
Verification by Abstract Interpretation,
Soundness and Abstract Induction

Patrick COUSOT
Courant Institute of Mathematical Sciences, New York University

sit c@u n. ueo ymo s d.c up , dns. /y uem ui .c ˜ o otuscp

Abstract
Automatic program verification tools have to cope with program-
ming language and machine semantics, undecidability, and mathe-
matical induction, and so are all complex and imperfect. The ins and
outs of automatic program verification will be discussed in light of
the theory and practice of abstract interpretation [18, 19, 22].
Programming language semantics
If Edsger W. Dijkstra could claim in his 1972 Turing lecture [29, p.
863] that “When FORTRAN has been called an infantile disorder, full
PL/1, with its growth characteristics of a dangerous tumor, could
turn out to be a fatal disease.”, PL/1 and its 1000 pages formal
operational semantics defined in VDL [7] now appears as a marvel
of simplicity compared to present-day programming languages [57]
and their informal definitions [1].

The formal specification of the semantics of programming lan-
guages is now a well-established and well-taught subject in com-
puter science, with many proposals at various levels of abstraction
such as small/big step operational, denotational, relational and pred-
icate transformer, axiomatic, and algebraic semantics. Surprisingly,
very few languages have received a formal definition of their se-
mantics (with few exceptions such as ML [47, 48]). None of the
most popular programming languages has a formal and complete
definition of its semantics that can reasonably be used as a basis
for formal verification. This may come from the high complexity of
present-day programming languages.

This problem is often solved by the verification community by
considering models or programs that are never checked to be valid
or toy languages hardly ever used for programming. Typically there
are reals no floats, arrays but infinite, lists or trees but no pointers,
etc.

Considering actual languages is a huge and long e�ort [24, 46],
not necessarily more highly rewarded.
Machine semantics
For a long time, computers have been miraculously correct (when-
ever bugs were found the corresponding pages of the user manual
had just to be teared up). Since the exponential improvement of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP ’15, June 13–16, 2015, Siena, Italy..
Copyright © 2015 ACM 2015 ACM. ISBN 978-1-4503-3516-4/15/07. . . $15.00.
http://dx.doi.org/10.1145/2790449.2790451

power of computers by Moore’s Law started to slow down signifi-
cantly a decade ago, computer industry technology moved to multi-
processors. Because memory access is about 100 times slower than
CPU, modern microprocessors optimize memory accesses by re-
ordering memory operations using caches and memory banks. On
most modern multiprocessors memory operations are not executed
in the order specified by the program code. In multi-threaded en-
vironments (or when interfacing with other hardware via memory
buses) this out-of-order execution may lead to serious problems.
Barriers or fences have been introduced to synchronize memory ac-
cesses. Their functioning is far from being well-documented, some-
times wrong, and their semantics is complex [2]. Of course di�erent
machines have di�erent semantics of concurrency so programs and
program verification methods are no longer portable.

This problem is often solved by the verification community by
considering sequential consistency [44] (which was valid with clas-
sical memory models [20] but no longer on modern architectures
[6, 31]), or by putting severe restrictions on acceptable implemen-
tations (such as multi-programming on a single processor [50]) with
potential terrible slowdowns (potentially by factors of tenth of thou-
sands) resulting from naïve compilation.
Soundness
Soundness refers to the possibility of proving that any automatically
verified program specification for any program of a programming
language is valid with respect to a formal definition of the seman-
tics of the programming language. This does not necessarily mean
absolute correctness when putting restrictions (such as no parame-
ter aliasing in Clousot [10] or soundness up to the first error with
unpredictable e�ects in Astrée [23]), preferably machine checkable
ones (such as the former restrictions on dynamic memory allocation
in Astrée [23], now dropped).

The most common method to circumvent the problem is to ig-
nore it completely [58]. For example unsound static analyzers are
easier, indeed much much easier, to develop than sound ones, and
they have commercial successes [55], based on heuristic organiza-
tion of the reported errors. This does not extend to subtle errors
and high quality software as required e.g. in aerospace [56] which
market is unfortunately much smaller than that of easily analyzable
dirty software.

On the contrary, the ultimate objective is that of automatically
verified automatic verification methods. Unfortunately, automatic
soundness verifications are still is their infancy [9] since the mech-
anization of abstract interpretation theory is a di�cult problem.
Undecidability
Assuming that what is to be verified is well-defined, undecidability
is the next challenge. In full generality, mathematical induction, is
required to verify programs, and this induction may be non-trivial

1



(mathematicians sometimes take centuries to solve apparently sim-
ple problems [59]).

First attempts in data-flow analysis [3] considered finite abstrac-
tions to get fixpoint equations in finite abstract domains. There was
no soundness consideration. Only informal explanations where pro-
vided to justify the correctness of the static analysis, without formal
connection to a clearly worded program semantics [18].

Unfortunately, finite abstractions, although complete for a given
program and a given property [15], are always surpassed by infini-
tary abstraction for a programming language, as proved in [21].

A similar and even more radical and trivial approach has been to
consider finite state systems [11, 53] thus avoiding all problems but
combinatorial explosion. After enormous but fruitless e�orts of the
computer aided verification community, this simplistic approach is
progressively recognized as a useful toy with no hope of scalability.
The simplest solution is then to claim that scalability is unnecessary.
This is a bit in contradiction with the software everywhere perspec-
tives of modern societies.

Another easy approach to undecidability, is to completely forget
about termination. This is the case a.o. of finite abstraction refine-
ments [12], even when refined to avoid useless refinements [26].
There is even a best way to refine abstractions for a given program
and a property [34, 35] which has never been exploited in practice,
probably because it is more complicated and does not terminate ei-
ther. Most engineers are patient and can wait for hours or days if the
results are useful, provided they know an upper bound on how long
they have to wait. Of course time-out, which is a too trivial widen-
ing, is unsatisfactory. Moreover, refinement is based on the idea
than the first imprecise analyses may be able to prove results quickly
without resorting to complex abstract domains. This might work on
small programs, although the di�erence is not significative, but has
not been shown to scale to very large programs which inevitably
have their intricacies requiring complex abstractions [32] beyond
naïve refinements towards popular abstract domains e.g. [27, 49].
A refinement per false alarm will hardly scale.

Undecidability can also be handled by looking for specific de-
cidable cases. The most trivial case is programs without loops. De-
cidability requires restrictions on the properties (such as no type
union in ML [14]) and the programming language (such as both
branches of a conditional must have the same type [14]). For more
general properties, the problem is that the considered cases are al-
most never applicable in practice and, despite that, the algorithms
are of very high complexity so do not scale.

When all these biases will have shown to be too limited in
practice, the next step is to use mathematical induction.
Mathematical induction
Induction is the basic mathematical method for reasoning on com-
puter systems, most often on their structure (like structural induc-
tion in operational semantics [52]) or the progress of the computa-
tions [33], or inversely [41], or both [38]). Apart from the fact that
program properties may not be computer-representable and that im-
plication is undecidable (which is solved by considering abstract do-
mains in SMT solvers [25, 28, 30] or by using proof checkers [51]
instead of theorem provers [42]), the main problem is to find an in-
ductive argument for the proof by induction, which is nothing but an
infinite fixpoint computation [18]. Convergence must definitely be
accelerated (unless the solution can be computed symbolically once
and for all, in which case the widening just plugs in the appropriate
solution [36]).

The first work-around is to ask the programmer to provide the
inductive argument (such as all loop invariants [45]). This is a trivial
widening to the proposed solution and to unknown if it is not valid.
This is great for tiny programs but more di�cult for larger ones, in
particular because the inductive argument is often much larger than

the program itself. This is also costly at the development time (even
for projects that greatly simplify real life software[9, 40]). This is
even more costly in the maintenance phase since any modification
of the program requires a manual modification of the corresponding
inductive argument (and even of the proof itself for interactive
verification).

The second work-around is to ask the programmer not for the
inductive argument but for a pattern of the inductive argument [37].
This always works when the pattern is per program since the limit of
this approach is to ultimately provide the inductive argument itself.
This can become rapidly very complex when the pattern is general
enough (e.g. for non-linear invariants [16]) and very large programs.
Moreover this does the solve the analysis termination problem so
that convergence acceleration is necessary [4].

Abstract mathematical induction
Abstract domains generalize patterns of properties essentially by
providing infinitely many patterns. Infinite abstract domains re-
quire convergence acceleration by extrapolation (widening/dual-
widening) and interpolation operators (narrowing, dual-narrowing,
which are equivalent up to the exchange of the parameters) to auto-
mate mathematical induction in the abstract domain [17, 27].

Trivial extrapolations include bounding computations [43] or
abstracting to finite domains [39]. This is subject to the finite ab-
straction limitations [21]. It cannot be used to prove anything, but
the presence of bugs at the beginning of the considered program
executions.

The power of extrapolation/interpolation operators lies in the
ability to enforce convergence in infinitely many di�erent ways for
infinitely many di�erent programs.

In general, an increasing iterative static analysis using extrapo-
lation of successive iterates by widening followed by a decreasing
iterative static analysis using interpolation of successive iterates by
narrowing (both bounded by the specification) can be further im-
proved by a increasing iterative static analysis using interpolation
of iterates with the specification by dual-narrowing until reaching a
fixpoint and checking whether it is inductive for the specification.
This can be done locally [5]. The soundness and termination prop-
erties are independent [13]. An example is dual-narrowing which
generalizes Craig interpolation in first order logic pre-ordered by
implication to arbitrary abstract domains and may not terminate.

Conclusion
A large fraction of research on program verification has been de-
voted to avoiding hard and di�cult fundamental problems. We
know, by undecidability, that full verification will always be au-
tomatically unsolvable. So the game is to anticipate how far the
limit can be pushed. From what we learned from the past, we an-
ticipate that abstract interpretation will be able to explain how it
works [22]. It is another challenge to find what will work.

Moreover predicting the future is well-known to be error-prone.
For example, [13] concluded that “Les techniques de mise au point
encore largement utilisées dans l’industrie informatique du logiciel
peuvent être en partie évitées (du moins pour les fautes de program-
mation si ce n’est pour les fautes de conception), en utilisant nos
propositions d’analyse sémantique automatique des programmes,
et ce, sans attendre les dix ans (ou plus) qui seront nécessaires pour
que les techniques de vérification des programmes utilisant des dé-
monstrateurs de théorèmes soient opérationnelles. Il est d’ailleurs
certain que les méthodes que nous proposons sont complémentaires
et o�rent pour certains types d’analyses un rapport coût/bénéfice

2



très rentable.”1. Replacing years by decades might still be a valid
conclusion.
References

[1] 14882:2014, I.: Information technology — Programming languages —
C++. ISO. (14 January 2014)

[2] Alglave, J.: A formal hierarchy of weak memory models. Formal Meth-
ods in System Design 41(2), 178–210 (2012)

[3] Allen, F.E.: A basis for program optimization. In: IFIP Congress (1).
pp. 385–390 (1971)

[4] Amato, G., Maio, S.D.N.D., Meo, M.C., Scozzari, F.: Narrowing op-
erators on template abstract domains. In: Bjørner and de Boer [8], pp.
57–72

[5] Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: E�ciently
intertwining widening and narrowing. CoRR abs/1503.00883 (2015)

[6] Berry, D., Milner, R., Turner, D.N.: A semantics for ML concurrency
primitives. In: Sethi, R. (ed.) Conference Record of the Nineteenth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mexico, USA, January 19-
22, 1992. pp. 119–129. ACM Press (1992)

[7] Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The
Meta-Language, Lecture Notes in Computer Science, vol. 61. Springer
(1978)

[8] Bjørner, N., de Boer, F.D. (eds.): FM 2015: Formal Methods - 20th In-
ternational Symposium, Oslo, Norway, June 24-26, 2015, Proceedings,
Lecture Notes in Computer Science, vol. 9109. Springer (2015)

[9] Boldo, S., Jourdan, J., Leroy, X., Melquiond, G.: A formally-verified
C compiler supporting floating-point arithmetic. In: Nannarelli, A.,
Seidel, P., Tang, P.T.P. (eds.) 21st IEEE Symposium on Computer
Arithmetic, ARITH 2013, Austin, TX, USA, April 7-10, 2013. pp.
107–115. IEEE Computer Society (2013)

[10] Christakis, M., Müller, P., Wüstholz, V.: An experimental evaluation
of deliberate unsoundness in a static program analyzer. In: D’Souza,
D., Lal, A., Larsen, K.G. (eds.) Verification, Model Checking, and
Abstract Interpretation - 16th International Conference, VMCAI 2015,
Mumbai, India, January 12-14, 2015. Proceedings. Lecture Notes in
Computer Science, vol. 8931, pp. 336–354. Springer (2015)

[11] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In: Kozen, D.
(ed.) Logics of Programs, Workshop, Yorktown Heights, New York,
May 1981. Lecture Notes in Computer Science, vol. 131, pp. 52–71.
Springer (1981)

[12] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement. In: Emerson, E.A.,
Sistla, A.P. (eds.) Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1855, pp. 154–169.
Springer (2000)

[13] Cousot, P.: Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique
de programmes (in French). Thèse d’État ès sciences mathématiques,
Université Joseph Fourier, Grenoble, France (21 March 1978)

[14] Cousot, P.: Types as abstract interpretations. In: Lee, P., Henglein, F.,
Jones, N.D. (eds.) Conference Record of POPL’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Papers Presented at the Symposium, Paris, France, 15-17 Jan-
uary 1997. pp. 316–331. ACM Press (1997)

[15] Cousot, P.: Partial completeness of abstract fixpoint checking. In:
Choueiry, B.Y., Walsh, T. (eds.) Abstraction, Reformulation, and Ap-

1 The debugging techniques still in common use in the software industry can
be avoided in part (at least for programming errors if not for design errors)
using our proposed automatic semantic analysis techniques, without waiting
for the ten years (or more) that will be needed for program verification
techniques using theorem provers to be operational. It is also certain that
the methods we o�er are complementary and provide for certain types of
analyzes a very profitable cost/benefit ratio.

proximation, 4th International Symposium, SARA 2000, Horseshoe
Bay, Texas, USA, July 26-29, 2000, Proceedings. Lecture Notes in
Computer Science, vol. 1864, pp. 1–25. Springer (2000)

[16] Cousot, P.: Proving program invariance and termination by parametric
abstraction, lagrangian relaxation and semidefinite programming. In:
Cousot, R. (ed.) Verification, Model Checking, and Abstract Interpre-
tation, 6th International Conference, VMCAI 2005, Paris, France, Jan-
uary 17-19, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3385, pp. 1–24. Springer (2005)

[17] Cousot, P., Cousot, R.: Static determination of dynamic properties of
programs. In: Proc. Secont Int. Symp. on Programming. pp. 106–130.
Dunod, Paris, France (1976)

[18] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) POPL.
pp. 238–252. ACM (1977)

[19] Cousot, P., Cousot, R.: Systematic design of program analysis frame-
works. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) POPL. pp. 269–
282. ACM Press (1979)

[20] Cousot, P., Cousot, R.: Invariance proof methods and analysis tech-
niques for parallel programs. In: Biermann, A., Guiho, G., Kodrato�,
Y. (eds.) Automatic Program Construction Techniques, chap. 12, pp.
243–271. Macmillan, New York, New York, United States (1984)

[21] Cousot, P., Cousot, R.: Comparing the galois connection and widen-
ing/narrowing approaches to abstract interpretation. In: Bruynooghe,
M., Wirsing, M. (eds.) Programming Language Implementation and
Logic Programming, 4th International Symposium, PLILP’92, Leu-
ven, Belgium, August 26-28, 1992, Proceedings. Lecture Notes in
Computer Science, vol. 631, pp. 269–295. Springer (1992)

[22] Cousot, P., Cousot, R.: Abstract interpretation: past, present and future.
In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014.
pp. 2:1–2:10. ACM (2014)

[23] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: The astreé analyzer. In: Sagiv, S. (ed.) Program-
ming Languages and Systems, 14th European Symposium on Program-
ming,ESOP 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April
4-8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3444,
pp. 21–30. Springer (2005)

[24] Cousot, P., Cousot, R., Feret, J., Miné, A., Mauborgne, L., Monniaux,
D., Rival, X.: Varieties of static analyzers: A comparison with AS-
TREE. In: First Joint IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering, TASE 2007, June 5-8, 2007, Shanghai, China.
pp. 3–20. IEEE Computer Society (2007)

[25] Cousot, P., Cousot, R., Mauborgne, L.: Theories, solvers and static
analysis by abstract interpretation. J. ACM 59(6), 31 (2012)

[26] Cousot, P., Ganty, P., Raskin, J.: Fixpoint-guided abstraction refine-
ments. In: Nielson, H.R., Filé, G. (eds.) Static Analysis, 14th Interna-
tional Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-
24, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4634,
pp. 333–348. Springer (2007)

[27] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints
among variables of a program. In: Aho, A.V., Zilles, S.N., Szymanski,
T.G. (eds.) Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, Tucson, Arizona, USA,
January 1978. pp. 84–96. ACM Press (1978)

[28] Deters, M., Reynolds, A., King, T., Barrett, C.W., Tinelli, C.: A tour
of CVC4: how it works, and how to use it. In: Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, Oc-
tober 21-24, 2014. p. 7. IEEE (2014)

[29] Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–
866 (1972)

[30] D’Silva, V., Haller, L., Kroening, D.: Abstract satisfaction. In: Ja-
gannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL

3



’14, San Diego, CA, USA, January 20-21, 2014. pp. 139–150. ACM
(2014)

[31] Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded
parallelism. In: Rajamani and Walker [54], pp. 407–420

[32] Feret, J.: Static analysis of digital filters. In: Schmidt, D.A. (ed.) Pro-
gramming Languages and Systems, 13th European Symposium on Pro-
gramming, ESOP 2004, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29 - April 2, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 2986, pp. 33–48. Springer (2004)

[33] Floyd, R.: Assigning meaning to programs. In: Schwartz, J. (ed.) Proc.
Symposium in Applied Mathematics, vol. 19, pp. 19–32. Amer. Math.
Soc. (1967)

[34] Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and
refinements in abstract model-checking. In: Cousot, P. (ed.) Static
Analysis, 8th International Symposium, SAS 2001, Paris, France, July
16-18, 2001, Proceedings. Lecture Notes in Computer Science, vol.
2126, pp. 356–373. Springer (2001)

[35] Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpreta-
tions complete. J. ACM 47(2), 361–416 (2000)

[36] Gonnord, L., Halbwachs, N.: Combining widening and acceleration in
linear relation analysis. In: Yi, K. (ed.) Static Analysis, 13th Interna-
tional Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4134, pp. 144–160.
Springer (2006)

[37] Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS.
In: Grumberg, O. (ed.) Computer Aided Verification, 9th International
Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings.
Lecture Notes in Computer Science, vol. 1254, pp. 72–83. Springer
(1997)

[38] Hoare, C.A.R.: An axiomatic basis for computer programming. Com-
mun. ACM 12(10), 576–580 (1969), http://doi.acm.org/10.
1145/363235.363259

[39] Hunt, S., Hankin, C.: Fixed points and frontiers: A new perspective. J.
Funct. Program. 1(1), 91–120 (1991)

[40] Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-
verified C static analyzer. In: Rajamani and Walker [54], pp. 247–259

[41] Jr., J.H.M., Wegbreit, B.: Subgoal induction. Commun. ACM 20(4),
209–222 (1977)

[42] Kaufmann, M., Moore, J.S.: Enhancements to ACL2 in versions 5.0,
6.0, and 6.1. In: Gamboa, R., Davis, J. (eds.) Proceedings International
Workshop on the ACL2 Theorem Prover and its Applications, ACL2
2013, Laramie, Wyoming, USA, May 30-31, 2013. EPTCS, vol. 114,
pp. 5–12 (2013)

[43] Kroening, D., Lewis, M., Weissenbacher, G.: Proving safety with trace
automata and bounded model checking. In: Bjørner and de Boer [8],
pp. 325–341

[44] Lamport, L.: How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers 28(9), 690–
691 (1979)

[45] Leino, K.R.M., Wüstholz, V.: The dafny integrated development en-
vironment. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Pro-
ceedings 1st Workshop on Formal Integrated Development Environ-
ment, F-IDE 2014, Grenoble, France, April 6, 2014. EPTCS, vol. 149,
pp. 3–15 (2014)

[46] Logozzo, F.: Practical specification and verification with code con-
tracts. In: Boleng, J., Taft, S.T. (eds.) Proceedings of the 2013 ACM
SIGAda annual conference on High integrity language technology,
HILT 2013, Pittsburgh, Pennsylvania, USA, November 10-14, 2013.
pp. 7–8. ACM (2013)

[47] Milner, R., Tofte, M.: Commentary on standard ML. MIT Press (1991)
[48] Milner, R., Tofte, M., Harper, R.: Definition of standard ML. MIT

Press (1990)
[49] Miné, A.: The octagon abstract domain. Higher-Order and Symbolic

Computation 19(1), 31–100 (2006)

[50] Miné, A.: Relational thread-modular static value analysis by abstract
interpretation. In: McMillan, K.L., Rival, X. (eds.) Verification, Model
Checking, and Abstract Interpretation - 15th International Confer-
ence, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Pro-
ceedings. Lecture Notes in Computer Science, vol. 8318, pp. 39–58.
Springer (2014)

[51] Paulin-Mohring, C.: Introduction to the coq proof-assistant for prac-
tical software verification. In: Meyer, B., Nordio, M. (eds.) Tools for
Practical Software Verification, LASER, International Summer School
2011, Elba Island, Italy, Revised Tutorial Lectures. Lecture Notes in
Computer Science, vol. 7682, pp. 45–95. Springer (2011)

[52] Plotkin, G.D.: The origins of structural operational semantics. J. Log.
Algebr. Program. 60-61, 3–15 (2004)

[53] Queille, J., Sifakis, J.: Specification and verification of concurrent
systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.)
International Symposium on Programming, 5th Colloquium, Torino,
Italy, April 6-8, 1982, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 137, pp. 337–351. Springer (1982)

[54] Rajamani, S.K., Walker, D. (eds.): Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. ACM
(2015)

[55] Ramos, D.A., Engler, D.R.: Practical, low-e�ort equivalence verifi-
cation of real code. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6806, pp. 669–685. Springer (2011), http:
//dx.doi.org/10.1007/978-3-642-22110-1

[56] Randimbivololona, F.: Orientations in verification engineering of
avionics software. In: Wilhelm, R. (ed.) Informatics - 10 Years Back.
10 Years Ahead. Lecture Notes in Computer Science, vol. 2000, pp.
131–137. Springer (2001)

[57] Stroustrup, B.: Foundations of C++. In: Seidl, H. (ed.) Programming
Languages and Systems - 21st European Symposium on Programming,
ESOP 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings. Lecture Notes in Computer Science, vol.
7211, pp. 1–25. Springer (2012)

[58] Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: A di�er-
ential approach to undefined behavior detection. ACM Trans. Comput.
Syst. 33(1), 1:1–1:29 (2015)

[59] Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Annals
of Mathematics 141(3), 443–551 (1995)

4


