss")er} [def post, o, & €
= {§]3"eS:s"e{s"|Isel:(s,s")ex}n(s s")er}

{commutativity of 3 and def. €§
= post[r](a(x)) {def. post and af . mo

The Galois connection hypothesis can be weaken into a continuity hypothesis on the
abstraction «. For example

82

Corollary 108 If (P, =, 0, V) is a poset with infimum 0, F' € P+ P is monotone, the
iterates of F are well-defined with iteration order € less than or equal to w 19, (Q, C, L,
L) is a poset with infimum L, F* € Q v Q, the abstraction function o € P+ Q is strict
(a(0) = L), continuous and satisfies the commutation property

Vs €0:ao F(F°) = F'oa(F°),
then V6 < w: a(F°) = F and
o
a(fp F) = F*

with € < e < w. Let F* | It be the restriction of F¥ to its iterates I*® 2 {Fn(s |0 <8< ef)
¢ ¢
Then F*© = lfpE Ft FIﬁ and if F* is monotone then F!° = lfpE Ft. 0

PROOF By definition of the iterates and induction, we have V6 € O : a(F?%) = e by
strictness for the basis 6 = 0, by induction hypothesis and commutation property for
0 < § < w, by induction induction hypothesis and for § = w and V8§ > w, F® = F“ since
e <w.

The proof then follows that of Cor. 104. n

Theorem 109 If (P, =, V) is a poset, F € P — P is continuous, (Q, C, L) is a poset,
FfeQwQ, (P =) <_L>_> (Q, C) and a0 F = F* o o then F* is continuous. O

«

PROOF Let z;, + € N be a C-increasing chain of elements of (). We have

|_| Fi(z;) = a(\/ F(v(z;))) (oo =1gq, def o, commutation, « preserves lubs§

ieN ieN
= a(F(\/ v(z:))
iEN
{y monotone, so y(z;), ¢ € N is an increasing chain, and F' continuous§
= F”(Ll x;) {commutation, a preserves lubs, acoy = 1g, def of . n
iEN

10y is the first infinite limit ordinal. An example is when F' € P+ P is continuous.

83

