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Abstract

Security monitors have been used to check for safety program properties at run-
time, that is for any given execution trace. Such security monitors check a safety
temporal property specified by a finite automaton or, equivalently, a regular ex-
pression. Checking this safety temporal specification for all possible execution
traces, that is the program semantics, is a static analysis problem, more pre-
cisely a model checking problem, since model checking specializes in temporal
properties. We show that the model checker can be formally designed by calcu-
lus, by abstract interpretation of a formal trace semantics of the programming
language. The result is a structural sound and complete model checker, which
proceeds by induction on the program syntax (as opposed to the more classical
approach using computation steps formalized by a transition system). By Rice
theorem, further hypotheses or abstractions are needed to get a realistic model
checking algorithm.

Keywords: Abstract interpretation, Calculational design, Model checking.

1. Introduction

Model checking [9, 43] consists in proving that a model of a given program/com-
puter system satisfies a temporal specification1. Traditionally, the model of the
given program/computer system is a transition system and its semantics is the
set of traces generated by the transition system. The temporal specification is
usually one of the many variants of temporal logics such as the Linear Time
Temporal logic (LTL) [42], the Computation Tree Logic (CTL)[9], or the com-
bination CTL∗ of the two [21]. The semantics of the temporal specification is
a set of traces. The problem is therefore to check that the set of traces of the
semantics of the given program/computer system is included in the set of traces

⋆Supported by NSF Grant CCF-1617717.
Email address: pcousot@cims.nyu.edu (Patrick Cousot)

1We define model checking as the verification of temporal properties and do not reduce it
to the reachability analysis (as done e.g. in [10, Ch. 15, 16, 17, etc.]) since reachability analysis
predates model checking [14] including for the use of transition systems [12].
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of the semantics of the temporal specification. This is a Galois connection-based
abstraction and so a model checking algorithm is an abstract interpretation of
the program semantics that can be designed by calculus. To show that we con-
sider a non-conventional temporal specification using regular expressions [33]
and a structural fixpoint prefix-closed trace semantics which differs from the
traditional small-step operational semantics specified by a transition system.
There are properties of traces that are not expressible in temporal logic but are
easily expressible using regular expressions [49].

2. Syntax and Trace Semantics of the Programming Language

2.1. Syntax
Programs are a subset of C with the following context-free syntax.

x, y,… ∈ X variable (X not empty)
A ∈ A ∶∶= 1 | x | A1 - A2 arithmetic expression2

B ∈ B ∶∶= A1 < A2 | B1 nand B2 boolean expression
E ∈ E ∶∶= A | B expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl ∶∶= Sl S | 𝜖 statement list
P ∈ P ∶∶= Sl program

A break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main () { P } is a valid C program after adding variable
declarations. We call “[program] component” S ∈ Pc ≜ S ∪ Sl ∪ P either a
statement, a statement list, or a program. We let ◁ be the syntactic relation
between immediate syntactic components, as defined in Appendix A. For
example, if S ∶∶= if (B) S𝑡 else S𝑓 then B ◁ S, S𝑡 ◁ S, and S𝑓 ◁ S while for
Sl ∶∶= Sl′ S | 𝜖 , we have Sl′ ◁ Sl, S◁ Sl, and 𝜖 ◁ Sl.

2.2. Program labels
Labels ℓ ∈ L are not part of the language, but useful to discuss program

points reached during execution. For each program component S, we define

2All arithmetic operations can be defined from 1, -, and iteration. Same for boolean
expressions with < and nand.
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atJSK the program point at which execution of S starts;
aftJSK the program exit point after S, at which execution of S is supposed to nor-

mally terminate, if ever;
escJSK a boolean indicating whether or not the program component S contains a

break ; statement escaping out of that component S;
brk-toJSK the program point at which execution of the program component S goes to

when a break ; statement escapes out of that component S;
brks-ofJSK the set of labels of all break ; statements that can escape out of S;
inJSK the set of program points inside S (including atJSK but excluding aftJSK (when

S is not empty) and brk-toJSK);
labsJSK the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.

Formal definitions are given in Appendix B. The program labelling has the fol-
lowing properties.

Lemma 1. For all program components S ∈ Pc of a program P, atJSK ∈ inJSK.
Lemma 2. For all program non-empty components S ≠ { …{ 𝜖 }… } of a
program P, aftJSK ∉ inJSK.
2.3. Prefix trace semantics

Prefix traces are non-empty finite sequences 𝜋 ∈ 𝕊+ of states where states ⟨ℓ,
𝜌⟩ ∈ 𝕊 ≜ (L ×Ev) are pairs of a program label ℓ ∈ 𝕊 designating the next action
to be executed in the program and an environment 𝜌 ∈ Ev ≜ X → 𝕍 assigning
values 𝜌(x) ∈ 𝕍 to variables x ∈ X. A trace 𝜋 can be finite 𝜋 ∈ 𝕊+ or infinite
𝜋 ∈ 𝕊∞ (recording a non-terminating computation) so 𝕊+∞ ≜ 𝕊+ ∪ 𝕊∞. Trace
concatenation ⌢⋅ is defined as follows

𝜋1 ⌢⋅ 𝜋2 ≜ 𝜋1 if 𝜋1 ∈ 𝕊∞ is infinite
𝜋1𝜎1 ⌢⋅ 𝜎2𝜋2 undefined if 𝜎1 ≠ 𝜎2
𝜋1𝜎1 ⌢⋅ 𝜎1𝜋2 ≜ 𝜋1𝜎1𝜋2 if 𝜋1 ∈ 𝕋+ is finite

The first state ⟨ℓ, 𝜌⟩ in a trace ⟨ℓ, 𝜌⟩𝜋 is called the initial state and 𝜌(x) the
initial value of variable x ∈ X. In pattern matching, we sometimes need the
empty trace ∋. For example if 𝜎𝜋𝜎′ = 𝜎 then 𝜋 = ∋ and so 𝜎 = 𝜎′.

2.4. Formal definition of the prefix trace semantics
The prefix trace semantics 𝓢∗JSK is given structurally (by induction on the

syntax) using fixpoints for the iteration.
• The prefix traces of an assignment statement S ∶∶= ℓ x = A ; (where atJSK = ℓ)
either stops in an initial state in {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} or is this initial state ⟨ℓ, 𝜌⟩
followed by the next state ⟨aftJSK, 𝜌[x ← 𝓐JAK𝜌]⟩ recording the assignment of
the value 𝓐JAK𝜌 of the arithmetic expression to variable x when reaching the
label aftJSK after the assignment.
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𝓢∗JSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩ ∣ 𝜌 ∈ Ev} (1)

The value of an arithmetic expression A in environment 𝜌 ∈ Ev ≜ X → 𝕍 is
𝓐JAK𝜌 ∈ 𝕍:

𝓐J1K𝜌 ≜ 1 𝓐JxK𝜌 ≜ 𝜌(x) 𝓐JA1 - A2K𝜌 ≜ 𝓐JA1K𝜌 −𝓐JA2K𝜌 (2)

• The prefix trace semantics of a break statement S ∶∶= ℓ break ; either stops
at ℓ or goes on to the break label brk-toJSK (which is defined as the exit label of
the closest enclosing iteration).

𝓢∗JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} (3)

• The prefix trace semantics of a conditional statement S ∶∶= if ℓ (B) S𝑡 where
atJSK = ℓ is

– either the trace ⟨ℓ, 𝜌⟩ when the observation of the execution stops on entry
of the program component for initial environment 𝜌;

– or, when the value of the boolean expression B for 𝜌 is false ff, the initial
state ⟨ℓ, 𝜌⟩ followed by the state ⟨aftJSK, 𝜌⟩ at the label aftJSK after the
conditional statement;

– or finally, when the value of the boolean expression B for 𝜌 is true tt,
the initial state⟨ℓ, 𝜌⟩ followed by a prefix trace of S𝑡 starting atJS𝑡K in
environment 𝜌 (and possibly ending aftJS𝑡K = aftJSK).
�̂�∗JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣𝓑JBK𝜌 = ff} (4)

∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣𝓑JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ �̂�∗JS𝑡K}
Observe that definition (4) includes the case of a conditional within an itera-
tion and containing a break statement in the true branch S𝑡. Since brk-toJSK =
brk-toJS𝑡K, from ⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJS𝑡K, 𝜌′⟩ ∈ 𝓢∗JS𝑡K and 𝓑JBK𝜌 = tt, we infer

that ⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJSK, 𝜌′⟩ ∈ 𝓢∗JSK.
• A prefix finite trace of a conditional statement if ℓ (B) S𝑡 else S𝑓 where
atJSK = ℓ either stops at ℓ in case (5.a) or, in case (5.b), is the test event B
(respectively ¬(B) in case (5.c)) at ℓ followed by a prefix trace of S𝑡 (respectively
S𝑓) when boolean expression B is true tt (respectively false ff) for the initial
environment 𝜌.

𝓢∗JSK ≜ {⟨atJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} (a) (5)
∪ {⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣𝓑JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ 𝓢∗JS𝑡K} (b)
∪ {⟨atJSK, 𝜌⟩⟨atJS𝑓K, 𝜌⟩𝜋 ∣𝓑JBK𝜌 = ff ∧ ⟨atJS𝑓K, 𝜌⟩𝜋 ∈ 𝓢∗JS𝑓K} (c)

Since brk-toJSK = brk-toJS𝑡K = brk-toJS𝑓K, definitions (5.b) and (5.c) include the
cases of breaks respectively from S𝑡 and S𝑓 to brk-toJSK.
• The prefix trace semantics of the empty statement list Sl = 𝜖 is reduced to
the states at that empty statement list (which is also after that empty statement
list).
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�̂�∗JSlK ≜ {⟨atJSlK, 𝜌⟩ ∣ 𝜌 ∈ Ev} (6)

• The prefix trace semantics of a non-empty statement list Sl ∶∶= Sl′ S are the
prefix traces of Sl′ or the finite maximal traces of Sl′ followed by a prefix trace
of S.

�̂�∗JSlK ≜ �̂�∗JSl′K ∪ �̂�∗JSl′K ⌢⋅ 𝓢∗JSK (7)
𝓢 ⌢⋅ 𝓢′ ≜ {𝜋 ⌢⋅ 𝜋′ ∣ 𝜋 ∈ 𝓢 ∧ 𝜋′ ∈ 𝓢′ ∧ 𝜋 ⌢⋅ 𝜋′ is well-defined}

Notice that if 𝜋 ∈ �̂�∗JSl′K, 𝜋′ ∈ 𝓢∗JSK, and 𝜋 ⌢⋅ 𝜋′ ∈ �̂�∗JSlK then the last state
of 𝜋 must be the first state of 𝜋′ and this state has atJSK = aftJSl′K and so the
trace 𝜋 must be a maximal terminating execution of Sl′ i.e. S is executed only
if Sl′ terminates.
• The prefix finite trace semantic definition 𝓢∗JSK (8) of an iteration state-
ment of the form S ∶∶= while ℓ (B) S𝑏 where ℓ = atJSK is the ⊆-least solution
lfp⊆𝓕∗JSK to the equation 𝑋 = 𝓕∗JSK(𝑋). Since 𝓕∗JSK ∈ ℘(𝕊+) → ℘(𝕊+) is ⊆-
monotonically increasing (if 𝑋 ⊆ 𝑋′ then 𝓕∗JSK(𝑋) ⊆ 𝓕∗JSK(𝑋′)) and ⟨℘(𝕊+),
⊆, ∅, 𝕊+, ∪, ∩⟩ is a complete lattice, lfp⊆𝓕∗JSK exists by Tarski’s fixpoint the-
orem [48] and can be defined as the limit of iterates [15]. In definition (8) of
the transformer 𝓕∗JSK, case (8.a) corresponds to a loop execution observation
stopping on entry, (8.b) corresponds to an observation of a loop exiting after 0
or more iterations, and (8.c) corresponds to a loop execution observation that
stops anywhere in the body S𝑏 after 0 or more iterations. This last case covers
the case of an iteration terminated by a break statement (to aftJSK after the
iteration statement).
𝓢∗Jwhile ℓ (B) S𝑏K = lfp⊆𝓕∗Jwhile ℓ (B) S𝑏K (8)

𝓕∗𝕊 Jwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev} (a)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff ∧ ℓ′ = ℓ}3 (b)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧

⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ} (c)

• The prefix traces of a program P ∶∶= Sl ℓ are those of the statement list Sl.
𝓢∗JPK ≜ 𝓢∗JSlK (9)

• The prefix traces of a skip statement S ∶∶= ℓ; where ℓ = atJSK either stop at
ℓ are just continue after the skip statement.

𝓢∗JSK ≜ {⟨atJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} (10)

• The prefix trace of a compound statement S ∶∶= { Sl } are those of its
statement list Sl.

𝓢∗JSK ≜ 𝓢∗JSlK (11)

3A definition of the form 𝑑( ⃗𝑥) ≜ {𝑓( ⃗𝑥′) ∣ 𝑃( ⃗𝑥′, ⃗𝑥)} has the variables ⃗𝑥′ in 𝑃( ⃗𝑥′, ⃗𝑥) bound to
those of 𝑓( ⃗𝑥′) whereas ⃗𝑥 is free in 𝑃( ⃗𝑥′, ⃗𝑥) since it appears neither in 𝑓( ⃗𝑥′) nor (by assumption)
under quantifiers in 𝑃(�⃗�′, ⃗𝑥). The ⃗𝑥 of 𝑃( ⃗𝑥′, ⃗𝑥) is therefore bound to the ⃗𝑥 of 𝑑( ⃗𝑥).
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2.5. Semantic properties
As usual in abstract interpretation [16], we represent properties of entities in

a universe U by a subset of this universe. So a property of elements of U belongs
to ℘(U). For example “to be a natural” is the property N ≜ {𝑛 ∈ Z ∣ 𝑛 ⩾ 0}
of the integers Z. The property “𝑛 is a natural” is “𝑛 ∈ N”. By program
component (safety) property, we understand a property of their prefix trace
semantics 𝓢∗JSK ∈ ℘(𝕊+). So program properties 𝑃 belong to ℘(℘(𝕊+)). The
collecting semantics is the strongest program property, that is the singleton
{𝓢∗JSK}. The abstraction of 𝑃 ∈ ℘(℘(𝕊+)) into trace properties in ℘(𝕊+) is 𝛼∪(𝑃) ≜
⋃𝑃 so for the collecting semantics 𝛼∪({𝓢∗JSK}) = 𝓢∗JSK. In the following, the
semantics properties that we consider are trace properties only, in 𝛼∪(℘(℘(𝕊+))) =
℘(𝕊+). So the strongest trace property of a program component S is its semantics
𝓢∗JSK.
3. Specifying computations by regular expressions

Stephen Cole Kleene introduced regular expressions and finite automata to
specify execution traces (called events) of automata (called nerve nets) [33].
Kleene proved in [33] that regular expressions and (non-deterministic) finite
automata can describe exactly the same classes of languages (see [45, Ch. 1,
Sect. 4]). He noted that not all computable execution traces of nerve nets can
be (exactly) represented by a regular expression. The situation is the same
for programs for which regular expressions (or equivalently finite automata)
can specify a super-set of the prefix state trace semantics 𝓢∗JSK of program
components S ∈ Pc. An early example is the specification with finite automata
specifications for testing [28, 27]. A similar example is security monitors.

Example 3 (Security monitors). Fred Schneider’s security monitors [46, 38]
use a finite automata specification to state requirements of hardware or software
systems. They have been used to check for safety program properties at runtime,
that is for any given execution trace in the semantics 𝓢∗JSK. The safety prop-
erty specified by the finite automaton or, equivalently, a regular expression is
temporal i.e. links events occurring at different times in the computation (such
as a file must be opened before being accessed and must eventually be closed).
Checking this safety temporal specification for all possible execution traces in
the semantics 𝓢∗JSK is a static analysis problem, more precisely, a model check-
ing problem [47], since model checking specializes in temporal properties. □

The use of regular expressions is one distinctive feature of this paper. Regular
expressions are commonly used in text editing and understood by all program-
mers, which is not the case for temporal logics. This is the reason why we use
regular expressions as specification language. This also allows us to construct
a new model checking algorithm, which would not have been the case with
classical temporal logic specifications.
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3.1. Syntax of regular expressions
Classical regular expressions denote sets of strings using constants (empty

string 𝜀, literal characters 𝑎, 𝑏, etc.) and operator symbols (concatenation ∙, al-
ternation ||, repetition zero or more times ∗ or one or more times +). We replace
the literal characters by invariant specifications L : B stating that boolean ex-
pression B should be true whenever control reaches any program point in the set
L of program labels. The boolean expression B may depend on program variables
x, y,… ∈ X and their initial values denoted x, y,… ∈ X where X ≜ {x ∣ x ∈ X}.

L ∈ ℘(L) sets of program labels
x, y,… ∈ X program variables
x, y,… ∈ X initial values of variables

B ∈ B boolean expressions such that 𝕧𝕒𝕣𝕤JBK ⊆ X ∪X

R ∈ R regular expressions (12)
R ∶∶= 𝜀 empty
| L : B invariant B at L
| R1R2 (or R1 ∙ R2) concatenation
| R1 || R2 alternative
| R∗1 | R+1 zero/one or more occurrences of R
| (R1) grouping

We use abbreviations to designate sets of labels such as ? : B ≜ L : B so
that B is invariant, ℓ : B ≜ {ℓ} : B so that B is invariant at program label ℓ,
¬ℓ : B ≜ L ⧵ {ℓ} : B when B holds everywhere but at program point ℓ, etc.

Example 4. (? : tt)∗ holds for any program. (? : x >= 0)∗ states that the value
of x is always positive or zero during program execution. (? : x >= x)∗ states
that the value of x is always greater than or equal to its initial value x during
execution. (? : x >= 0)∗ ∙ ℓ : x == 0 ∙ (? : x < 0)∗ states that the value of x
should be positive or zero and if program point ℓ is ever reached then x should
be 0, and if computations go on after program point ℓ then x should be negative
afterwards. □

Example 5. Continuing Ex. 3 for security monitors, the basic regular expres-
sions are names 𝑎 of program actions. We can understand such an action 𝑎 as
designating the set L of labels of all its occurrences in the program. If necessary,
the boolean expression B can be used to specify the parameters of the action. □

There are many regular expressions denoting the language {϶} containing only
the empty sequence denoted ϶ (such that 𝜀, 𝜀𝜀, 𝜀∗, etc.), as shown by the following
grammar.

R ∈ R𝜀 empty regular expressions
R ∶∶= 𝜀 | R1R2 | R1 || R2 | R∗1 | R+1 | (R1) (13)
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For specification we use only non-empty regular expressions R ∈ R+ since
traces cannot be empty. The definition takes into account the fact that e.g.
L : B can be written as 𝜀𝜀𝜀… 𝜀L : B𝜀𝜀… 𝜀.

R ∈ R+ non-empty regular expressions
R ∶∶= L : B | 𝜀R2 | R1𝜀 | R1R2 | R1 || R2 | R+1 | (R1)

We also have to consider regular expressions R ∈ R∖| containing no alternative ||.
R ∈ R∖| ||-free regular expressions
R ∶∶= 𝜀 | L : B | R1R2 | R∗1 | R+1 | (R1)

3.2. Relational semantics of regular expressions
The semantics (2) of expressions is changed as follows (𝜚(x) denotes the initial

values x of variables x and 𝜌(x) their current value, ↑ is the alternative denial
logical operation)

𝓐J1K𝜚, 𝜌 ≜ 1 𝓐JA1 - A2K𝜚, 𝜌 ≜ 𝓐JA1K𝜚, 𝜌 −𝓐JA2K𝜚, 𝜌 (14)
𝓐JxK𝜚, 𝜌 ≜ 𝜚(x) 𝓑JA1 < A2K𝜚, 𝜌 ≜ 𝓐JA1K𝜚, 𝜌 <𝓐JA2K𝜚, 𝜌
𝓐JxK𝜚, 𝜌 ≜ 𝜌(x) 𝓑JB1 nand B2K𝜚, 𝜌 ≜ 𝓑JB1K𝜚, 𝜌 ↑𝓑JB2K𝜚, 𝜌

We represent a non-empty finite sequence 𝜎1…𝜎𝑛 ∈ 𝕊+ ≜ ⋃
𝑛∈N⧵{0}
[1, 𝑛] → 𝕊 of

states 𝜎𝑖 ∈ 𝕊 ≜ (L × Ev) by a map 𝜎 ∈ [1, 𝑛] → 𝕊 (which is the empty sequence
𝜎 = ϶ when 𝑛 = 0).

The relational semantics 𝓢rJRK ∈ ℘(Ev × 𝕊∗) of regular expressions R relates
an arbitrary initial environment 𝜚 ∈ Ev to a trace 𝜋 ∈ 𝕊∗ by defining how the
states of the trace 𝜋 are related to that initial environment 𝜚.

𝓢rJ𝜀K ≜ {⟨𝜚, ϶⟩ ∣ 𝜚 ∈ Ev} 𝓢rJRK0 ≜ 𝓢rJ𝜀K (15)

𝓢rJL : BK ≜ {⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∣ ℓ ∈ L ∧𝓑JBK𝜚, 𝜌} 𝓢rJRK𝑛+1 ≜ 𝓢rJRK𝑛 ⦿𝓢rJRK
𝓢rJR1R2K ≜ 𝓢rJR1K ⦿𝓢rJR2K 𝓢rJR∗K ≜ ⋃

𝑛∈N
𝓢rJRK𝑛

𝓢 ⦿𝓢′ ≜ {⟨𝜚, 𝜋 ⋅ 𝜋′⟩ ∣ ⟨𝜚, 𝜋⟩ ∈ 𝓢 ∧ ⟨𝜚, 𝜋′⟩ ∈ 𝓢′} 𝓢rJR+K ≜ ⋃
𝑛∈N⧵{0}

𝓢rJRK𝑛
𝓢rJR1 || R2K ≜ 𝓢rJR1K ∪𝓢rJR2K 𝓢rJ(R)K ≜ 𝓢rJRK
Example 6. The semantics of the regular expression R ≜ ℓ : x = x ∙ ℓ′ : x = x+1
is 𝓢rJRK = {⟨𝜚, ⟨ℓ, 𝜌⟩⟨ℓ′, 𝜌′⟩⟩ ∣ 𝜌(x) = 𝜚(x) ∧ 𝜌′(x) = 𝜚(x) + 1} meaning that if the
initial value of x is x at ℓ then, after one step of computation, it is x+1 at ℓ′.4 □

4The trace semantics for regular expressions always relates variable environments to the
initial environment, so that one cannot express sequences of variable increments. A possible
refined specification for an extension of this paper would allow for recording intermediate or
final values of variables during computations, not only the initial ones.
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4. Definition of regular model checking

Let the prefix closure prefix(Π) of a set Π ∈ ℘(Ev × 𝕊+) of traces be

prefix(Π) ≜ {⟨𝜚, 𝜋⟩ ∣ 𝜋 ∈ 𝕊+ ∧ ∃𝜋′ ∈ 𝕊∗ . ⟨𝜚, 𝜋 ⋅ 𝜋′⟩ ∈ Π} prefix closure.

The following Def. 7 defines the model checking problem P, 𝜚 ⊨ R as checking
that the semantics of the given program P ∈ P meets the regular5 specification
R ∈ R+ for the initial environment 𝜚.

Definition 7 (Model checking).

P, 𝜚 ⊨ R ≜ ({𝜚} ×𝓢∗JPK) ⊆ prefix(𝓢rJR ∙ (? : tt)∗K)
The prefix closure prefix allows the regular specification R to specify traces

satisfying a prefix of the specification only, as in ℓ x = x + 1 ;ℓ′, 𝜚 ⊨ R where
R = ℓ : x = x ∙ ℓ′ : x = x + 1 ∙ ℓ″ : x = x + 3 and 𝜚(x) = x.

The extension of the specification by (? : tt)∗ allows for the regular specifica-
tion R to specify only a prefix of the traces, such as ℓ x = x+1 ;ℓ′ x = x+2 ; ℓ″, 𝜚 ⊨
ℓ : x = x ∙ ℓ′ : x = x + 1.

Model checking is a boolean abstraction ⟨℘(𝕊+), ⊆⟩ −−−−−−→←−−−−−−𝛼𝜚,R
𝛾𝜚,R
⟨B, ⇐⟩ where

𝛼𝜚,R(Π) ≜ ({𝜚} × Π) ⊆ prefix(𝓢rJR ∙ (? : tt)∗K)).
5. Properties of regular expressions

We recall properties of regular expressions that we will use to design a struc-
tural model checking abstract semantics.

5.1. Equivalence of regular expressions
We say that regular expressions are equivalent when they have the same

semantics.
R1 ≎ R2 ≜ (𝓢rJR1K = 𝓢rJR2K)

5.2. Disjunctive normal form dnf of regular expressions
As noticed by Kleene [33, p. 14], regular expressions can be put in the equiv-

alent disjunctive normal form of Hilbert—Ackermann [29, Ch I, § 3 and Ch III,
§ 8]. A regular expression is in disjunctive normal form if it is of the form
(R1 || … || R𝑛) for some 𝑛 ⩾ 1, in which none of the R𝑖, for 1 ⩽ 𝑖 ⩽ 𝑛, contains an

5We understand ”regular model checking” as checking temporal specifications given by a
regular expression. This is different from [1] model checking transition systems which states
are regular word or tree languages.
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occurrence of ||. Any regular expression R has a disjunctive normal form dnf(R)
defined as follows.

dnf(𝜀) ≜ 𝜀 (16)
dnf(L : B) ≜ L : B
dnf(R1R2) ≜ let R11 ||… || R𝑛11 = dnf(R1) and R12 ||… || R𝑛22 = dnf(R2) in

𝑛1
||
𝑖=1

𝑛2
||
𝑗=1

R𝑖1R
𝑗
2

dnf(R1 || R2) ≜ dnf(R1) || dnf(R2)
dnf(R∗) ≜ let R1 ||… || R𝑛 = dnf(R) in ((R1)∗…(R𝑛)∗)∗
dnf(R+) ≜ dnf(RR∗)
dnf((R)) ≜ (dnf(R))

The proof that dnf(R) is in disjunctive normal form is by structural induction
using the fact that the R1,… , R𝑛 do not contain any ||.

The Lem. 8 below shows that normalization leaves the semantics unchanged.
It uses the fact that (R1 || R2)∗ ≎ (R1∗R2∗)∗ where the R1 and R2 do not contain
any || [31, Sect. 3.4.6, p. 118].

Lemma 8. dnf(R) ≎ R.

Lem. 8 shows that normalization in (16) can be further simplified by 𝜀R ≎ R𝜀 ≎ R
and (𝜀)∗ ≎ 𝜀 which have equivalent semantics.

5.3. first and next of regular expressions
Janusz Brzozowski [7] introduced the notion of derivation for regular expres-

sions (extended with arbitrary Boolean operations6). The derivative of a regular
expression R with respect to a symbol 𝑎, typically denoted as 𝐷𝑎(R) or 𝑎−1R, is a
regular expression given by a simple recursive definition on the syntactic struc-
ture of R. The crucial property of these derivatives is that a string of the form
𝑎𝜎 (starting with the symbol 𝑎) matches an expression R iff the suffix 𝜎 matches
the derivative 𝐷𝑎(R) [7, 41, 2].

Following this idea, assume that a non-empty regular expression R ∈ R+ has
been decomposed into disjunctive normal form (R1 || … || R𝑛) for some 𝑛 ⩾ 1, in
which none of the R𝑖, for 𝑖 ∈ [1, 𝑛], contains an occurrence of ||. We can further
decompose each R𝑖 ∈ R+ ∩ R∖| into ⟨L : B, R′𝑖⟩ = fstnxt(R𝑖) such that

• L : B recognizes the first state of sequences of states recognized by R𝑖;

• the regular expression R′𝑖 recognizes sequences of states after the first state
of sequences of states recognized by R𝑖.

We define fstnxt for non-empty ||-free regular expressions R ∈ R+ ∩ R∖| by struc-
tural induction, as follows.

6which would be a possible refined specification for an extension of this paper.
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fstnxt(L : B) ≜ ⟨L : B, 𝜀⟩ (17)
fstnxt(R1R2) ≜ fstnxt(R2) if R1 ∈ R𝜀

fstnxt(R1R2) ≜ let ⟨R𝑓1 , R𝑛1⟩ = fstnxt(R1) in ( R𝑛1 ∈ R𝜀 ? ⟨R
𝑓
1 , R2⟩ : ⟨R

𝑓
1 , R𝑛1 ∙ R2⟩ )

if R1 ∉ R𝜀
fstnxt(R+) ≜ let ⟨R𝑓, R𝑛⟩ = fstnxt(R) in ( R𝑛 ∈ R𝜀 ? ⟨R𝑓, R∗⟩ : ⟨R𝑓, R𝑛 ∙ R∗⟩ )
fstnxt((R)) ≜ fstnxt(R)

The following Lem. 9 shows the equivalence of an alternative-free regular ex-
pression and its first and next decomposition.

Lemma 9. Let R ∈ R+∩R∖| be a non-empty ||-free regular expression and ⟨L : B,
R′⟩ = fstnxt(R). Then R′ ∈ R∖| is ||-free and R ≎ L : B ∙ R′.

6. The model checking abstraction

The model checking abstraction in Section 4 is impractical for structural
model checking. Assume, for example, that we check a trace concatenation 𝜋1⌢⋅ 𝜋2
of a statement list Sl ∶∶= Sl′ S for a specification R where 𝜋1 is a trace of Sl′ and
𝜋2 is a trace of S. We first check that 𝜋1 satisfies R. We must then check 𝜋2 for a
continuation R2 of R which should be derived from 𝜋1 and R. This continuation is
not provided by the boolean abstraction 𝛼𝜚,R which needs to be refined as shown
below.

Example 10. Assume we want to check ℓ1 x = x + 1 ;ℓ2 x = x + 2 ;ℓ3 for the
regular specification ? : x = x ∙ ? : x = x + 1 ∙ ? : x = x + 3 by first checking the
first statement and then the second. Knowing the boolean information that
ℓ1 x = x + 1 ;ℓ2 model checks for ? : x = x ∙ ? : x = x + 1 is not enough. We
must also know what to check the continuation ℓ2 x = x + 2 ;ℓ3 for. (This is
? : x = x + 1 ∙ ? : x = x + 3 that is if x is equal to the initial value plus 1 at ℓ2, it
is equal to this initial value plus 3 at ℓ3.) □

The model-checking 𝓜𝑡⟨𝜚, R⟩𝜋 of a trace 𝜋 with initial environment 𝜚 for a
||-free specification R ∈ R∖| is a pair ⟨𝑏, R′⟩ where the boolean 𝑏 states whether the
specification R holds for the trace 𝜋 and R′ specifies the possible continuations
of 𝜋 according to R, 𝜀 if none.

Example 11. For Sl = ℓ1 x = x + 1 ;ℓ2 x = x + 2 ;ℓ3, we have 𝓢∗JSlK = {⟨ℓ1, 𝜌⟩⟨ℓ2,
𝜌[x ← 𝜌(x) + 1]⟩⟨ℓ3, 𝜌[x ← 𝜌(x) + 3]⟩ ∣ 𝜌 ∈ Ev} and 𝓜𝑡⟨𝜌, ? : x = x ∙ ? : x =
x + 1 ∙ ? : x = x + 3⟩(⟨ℓ1, 𝜌⟩⟨ℓ2, 𝜌[x← 𝜌(x) + 1]⟩⟨ℓ3, 𝜌[x← 𝜌(x) + 3]⟩) = ⟨tt, 𝜀⟩ (we
have ignored the initial empty statement list in Sl to simplify the specification).

□

The fact that 𝓜𝑡⟨𝜚, R⟩𝜋 returns a pair ⟨𝑏, R′⟩ where R′ is to be satisfied by
continuations of 𝜋 allows us to perform program model checking by structural
induction on the program in Section 8. The formal definition is the following.
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Definition 12 (Regular model checking).

• Trace model checking (𝜚 ∈ Ev is an initial environment and R ∈ R+ ∩ R∖|

is a non-empty and ||-free regular expression):

𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ (18)
𝓜𝑡⟨𝜚, R⟩∋ ≜ ⟨tt, R⟩
𝓜𝑡⟨𝜚, R⟩𝜋 ≜ let ⟨ℓ1, 𝜌1⟩𝜋′ = 𝜋 and ⟨L : B, R′⟩ = fstnxt(R) in 𝜋 ≠ ∋

( ⟨𝜚, ⟨ℓ1, 𝜌1⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R′⟩𝜋′ : ⟨ff, R′⟩ )

• Set of traces model checking (for an ||-free regular expression R ∈ R∖|):

𝓜∖|⟨𝜚, R⟩Π ≜ {⟨𝜋, R′⟩ | 𝜋 ∈ Π ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} (19)

• Program component S ∈ Pc model checking (for an ||-free regular ex-
pression R ∈ R∖|):

𝓜∖|JSK⟨𝜚, R⟩ ≜ 𝓜∖|⟨𝜚, R⟩(𝓢∗JSK) (20)

• Set of traces model checking (for regular expression R ∈ R):

𝓜⟨𝜚, R⟩Π ≜ let (R1 ||… || R𝑛) = dnf(R) in (21)
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩Π}

• Model checking of a program component S ∈ Pc (for regular expression
R ∈ R):

𝓜JSK⟨𝜚, R⟩ ≜ 𝓜⟨𝜚, R⟩(𝓢∗JSK) (22) □

The model checking 𝓜𝑡⟨𝜚, R⟩𝜋 of a trace 𝜋 in (18) returns a pair ⟨𝑏, R′⟩ specifying
whether 𝜋 satisfies the specification R (when 𝑏 = tt) or not (when 𝑏 = ff). So
if 𝓜𝑡⟨𝜌, R⟩(𝜋) = ⟨ff, R′⟩ in (19) then the trace 𝜋 is a counter example to the
specification R. R′ specifies what a continuation 𝜋′ of 𝜋 would have to satisfy for
𝜋 ⌢⋅ 𝜋′ to satisfy R (nothing specific when R′ = 𝜀).

Notice that 𝓜𝑡⟨𝜚, R⟩𝜋 checks whether the given trace 𝜋 satisfies the regular
specification R for initial environment 𝜚. Because only one trace is involved, this
check can be done at runtime using a monitoring of the program execution.
This is the case for Fred Schneider’s security monitors [46] in Ex. 3 (using an
equivalent specification by finite automata).

The set of traces model checking 𝓜∖|⟨𝜚, R⟩Π returns the subset of traces of
Π satisfying the specification R for the initial environment 𝜚. Since all program
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executions 𝓢∗JPK are involved, the model checking 𝓜∖|JPK⟨𝜚, R⟩ of a program P
becomes, by Rice theorem [44], undecidable.

The regular specification R is relational in that it may relate the initial and
current states (or else may only assert a property of the current states when R
never refer to the initial environment 𝜚). If 𝜋⟨ℓ, 𝜌⟩𝜋′ ∈ 𝓢∗JSK is an execution trace
satisfying the specification R then R in (22) determines a relationship between the
initial environment 𝜚 and the current environment 𝜌. For example R = ⟨{atJSK},
B⟩ ∙ R′ with 𝓑JBK𝜚, 𝜌 = ∀x ∈ X . 𝜚(x) = 𝜌(x) expresses that the initial values of
variables x are denoted x. 𝓑JBK𝜚, 𝜌 = tt would state that there is no constraint
on the initial value of variables. The difference with the invariant specifications
of is that the order of computations is preserved. R can specify in which order
program points may be reached, which is impossible with invariants 7.

The model checking abstraction (19) which, given an initial environment
𝜚 ∈ Ev and an ||-free regular specification R ∈ R∖|, returns the set of traces
satisfying this specification is the lower adjoint of the Galois connection

⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
𝓜∖|⟨𝜚, R⟩

𝛾𝓜∖|⟨𝜚, R⟩
⟨℘(𝕊+ × R∖|), ⊆⟩ for R ∈ R∖| in (19) (23)

If ⟨C, ⩽⟩ is a poset, ⟨A, ⊑, ⊔, ⊓⟩ is a complete lattice, ∀𝑖 ∈ [1, 𝑛] . ⟨C, ⩽⟩ −−−−−→←−−−−−𝛼𝑖
𝛾𝑖 ⟨A,

⊑⟩ then ⟨C, ⩽⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ⊑⟩ where 𝛼 ≜

𝑛
⨆̇
𝑖=1
𝛼𝑖 and 𝛾 =

𝑛
⨅̇
𝑖=1
𝛾𝑖, pointwise. This implies

that
⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−

𝓜⟨𝜚, R⟩

𝛾𝓜⟨𝜚, R⟩
⟨℘(𝕊+), ⊆⟩ for R ∈ R in (21) (24)

To follow the tradition that model checking returns a boolean answer this ab-
straction can be composed with the boolean abstraction

⟨℘(𝕊+), ⊆⟩ −−−−−−−−−→←−−−−−−−−−
𝛼𝓜⟨𝜚, R⟩

𝛾𝓜⟨𝜚, R⟩
⟨B, ⇐⟩ (25)

where 𝛼𝓜⟨𝜚, R⟩(𝑋) ≜ ({𝜚} × 𝑋) ⊆𝓜⟨𝜚, R⟩(𝑋).

7. Soundness and completeness of the model checking abstraction

The following Th. 13 shows that the Def. 7 of model checking a program
semantics for a regular specification is a sound and complete abstraction of this
semantics.

7By introduction of an auxiliary variable C incremented at each program step one can
simulate a trace with invariants. But then the reasoning is not on the original program P but
on a transformed program P. Invariants in P holding for a given value of 𝑐 of C also hold at the
position 𝑐 of the traces in P. This kind of indirect reasoning is usually heavy and painful to
maintain when programs are modified since values of counters are no longer the same. The use
of temporal specifications has the advantage of avoiding the reasoning on explicit positions in
the trace.
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Theorem 13 (Model checking soundness (⇐) and completeness (⇒)).

P, 𝜚 ⊨ R ⇔ 𝛼𝓜⟨𝜚, R⟩(𝓢∗JPK)
We decompose the proof of Th. 13 into soundness (⇐) and completeness (⇒).
Soundness directly follows from the following

Lemma 14 (Model checking soundness). 𝓜JPKR ⊆ prefix(𝓢rJR ∙ (? : tt)∗K).
Proof (of Lem. 14). Let 𝓜𝑡⟨𝜚, R⟩𝜋 be the model checking of a prefix trace
𝜋 = 𝜎1…𝜎ℓ = ⟨ℓ1, 𝜌1⟩… ⟨ℓℓ, 𝜌ℓ⟩ for an initial environment 𝜚 and a specification
R ∉ R𝜀. Consider the repeated unrolling of R by fstnxt, which by Lem. 9, is as
follows.

R
≎ L1 : B1 ∙ R1 fstnxt(R) ≜ ⟨L1 : B1, R1⟩
≎ L1 : B1 ∙ L2 : B2 ∙ R2 fstnxt(R1) ≜ ⟨L2 : B2, R2⟩
…

≎ L1 : B1 ∙ L2 : B2 ∙ … ∙ L𝑘 : B𝑘 ∙ R𝑘 fstnxt(R𝑘−1) ≜ ⟨L𝑘 : B𝑘, R𝑘⟩
…

Either this development stops at some 𝑘 = 𝑛 with R𝑛 = 𝜀 or goes on forever, in
which case 𝑛 = +∞. Let us prove that

(14.1) Either the specification R is satisfied, in which case let𝑚 = min(𝑛, ℓ) in
∀𝑖 ∈ [1,𝑚] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K and so 𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨tt, R𝑚⟩;

(14.2) Or the specification R is not satisfied, in which case ∃𝑖 ∈ [1,min(𝑛, ℓ)] .
∀𝑗 ∈ [1, 𝑖[ . ⟨𝜚, ⟨ℓ𝑗, 𝜌𝑗⟩⟩ ∈ 𝓢rJL𝑗 : B𝑗K ∧ ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∉ 𝓢rJL𝑖 : B𝑖K and so
𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨ff, R𝑖⟩.

The proof is by induction on 𝑚 = min(𝑛, ℓ). We have 𝑛 ⩾ 1 since R ∉ R𝜀 so
fstnxt(R) = ⟨L1 : B1, R1⟩ and 𝜋 = ⟨ℓ1, 𝜌1⟩𝜋1 since traces in Section 2 are not
empty.

For the basis 𝑛 = 1 or ℓ = 1, (18) implies 𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨𝑏, R1⟩ where 𝑏 = ⟨𝜚,
⟨ℓ1, 𝜌1⟩⟩ ∈ 𝓢rJL1 : B1K which is case (14.1) when 𝑏 = tt and (14.2) when 𝑏 = ff.

For the induction case 𝑚 = min(𝑛, ℓ) > 1.

• Either ⟨𝜚, ⟨ℓ1, 𝜌1⟩⟩ ∉ 𝓢rJL1 : B1K and, by (18), 𝓜𝑡⟨𝜚, R⟩𝜋 ≜ ⟨ff, R1⟩, so we are
in case (14.2) with 𝑖 = 1;

• Or ⟨𝜚, ⟨ℓ1, 𝜌1⟩⟩ ∈ 𝓢rJL1 : B1K and there are two subcases.

– If the specification R1 is satisfied from 2 up to 𝑚, in which case ∀𝑖 ∈ [2,𝑚] .
⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K and so 𝓜𝑡⟨𝜚, R1⟩𝜋1 = ⟨tt, R𝑚⟩ by induction
hypothesis (14.1). Then let𝑚 = min(𝑛, ℓ) in ∀𝑖 ∈ [1,𝑚] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈
𝓢rJL𝑖 : B𝑖K. Moreover, (18) implies that 𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨tt, R𝑚⟩
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– Otherwise, the specification R1 is not satisfied from 2 up to 𝑚, so, by
induction hypothesis (14.2), ∃𝑖 ∈ [2,𝑚] . ∀𝑗 ∈ [2, 𝑖[ . ⟨𝜚, ⟨ℓ𝑗, 𝜌𝑗⟩⟩ ∈ 𝓢rJL𝑗 :
B𝑗K ∧ ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∉ 𝓢rJL𝑖 : B𝑖K and so 𝓜𝑡⟨𝜚, R⟩𝜋1 = ⟨ff, R𝑖⟩. It follows
that ∃𝑖 ∈ [1,min(𝑛, ℓ)] . ∀𝑗 ∈ [1, 𝑖[ . ⟨𝜚, ⟨ℓ𝑗, 𝜌𝑗⟩⟩ ∈ 𝓢rJL𝑗 : B𝑗K ∧ ⟨𝜚, ⟨ℓ𝑖,
𝜌𝑖⟩⟩ ∉ 𝓢rJL𝑖 : B𝑖K. Moreover, by (18), 𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨ff, R𝑖⟩. �

Let us now prove that 𝓜JPKR ⊆ prefix(𝓢rJR ∙ (? : tt)∗K). By (22), dnf(R) =
(R1 || … || R𝑝) and, by def. ∪, ∃𝑎 ∈ [1, 𝑝] . 𝜋 ∈𝓜JPKR𝑎 where R𝑎 ∈ R∖| is ||-free
by (16). So, by (19), ∃R′𝑎 ∈ R . 𝜋 = ⟨ℓ1, 𝜌1⟩𝜋′ ∈ 𝓢∗JPK ∧ ⟨tt, R′𝑎⟩ =𝓜𝑡⟨𝜌1, R𝑎⟩(⟨ℓ1,
𝜌1⟩𝜋′). So we are in case (14.1), and there are two subcases.

• If 𝑛 ⩽ ℓ where ℓ ∈ N, and then R𝑎 ≎ L1 : B1 ∙ L2 : B2 ∙ … ∙ L𝑛 : B𝑛 ∙ R′𝑎 and
∀𝑖 ∈ [1, 𝑛] . ⟨𝜌1, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K. Moreover, by (15), ∀𝑖 ∈ [𝑛 + 1, ℓ] . ⟨𝜌1,
⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJ? : ttK. Therefore

⟨𝜌1, 𝜋⟩ ∈ 𝓢rJL1 : B1K ⦿⋯ ⦿𝓢rJL𝑛 : B𝑛K ⦿ 𝑛−ℓ times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝓢rJ? : ttK ⦿⋯ ⦿𝓢rJ? : ttK

⇒ ⟨𝜌1, 𝜋⟩ ∈ 𝓢rJR𝑎 ∙ (? : tt)ℓ−𝑛K H (15) for ∙I
⇒ ⟨𝜌1, 𝜋⟩ ∈ 𝓢rJR ∙ (? : tt)ℓ−𝑛K H(15) for ||I
⇒ ⟨𝜌1, 𝜋⟩ ∈ prefix(𝓢rJR ∙ (? : tt)ℓ−𝑛K) Hprefix is ⊆-extensiveI
⇒ ⟨𝜌1, 𝜋⟩ ∈ prefix(𝓢rJR ∙ (? : tt)∗K) H(15) for ∗ and prefix is ⊆-increasingI

• Otherwise, 𝑛 > ℓ, and then R𝑎 ≎ L1 : B1 ∙ L2 : B2 ∙ … ∙ Lℓ : Bℓ ∙ R′𝑎 and
∀𝑖 ∈ [1, ℓ] . ⟨𝜌1, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K. Therefore
⟨𝜌1, 𝜋⟩ ∈ 𝓢rJL1 : B1K ⦿⋯ ⦿𝓢rJLℓ : BℓK
⇒ ⟨𝜌1, 𝜋⟩ ∈ 𝓢rJL1 : B1 ∙ ⋯ ∙ Lℓ : BℓK H(15) for ∙I
⇒ ⟨𝜌1, 𝜋⟩ ∈ prefix(𝓢rJR ∙ (? : tt)∗K) H(15) for ∙ and ∗ and def. prefixI □

Lemma 15 (Model checking completeness). ({𝜚} × 𝓢∗JPK) ⊆ prefix(𝓢rJR ∙
(? : tt)∗K) ⇒ (𝓢∗JPK ⊆𝓜JPKR).
Proof (of Lem. 15). By contradiction, assume that 𝜋 = ⟨ℓ1, 𝜌1⟩𝜋′ ∈ 𝓢∗JPK and
⟨𝜚, 𝜋⟩ ∉ prefix(𝓢rJR ∙ (? : tt)∗K). By decomposition of R by fstnxt as in the proof
of Lem. 14, we have ∃𝑖 ∈ [1,min(𝑛, ℓ)] . ∀𝑗 ∈ [1, 𝑖[ . ⟨𝜚, ⟨ℓ𝑗, 𝜌𝑗⟩⟩ ∈ 𝓢rJL𝑗 : B𝑗K ∧ ⟨𝜚,
⟨ℓ𝑖, 𝜌𝑖⟩⟩. Therefore, we are in case (14.2) and so 𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨ff, R𝑖⟩. By (19),
𝜋 ∉𝓜JPKR.

Proof (of Th. 13). Follows from Lem. 14 and Lem. 15.
P, 𝜚 ⊨ R
⇔ ({𝜚} ×𝓢∗JPK) ⊆ prefix(𝓢rJR ∙ (? : tt)∗K) HDef. 7 I
⇔ ({𝜚} ×𝓢∗JPK) ⊆𝓜⟨𝜚, R⟩(𝓢∗JPK) HLem. 14 for ⇐ and Lem. 15 for ⇒I
⇔ 𝛼𝓜⟨𝜚, R⟩(𝓢∗JPK) Hdef. (25) of 𝛼𝓜⟨𝜚, R⟩(𝑋) ≜ ({𝜚} × 𝑋) ⊆𝓜⟨𝜚, R⟩(𝑋)I □
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At this point we know, by (22) and Th. 13 that a model checker 𝓜JSK⟨𝜚, R⟩
is a sound and complete abstraction 𝓜⟨𝜚, R⟩(𝓢∗JSK) of the program component
semantics 𝓢∗JSK which provides a counter example in case of failure. This allows
us to derive a structural model checker�̂�JPK⟨𝜚, R⟩ in Section 8 by calculational
design.

8. Structural model checking

By Def. 7 of the model checking of S, 𝜚 ⊨ R of a program P ∈ P for a regular
specification R ∈ R+ and initial environment 𝜚, Th. 13 shows that a model
checker 𝓜JPK⟨𝜚, R⟩ is a sound and complete abstraction 𝓜⟨𝜚, R⟩(𝓢∗JPK) of the
program semantics 𝓢∗JPK. This abstraction does not provide a model checking
algorithm specification.

The standard model checking algorithms [10] use a transition system (or a
Kripke structure variation [35]) for hardware and software modeling and proceed
by induction on computation steps.

In contrast, we proceed by structural induction on programs, which will
be shown in Th. 16 to be logically equivalent (but maybe more efficient since
fixpoints are computed locally). The structural model checking �̂�JPK⟨𝜚, R⟩ of
the program P proceeds by structural induction on the program structure:

{
{
{

�̂�JSK⟨𝜚, R⟩ ≜ �̂�JSK( ∏
S′◁ S

�̂�JS′K)⟨𝜚, R⟩
S ∈ Pc

where the transformer �̂� uses the results of model checking of the immediate
components S′ ◁ S and involves a fixpoint computation for iteration state-
ments.

The following Th. 16 shows that the algorithm specification is correct, that
is �̂�JSK =𝓜JSK for all program components S. So together with Th. 13, the
structural model checking is proved sound and complete.

Theorem 16. ∀S ∈ Pc, R ∈ R, 𝜚 ∈ Ev .�̂�∖|JSK⟨𝜚, R⟩ =𝓜∖|JSK⟨𝜚, R⟩ and �̂�JSK⟨𝜚,
R⟩ =𝓜JSK⟨𝜚, R⟩.
The proof of Th. 16 is by calculational design and proceeds by structural induc-
tion on the program component S. Assuming 𝓜JS′K =�̂�JS′K for all immediate
components S′ ◁ S of statement, the proof for each program component S has
the following form.

𝓜JSK⟨𝜚, R⟩
≜ 𝓜⟨𝜚, R⟩(𝓢∗JSK) H(22)I
= 𝓜⟨𝜚, R⟩(𝓕JSK( ∏

S′◁ S
𝓢∗JS′K)⟨𝜚, R⟩)

Hby structural definition 𝓢∗JSK =𝓕JSK(∏S′◁ S𝓢∗JS′K) of the pre-
fix trace semantics in Section 2I
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= ... Hcalculus to expand definitions, rewrite and simplify formulæ by
algebraic lawsI

= �̂�JSK( ∏
S′◁ S

𝓜JS′K)⟨𝜚, R⟩
Hby calculational design to commute the model checking abstrac-
tion on the result to the model checking of the arguments of
𝓢∗JSKI

= �̂�JSK( ∏
S′◁ S

�̂�JS′K)⟨𝜚, R⟩ Hind. hyp.I
≜ �̂�JSK⟨𝜚, R⟩ Hby defining �̂�JSK ≜ �̂�JSK(∏S′◁ S �̂�JS′K)I

For iteration statements, 𝓕JSK(∏S′◁ S𝓢∗JS′K)⟨𝜚, R⟩ is a fixpoint, and this
proof involves the fixpoint transfer theorem [16, Th. 7.1.0.4 (3)] based on the
commutation of the concrete and abstract transformer with the abstraction. The
calculational design of the structural model checking �̂�JSK is shown below.

Definition 17 (Structural model checking).

• Model checking a program P ∶∶= Sl ℓ for a temporal specification
R ∈ R with alternatives.

�̂�JPK⟨𝜚, R⟩ ≜ let (R1 ||… || R𝑛) = dnf(R) in (26)
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|JSlK⟨𝜚, R𝑖⟩}

Proof. In case (26) of a program P ∶∶= Sl ℓ, the calculational design is as
follows.

𝓜JPK⟨𝜚, R⟩
≜ 𝓜⟨𝜚, R⟩(𝓢∗JPK) H(22)I
= let (R1 ||… || R𝑛) = dnf(R) in

𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩(𝓢∗JPK)}H (21)I

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩(𝓢∗JSlK)}Hdef. (9) of 𝓢∗JPK ≜ 𝓢∗JSlKI

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|⟨𝜚, R𝑖⟩(𝓢∗JSlK)}Hind. hyp.I

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|JSlK⟨𝜚, R𝑖⟩} H(20)I

= �̂�JPK⟨𝜚, R⟩ H(26)I □
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Definition 17 (Structural model checking, contn’d)

• Model checking an empty temporal specification 𝜀.

�̂�∖|JSK⟨𝜚, 𝜀⟩ ≜ {⟨𝜋, 𝜀⟩ | 𝜋 ∈ 𝓢∗JSK} (27)

• It is assumed below that R ∈ R∖|∩R+ is a non-empty, alternative ||-free
regular expression.

• Model checking a statement list Sl ∶∶= Sl′ S

�̂�∖|JSlK⟨𝜚, R⟩ ≜ �̂�∖|JSl′K⟨𝜚, R⟩ (28)
∪ {⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R″⟩ | ⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩, R′⟩ ∈�̂�∖|JSl′K⟨𝜚, R⟩ ∧

⟨⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R″⟩ ∈�̂�∖|JSK⟨𝜚, R′⟩}
• Model checking an empty statement list Sl ∶∶= 𝜖

�̂�∖|JSlK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (29)
{⟨⟨atJSlK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSlK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

(In practice the empty statement list 𝜖 needs not be specified so we
could eliminate that need by ignoring 𝜖 in the specification R and defining
�̂�∖|JSlK⟨𝜚, R⟩ ≜ {⟨⟨atJSlK, 𝜌⟩, R⟩ | 𝜌 ∈ Ev}.)

• Model checking an assignment statement S ∶∶= ℓ x = A ;

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (30)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK} (a)
∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧ (b)
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩, R″⟩ | R′ ∉ R𝜀 ∧ (c)
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩⟩ ∈ 𝓢rJL′ : B′K}

For the assignment S ∶∶= ℓ x = A ; in (30), case (a) checks the prefixes that
stops at ℓ whereas (b) and (c) checks the maximal traces stopping after the
assignment. In each trace checked for the specification R, the states are checked
successively and the continuation specification is returned together with the
checked trace, unless the check fails. Checking the assignment S ∶∶= ℓ x = A ;
in (30) for ⟨L : B, R′⟩ = fstnxt(R) consists in first checking L : B at ℓ and then
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checking on R′ after the statement. In case (b), R′ is empty so trivially satisfied.
Otherwise, in case (c), ⟨L′ : B′, R″⟩ = fstnxt(R′) so L′ : B′ is checked after the
statement while R″ is the continuation specification.

Proof. In case (30) of an assignment statement S ∶∶= ℓ x = A ;, the
calculational design is as follows.

𝓜∖|JSK ⟨𝜚, R⟩
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSlK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(20) and (19) I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩ ∣ 𝜌 ∈ Ev ∧ 𝑣 =

𝓐JAK𝜌 ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(1)I
= {⟨⟨ℓ, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩⟨ℓ, 𝜌⟩} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R′⟩ | 𝜌 ∈ Ev ∧ 𝑣 = 𝓐JAK𝜌⟨tt, R′⟩ = 𝓜𝑡⟨𝜚, R⟩⟨ℓ,
𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩} Hdef. ∪ and ∈I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨tt, R′⟩ = let ⟨L : B, R″⟩ = fstnxt(R) in ( ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ?

⟨tt, R″⟩ : ⟨ff, R′⟩ )} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R′⟩ | 𝑣 = 𝓐JAK𝜌 ∧ ⟨tt, R′⟩ = let ⟨L : B, R″⟩ =
fstnxt(R) in ( ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R″⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ : ⟨ff, R″⟩ )}H(18)I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, R′⟩ | 𝑣 =𝓐JAK𝜌∧∃R″ ∈ R . ⟨L : B, R″⟩ = fstnxt(R) ∧
⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ( R″ ∈ R𝜀 ? tt : 𝓜𝑡⟨𝜚, R″⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ = ⟨tt,
R′⟩ )} Hdef. = and 𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ by (18)I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, R′⟩ | 𝑣 =𝓐JAK𝜌∧∃R″ ∈ R . ⟨L : B, R″⟩ = fstnxt(R) ∧
⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ( R″ ∈ R𝜀 ? tt : let ⟨L′ : B′, R‴⟩ = fstnxt(R″) in ⟨𝜚,
⟨aftJSK, 𝜌[x← 𝑣]⟩⟩ ∈ 𝓢rJL′ : B′K )} H(18)I

= let ⟨L : B, R′⟩ = fstnxt(R) in
{⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
∪ {⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, 𝜀⟩ | 𝑣 =𝓐JAK𝜌 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∈ R𝜀}
∪ {⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R″⟩ | 𝑣 = 𝓐JAK𝜌 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∉
R𝜀 ∧ let ⟨L′ : B′, R″⟩ = fstnxt(R′) in ⟨𝜚, ⟨aftJSK, 𝜌[x← 𝑣]⟩⟩ ∈ 𝓢rJL′ : B′K}Hdef. ∪I

= �̂�∖|JSK ⟨𝜚, R⟩ H(30)I □

Definition 17 (Structural model checking, continued)

• Model checking a conditional statement S ∶∶= if ℓ (B) S𝑡
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�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (31)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}
∪ {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ |𝓑JBK𝜌 = tt ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ ∈�̂�∖|JS𝑡K⟨𝜚, R′⟩}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | |𝓑JBK𝜌 = ff ∧ R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R″⟩ |𝓑JBK𝜌 = ff ∧ R′ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨L″ : B″, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

• Model checking a break statement S ∶∶= ℓbreak ;

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (32)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
∪ {⟨⟨atJSK, 𝜌⟩⟨brk-toJSK, 𝜌⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨brk-toJSK, 𝜌⟩, R″⟩ | R′ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨brk-toJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}

• Model checking an iteration statement S ∶∶= while ℓ (B) S𝑏
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�̂�∖|JSK⟨𝜚, R⟩ ≜ lfp⊆ (�̂�∖|JSK⟨𝜚, R⟩) (33)
�̂�∖|JSK⟨𝜚, R⟩ 𝑋 ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (34)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K} (a)
∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝑋 ∧

𝓑JBK 𝜌 = ff}
∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (b)

𝓑JBK 𝜌 = ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R′⟩ = fstnxt(R″) ∧ R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (c)
𝓑JBK 𝜌 = ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R‴⟩ = fstnxt(R″) ∧ R‴ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨L″ : B″, R′⟩ = fstnxt(R‴) ∧
⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝑋 ∧ (d)
𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (e)
𝓑JBK 𝜌 = tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, 𝜀⟩ = fstnxt(R″) ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (f)
𝓑JBK 𝜌 = tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, R⁗⟩ = fstnxt(R″) ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R⁗ ∉ R𝜀 ∧
⟨L′ : B′, R‴⟩ = fstnxt(R⁗) ∧ ⟨𝜚, ⟨atJS𝑏K, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩}

The model checking of an iteration statement S ∶∶= while ℓ (B) S𝑏 in (34)
checks one more iteration (after checking the previous ones as recorded by 𝑋)
while the fixpoint (33) repeats this check for all iterations. Case (a) checks the
prefixes that stops at loop entry ℓ. (b) and (c) check the exit of an iteration
when the iteration condition is false, (b) when the specification stops at loop
entry ℓ before leaving and (c) when the specification goes further. (d), (e) and
(f) check one more iteration when the iteration condition is true. In case (d),
the continuation after the check of the iterates is empty so trivially satisfied
by any continuation of the prefix trace. In case (e), the continuation after the
check of the iterates just imposes to verify L : B on iteration entry and nothing
afterwards. In case (f) the continuation after the check of the iterates requires
to verify L : B at the loop entry, L′ : B′ at the body entry, and the rest R‴ of the
specification for the loop body (which returns the possibly empty continuation
specification R′). The cases (b) to (f) are mutually exclusive.
The remaining cases are as follows.
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Definition 17 (Structural model checking, continued)

• Model checking a skip statement S ∶∶= ;

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (35)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

(In practice the skip statement ; needs not be specified so we could elim-
inate that need by ignoring ; in the specification R and defining �̂�∖|J;K⟨𝜚,
R⟩ ≜ {⟨⟨atJSK, 𝜌⟩, R⟩ | 𝜌 ∈ Ev}.)

• Model checking an alternative statement S ∶∶= if ℓ (B) S𝑡 else S𝑓

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (36)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : BK}
∪ {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ |𝓑JBK𝜌 = tt ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ ∈�̂�∖|JS𝑡K⟨𝜚, R′⟩}

∪ {⟨⟨atJSK, 𝜌⟩⟨atJS𝑓K, 𝜌⟩𝜋, R″⟩ |𝓑JBK𝜌 = ff ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑓K, 𝜌⟩𝜋, R″⟩ ∈�̂�∖|JS𝑓K⟨𝜚, R′⟩}

• Model checking a compound statement S ∶∶= { Sl }

�̂�∖|J{ Sl }K ≜ �̂�∖|JSlK (37) □

To model check �̂�JSlK⟨𝜚, R⟩ statement lists Sl ∶∶= Sl′ S, we will need to
model check the concatenation of traces of Sl′ and S using the following lemma.
This lemma will also be useful to handle the concatenation of traces in iterates.

Lemma 18. 𝓜𝑡⟨𝜚, R⟩(𝜋 ⌢⋅ 𝜋′) = ⟨tt, R′⟩ ⇔ (∃R″ ∈ R .𝓜𝑡⟨𝜚, R⟩(𝜋) = ⟨tt, R″⟩ ∧
𝓜𝑡⟨𝜚, R″⟩(𝜋′) = ⟨tt, R′⟩).

Proof (of Lem. 18). Since the case of empty traces is trivial by 𝓜𝑡⟨𝜚, R⟩∋ ≜
⟨tt, R⟩ in (18), we can assume that 𝜋 = ⟨ℓ1, 𝜌1⟩… ⟨ℓ𝑝, 𝜌𝑝⟩, 𝜋′ = ⟨ℓ𝑝, 𝜌𝑝⟩… ⟨ℓℓ, 𝜌ℓ⟩
with 1 ⩽ 𝑝 ⩽ ℓ so that, by def. of trace concatenation, 𝜋 ⌢⋅ 𝜋′ = ⟨ℓ1, 𝜌1⟩… ⟨ℓ𝑝,
𝜌𝑝⟩… ⟨ℓℓ, 𝜌ℓ⟩.

Let us consider the decomposition of R ≎ L1 : B1 ∙ R1 ≎ L1 : B1 ∙ L2 : B2 ∙ R2
≎ … ≎ L1 : B1 ∙ L2 : B2 ∙ … ∙ L𝑛 : B𝑛 ∙ R𝑛 of Lem. 14 where, by convention,
𝑛 ∈ N ⧵ {0} and R𝑛 = 𝜀 or 𝑛 = +∞ and R𝑛 is undefined.
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Since 𝓜𝑡⟨𝜚, R⟩(𝜋 ⌢⋅ 𝜋′) = ⟨tt, R′⟩, we are in case (14.1) since the specification
R is satisfied, in which case

let𝑚 = min(𝑛, ℓ) in ∀𝑖 ∈ [1,𝑚] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K and so R𝑚 = R′. (a)

There are three cases.

• If 𝑛 ⩽ 𝑝 ⩽ ℓ in (a), then 𝑚 = 𝑛 so R𝑛 = R′ = 𝜀. First (b), we have ∀𝑖 ∈ [1, 𝑝] =
[1,min(𝑝, ℓ)] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K and so 𝓜𝑡⟨𝜚, R⟩𝜋 = ⟨tt, R𝑝⟩ with
R″ = R𝑝, which in this case is 𝜀. Second (c), by (18), 𝓜𝑡⟨𝜚, R″⟩(𝜋′) =𝓜𝑡⟨𝜚,
𝜀⟩(𝜋′) = ⟨tt, 𝜀⟩ = ⟨tt, R′⟩, proving ⇒. Conversely, 𝓜𝑡⟨𝜚, R⟩(𝜋) = ⟨tt, R″⟩
implies (b) and 𝓜𝑡⟨𝜚, R″⟩(𝜋′) = ⟨tt, R′⟩ implies (c) which imply (a), hence
𝓜𝑡⟨𝜚, R⟩(𝜋 ⌢⋅ 𝜋′) = ⟨tt, R′⟩, proving ⇐.

• If 𝑝 ⩽ 𝑛 ⩽ ℓ in (a), then again 𝑚 = 𝑛 so R𝑛 = R′ = 𝜀 hence (b) holds.
Moreover, we have (d) ∀𝑖 ∈ [𝑝, 𝑛] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K and so 𝓜𝑡⟨𝜚,
R𝑝⟩(𝜋′) = ⟨tt, 𝜀⟩, proving ⇐ for R″ = R𝑝. Conversely, 𝓜𝑡⟨𝜚, R⟩(𝜋) = ⟨tt, R″⟩
implies (b) and 𝓜𝑡⟨𝜚, R″⟩(𝜋′) = ⟨tt, R′⟩ implies (d) which imply (a), hence
𝓜𝑡⟨𝜚, R⟩(𝜋 ⌢⋅ 𝜋′) = ⟨tt, R′⟩, proving ⇐.

• If 𝑝 ⩽ ℓ ⩽ 𝑛 in (a), then 𝑚 = ℓ with (e) ∀𝑖 ∈ [1, ℓ] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K
and so Rℓ = R′. This implies 𝓜𝑡⟨𝜚, R⟩(𝜋) = ⟨tt, R𝑝⟩ since (f) ∀𝑖 ∈ [1, 𝑝] . ⟨𝜚,
⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K so R″ = R𝑝 and 𝓜𝑡⟨𝜚, R𝑝⟩(𝜋′) = ⟨tt, Rℓ⟩ since (g)
∀𝑖 ∈ [𝑝, ℓ] . ⟨𝜚, ⟨ℓ𝑖, 𝜌𝑖⟩⟩ ∈ 𝓢rJL𝑖 : B𝑖K so R′ = Rℓ, proving ⇒. Conversely, (f) and
(g) imply (a), hence ⇐.

To abstract fixpoint definitions, we use the following classical transfer lemma.

Lemma 19 (exact iterates abstraction). Assume ⟨C, ⊑⟩ and ⟨A, ≼⟩ are
posets, ⊥ is the infimum of ⟨C, ⊑⟩, 𝑓 ∈ C→ C, the lub ⨆𝑛∈N 𝑓 𝑛(⊥) exists in ⟨C, ⊑⟩
such that lfp⊑ 𝑓 = ⨆𝑛∈N 𝑓 𝑛(⊥), ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is a Galois connection, 𝑓 ∈ A→

A, and we have the commutation condition ∀𝑛 ∈ N . 𝛼(𝑓 𝑛+1(⊥)) = 𝑓(𝛼(𝑓 𝑛(⊥))).
Then the lub

b
𝑛∈N 𝑓

𝑛(𝛼(⊥)) exists in ⟨A, ≼⟩ such that 𝛼(lfp⊑ 𝑓) =
b
𝑛∈N 𝑓

𝑛(𝛼(⊥)).

Note that if 𝑓 is increasing and ⟨A, ≼⟩ is a cpo then 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓.
We can now provide an a posteriori proof of Th. 16 (although the proof was

done a priori to discover Def. 17 by calculational design).

Proof (of Th. 16). The proof is by calculational design and proceeds by
structural induction on the program component S.

In case (27) of an empty temporal specification 𝜀, we have
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𝓜∖|JSK⟨𝜚, 𝜀⟩
≜ 𝓜∖|⟨𝜚, 𝜀⟩(𝓢∗JSK) H(20)I
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜌, 𝜀⟩𝜋} H(19)I
= {⟨𝜋, 𝜀⟩ | 𝜋 ∈ 𝓢∗JSK} Hsince 𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ by (18)I
≜ �̂�∖|JSK⟨𝜚, 𝜀⟩ H(27)I

In case (28) of a statement list Sl ∶∶= Sl′ S

𝓜∖|JSlK ⟨𝜚, R⟩
= 𝓜∖|⟨𝜚, R⟩(𝓢∗JSlK) H(20) I
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(19)I
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSl′K ∪ {𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′ ∣ 𝜋 ⋅ ⟨atJSK, 𝜌⟩ ∈ 𝓢∗JSl′K ∧ ⟨atJSK,
𝜌⟩ ⋅ 𝜋′ ∈ 𝓢∗JSK} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(7)I

= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSl′K ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} ∪
{⟨𝜋, R′⟩ | 𝜋 ∈ {𝜋′ ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋″ ∣ 𝜋′ ⋅ ⟨atJSK, 𝜌⟩ ∈ 𝓢∗JSl′K ∧ ⟨atJSK, 𝜌⟩ ⋅ 𝜋″ ∈
𝓢∗JSK} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} Hdef. ∪ and ∈I

= 𝓜∖|JSl′K ⟨𝜚, R⟩ ∪
{⟨𝜋′ ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋″, R′⟩ | 𝜋′ ⋅ ⟨atJSK, 𝜌⟩ ∈ 𝓢∗JSl′K∧⟨atJSK, 𝜌⟩ ⋅ 𝜋″ ∈ 𝓢∗JSK∧⟨tt,
R′⟩ =𝓜𝑡⟨𝜚, R⟩(𝜋′ ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋″)} H(19) and (7), def. ∈I

= 𝓜∖|JSl′K ⟨𝜚, R⟩ ∪
{⟨𝜋′ ⋅⟨atJSK, 𝜌⟩⋅𝜋″, R′⟩ | 𝜋′ ⋅⟨atJSK, 𝜌⟩ ∈ 𝓢∗JSl′K∧⟨atJSK, 𝜌⟩⋅𝜋″ ∈ 𝓢∗JSK∧(∃R″ ∈
R .𝓜𝑡⟨𝜚, R⟩(𝜋′ ⋅ ⟨atJSK, 𝜌⟩) = ⟨tt, R″⟩∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩ ⋅ 𝜋″) = ⟨tt, R′⟩)}HLem. 18I

= 𝓜∖|JSl′K ⟨𝜚, R⟩ ∪
{⟨𝜋′ ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋″, R′⟩ | ⟨𝜋′ ⋅ ⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩(𝓢∗JSl′K) ∧ ⟨⟨atJSK,
𝜌⟩ ⋅ 𝜋″, R′⟩ ∈𝓜∖|⟨𝜚, R″⟩(𝓢∗JSK)} H(19)I

= 𝓜∖|JSl′K ⟨𝜚, R⟩ ∪ {⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R′⟩ | ⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝓜𝑡JSl′K⟨𝜚,
R⟩ ∧ ⟨⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R′⟩ ∈𝓜𝑡JSK⟨𝜚, R″⟩} H(20)I
𝓜∖|JSl′K ⟨𝜚, R⟩ ∪ {⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R′⟩ | ⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩, R″⟩ ∈ �̂�∖|JSl′K⟨𝜚,
R⟩ ∧ ⟨⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R′⟩ ∈�̂�∖|JSK⟨𝜚, R″⟩} Hind. hyp.I
≜ �̂�∖|JSlK⟨𝜚, R⟩ H(28) I

In case (29) of an empty statement list Sl ∶∶= 𝜖
𝓜∖|JSlK ⟨𝜚, R⟩

= 𝓜∖|⟨𝜚, R⟩(𝓢∗JSlK) H(20) I
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= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSlK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(19)I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSlK, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(6)I
= {⟨⟨atJSlK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩(⟨atJSlK, 𝜌⟩)} Hdef. ∈I
= {⟨⟨atJSlK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev∧⟨L : B, R′⟩ = fstnxt(R)∧⟨𝜚, ⟨atJSlK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}H(18) with 𝓜𝑡⟨𝜚, R′⟩∋ = ⟨tt, R′⟩I
= �̂�∖|JSlK⟨𝜚, R⟩ H(29)I

In case (35) of a skip statement S ∶∶= ;
𝓜∖|JSK ⟨𝜚, R⟩

= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(20) and (19)I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(10)I
= {⟨⟨atJSK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩(⟨atJSK, 𝜌⟩)} Hdef. ∈I
= {⟨⟨atJSK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}H(18) with 𝓜𝑡⟨𝜚, R′⟩∋ = ⟨tt, R′⟩I
= �̂�∖|JSK⟨𝜚, R⟩ H(35)I

In case (31) of a conditional statement S ∶∶= if ℓ (B) S𝑡
𝓜∖|JSK ⟨𝜚, R⟩

= 𝓜∖|⟨𝜚, R⟩(𝓢∗JSK) H(20) I
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(19)I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} ∪
{⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣𝓑JBK 𝜌 = ff} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} ∪
{⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩ ⌢⋅ 𝜋2 ∣ 𝓑JBK 𝜌 = tt ∧ 𝜋2 ∈ 𝓢∗JS𝑡K} ∧ ⟨tt,
R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(4) and def. ∪I

We go on separately for each of the above three terms.

The first term was already handled above in the proof of (35) for the a skip
statement S ∶∶= ;.
{⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋}

= let ⟨L : B, R′⟩ = fstnxt(R) in {⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
The second term is
{⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣𝓑JBK 𝜌 = ff} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋}

= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ |𝓑JBK𝜌 = ff ∧⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩(⟨atJSK, 𝜌⟩⟨aftJSK,
𝜌⟩)} Hdef. ∈I

By (18), there are two subcases. If R = 𝜀, this is
= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | R ∈ R𝜀 ∧𝓑JBK 𝜌 = ff} H(18)I
This term appears as (27). Otherwise R ≠ 𝜀, and this is
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= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | R ∉ R𝜀 ∧𝓑JBK 𝜌 = ff ∧ ⟨tt, R′⟩ = let ⟨L : B,
R′⟩ = fstnxt(R) in ( ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R′⟩⟨aftJSK, 𝜌⟩ : ⟨ff,
R′⟩ )} H(18)I

= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | R ∉ R𝜀∧𝓑JBK𝜌 = ff∧let ⟨L : B, R′⟩ = fstnxt(R) in ⟨𝜚,
⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R′⟩⟨aftJSK, 𝜌⟩} Hdef. conditionalI

By (18), there are two subsubcases. If R′ = 𝜀, this is
= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | R ∉ R𝜀 ∧𝓑JBK 𝜌 = ff ∧ ⟨L : B, 𝜀⟩ = fstnxt(R) ∧ ⟨𝜚,
⟨atJSK, 𝜌⟩⟩ ∧𝓢rJL : BK} H(18)I

= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | R ∉ R𝜀 ∧𝓑JBK𝜌 = ff ∧ ⟨L′ : B′, R′⟩ = fstnxt(R) ∧ R′ ∈
R𝜀 ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}

Otherwise R ≠ 𝜀, and this is
= {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R″⟩ | R ∉ R𝜀 ∧𝓑JBK 𝜌 = ff ∧ ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚,
⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∉ R𝜀 ∧ ⟨L″ : B″, R″⟩ = fstnxt(R′) ∧ ⟨𝜚, ⟨aftJSK,
𝜌⟩⟩ ∈ 𝓢rJL″ : B″K} H(18)I

The third term is
{⟨𝜋, R′⟩ | 𝜋 ∈ {⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩ ⌢⋅ 𝜋2 ∣ 𝓑JBK 𝜌 = tt ∧ 𝜋2 ∈ 𝓢∗JS𝑡K} ∧ ⟨tt,
R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋}

= {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋2, R′⟩ | 𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋2 ∈ 𝓢∗JS𝑡K ∧ ⟨tt,
R′⟩ =𝓜𝑡⟨𝜚, R⟩(⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋2)} Hdef. ∈ and ⌢⋅I

By (18), there are two subases. If R = 𝜀, this is
= {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋2, 𝜀⟩ | R ∈ R𝜀 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋2 ∈ 𝓢∗JS𝑡K}H(18)I
This term is incorporated in (27). Otherwise R ≠ 𝜀, and this is
= {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋2, R″⟩ | R ∉ R𝜀∧𝓑JBK𝜌 = tt∧⟨atJS𝑡K, 𝜌⟩𝜋2 ∈ 𝓢∗JS𝑡K∧⟨L :

B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨tt, R″⟩ =𝓜𝑡⟨𝜚, R′⟩(⟨atJS𝑡K,
𝜌⟩𝜋2)} H(18)I

= {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋2, R″⟩ | R ∉ R𝜀∧𝓑JBK𝜌 = tt∧⟨L : B, R′⟩ = fstnxt(R)∧⟨𝜚,
⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨⟨atJS𝑡K, 𝜌⟩𝜋2, R″⟩ ∈ {⟨𝜋, R″⟩ | 𝜋 ∈ 𝓢∗JS𝑡K ∧ ⟨tt,
R″⟩ =𝓜𝑡⟨𝜚, R′⟩𝜋}} Hdef. ∈I

= {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋2, R″⟩ | R ∉ R𝜀∧𝓑JBK𝜌 = tt∧⟨L : B, R′⟩ = fstnxt(R)∧⟨𝜚,
⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨⟨atJS𝑡K, 𝜌⟩𝜋2, R″⟩ ∈𝓜∖|JS𝑡K⟨𝜚, R′⟩} H(20) and (19)I

Grouping all cases and subcases together, we get (31) and (27) when R is
empty. The case (36) is similar.

In case (33) of an iteration statement S ∶∶= while ℓ (B) S𝑏, we apply Lem. 19
so we have to calculate the abstract transformer that satisfies the commutation
property for an iterate 𝑋 of the concrete transformer 𝓕∗JSK (which traces must
be of the form 𝜋⟨atJSK, 𝜌⟩).
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𝓜∖|⟨𝜚, R⟩(𝓕∗JSK𝑋)
= 𝓜∖|⟨𝜚, R⟩({⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev} ∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 =

ff ∧ ℓ′ = ℓ} ∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K,
𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ}) H(8)I

= 𝓜∖|⟨𝜚, R⟩({⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev}) ∪𝓜∖|⟨𝜚, R⟩({𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈
𝑋 ∧𝓑JBK 𝜌 = ff ∧ ℓ′ = ℓ}) ∪𝓜∖|⟨𝜚, R⟩({𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈
𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ})HGalois connection (23), so that 𝓜∖|⟨𝜚, R⟩ preserves joinsI

To avoid repeating (27), we assume that R ∉ R𝜀 so we can let ⟨L′ : B′, R′⟩ =
fstnxt(R). There are three subcases.

The first case is that of an observation of the execution that stops at loop
entry ℓ = atJSK. This is similar to the above proof e.g. of (35) for a skip statement,
and we get

𝓜∖|⟨𝜚, R⟩({⟨atJSK, 𝜌⟩ | 𝜌 ∈ Ev}
= {⟨⟨atJSK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev∧⟨L′ : B′, R′⟩ = fstnxt(R)∧⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}

The second case is that of the loop exit

𝓜∖|⟨𝜚, R⟩({𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff})

= {⟨𝜋, R′⟩ | 𝜋 ∈ {𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff} ∧ ⟨tt,
R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(19)I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋∧𝓑JBK𝜌 = ff ∧⟨tt, R′⟩ =𝓜𝑡⟨𝜚,
R⟩(𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩)} Hdef. ∈I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff ∧ ∃R″ ∈ R .
𝓜𝑡⟨𝜚, R⟩(𝜋2⟨atJSK, 𝜌⟩) = ⟨tt, R″⟩∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩) = ⟨tt, R′⟩}HLem. 18I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ {⟨𝜋, R″⟩ | 𝜋 ∈ 𝑋 ∧ ⟨tt,
R″⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} ∧𝓑JBK 𝜌 = ff ∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩) = ⟨tt, R′⟩}H𝑋 is an iterate of the concrete transformer 𝓕∗JSK so its traces must

be of the form 𝜋⟨atJSK, 𝜌⟩I
= {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =

ff ∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩) = ⟨tt, R′⟩} H(19) I
= {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 = ff} ∪
{⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
ff ∧ R″ ∉ R𝜀 ∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩) = ⟨tt, R′⟩}

Hcase analysis and 𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ in (18)I
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= {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 = ff} ∪
{⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋∧𝓑JBK𝜌 = ff∧R″ ∉
R𝜀 ∧ ⟨L′ : B′, R′⟩ = fstnxt(R″) ∧ R′ ∈ R𝜀 ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}} ∪
{⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R‴⟩ = fstnxt(R″) ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ R‴ ∉
R𝜀 ∧ ⟨L″ : B″, R′⟩ = fstnxt(R‴) ∧ ⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

Hsince (⟨tt, R′⟩ = 𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩)) ⇔ (⟨L′ : B′, R′⟩ =
fstnxt(R″) ∧ R′ ∈ R𝜀 ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K) ∨ (⟨L′ : B′, R‴⟩ =
fstnxt(R″) ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ R‴ ∉ R𝜀 ∧ ⟨L″ : B″, R′⟩ =
fstnxt(R‴) ∧ ⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K) as shown above while

proving the second term in case (31) of a conditional statement S ∶∶=
if ℓ (B) S𝑡I

The third and last case is that of an iteration executing the loop body.

𝓜∖|⟨𝜚, R⟩({𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅𝜋3 | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋∧𝓑JBK𝜌 = tt ∧⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K})

= {⟨𝜋, R′⟩ | 𝜋 ∈ {𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3 | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋∧𝓑JBK𝜌 = tt∧⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K} ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(19)I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩(𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3)} Hdef. ∈I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | 𝜋2⟨atJSK, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K∧∃R″ ∈ R .𝓜𝑡⟨𝜚, R⟩(𝜋2⟨atJSK, 𝜌⟩) = ⟨tt, R″⟩∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK,
𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3) = ⟨tt, R′⟩} HLem. 18I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ {⟨𝜋, R″⟩ | 𝜋 ∈ 𝑋 ∧ ⟨tt,
R″⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} ∧𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K ∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK,
𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3) = ⟨tt, R′⟩}Hdef. ∈ and 𝑋 is an iterate of the concrete transformer 𝓕∗JSK so its

traces must be of the form 𝜋2⟨atJSK, 𝜌⟩I
= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =

tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K ∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3) = ⟨tt, R′⟩}H(19)I
= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =

tt ∧⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K∧(∃R‴ ∈ R .𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩) = ⟨tt,
R‴⟩ ∧𝓜𝑡⟨𝜚, R‴⟩(⟨atJS𝑏K, 𝜌⟩𝜋3) = ⟨tt, R′⟩)} HLem. 18I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
tt ∧ ∃R‴ ∈ R . ⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈ {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JS𝑏K ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚,
R‴⟩𝜋} ∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩) = ⟨tt, R‴⟩}
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Hdef. ∈ and def. 𝓢∗JS𝑏K in Section 2 so that its traces must be of the form
⟨atJS𝑏K, 𝜌⟩𝜋3I

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
tt∧𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩) = ⟨tt, R‴⟩∧⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚,
R‴⟩} H(20) and (19), ∧ commutativeI

There are two subcases depending on whether R″ ∈ R𝜀 or not.
If R″ ∈ R𝜀, then

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}Hsince R″ ∈ R𝜀 and 𝓜𝑡⟨𝜚, R″⟩(⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩) = ⟨tt, R‴⟩ imply

that R‴ = 𝜀 by (18) and so ⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈ 𝓜∖|JS𝑏K⟨𝜚, R‴⟩ =
{⟨𝜋, 𝜀⟩ ∣ 𝜋 ∈ 𝓢∗JS𝑏K} by (20) and (19) implies R′ = 𝜀 and ⟨atJS𝑏K,
𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏KI

Otherwise R″ ∉ R𝜀

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, R⁗⟩ = fstnxt(R″) ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧𝓜𝑡⟨𝜚,
R⁗⟩⟨atJS𝑏K, 𝜌⟩ = ⟨tt, R‴⟩ ∧ ⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩} H(18)I

There are two subsubcases, depending on whether R⁗ is empty or not.
If R⁗ ∈ R𝜀 then, as shown before, 𝓜𝑡⟨𝜚, R⁗⟩⟨atJS𝑏K, 𝜌⟩ = ⟨tt, R‴⟩ implies

that R‴ ∈ R𝜀 and so ⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩ if and only if R′ ∈ R𝜀
and ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K. We get
= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =

tt∧R″ ∉ R𝜀∧⟨L : B, 𝜀⟩ = fstnxt(R″)∧⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK∧⟨atJS𝑏K, 𝜌⟩𝜋3 ∈
𝓢∗JS𝑏K} H(18)I
Otherwise R⁗ ∉ R𝜀.

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋∧𝓑JBK𝜌 = tt∧
R″ ∉ R𝜀∧⟨L : B, R⁗⟩ = fstnxt(R″)∧⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK∧R⁗ ∉ R𝜀∧𝓜𝑡⟨𝜚,
R⁗⟩⟨atJS𝑏K, 𝜌⟩ = ⟨tt, R‴⟩ ∧ ⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩}

= {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈𝓜∖|⟨𝜚, R⟩𝑋 ∧𝓑JBK 𝜌 =
tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, R⁗⟩ = fstnxt(R″) ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R⁗ ∉
R𝜀 ∧ ⟨L′ : B′, R‴⟩ = fstnxt(R⁗) ∧ ⟨𝜚, ⟨atJS𝑏K, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨⟨atJS𝑏K,
𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩} H(18)I

Grouping all cases together we get the term (34) defining �̂�∖|JSK⟨𝜚, R⟩(𝓜∖|⟨𝜚,
R⟩𝑋) and so Lem. 19 and the commutation condition 𝓜∖|⟨𝜚, R⟩(𝓕∗JSK(𝑋)) =
�̂�∖|JSK⟨𝜚, R⟩ (𝓜∖|⟨𝜚, R⟩(𝑋)) for the iterates 𝑋 of 𝓕∗JSK yield �̂�∖|JSK⟨𝜚, R⟩ ≜

lfp⊆ (�̂�∖|JSK⟨𝜚, R⟩) that is (33).
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In case (32) of a break statement S ∶∶= ℓbreak ;

𝓜∖|JSK ⟨𝜚, R⟩
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(20) and (19)I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev}∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev}∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚,

R⟩𝜋} H(3)I
= {⟨⟨ℓ, 𝜌⟩, R″⟩ | ⟨tt, R″⟩ = 𝓜𝑡⟨𝜚, R⟩⟨ℓ, 𝜌⟩} ∪ {⟨⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩, R″⟩ | ⟨tt,

R″⟩ =𝓜𝑡⟨𝜚, R⟩(⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩)} Hdef. ∪ and ∈I
= let ⟨L : B, R′⟩ = fstnxt(R) in {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪ {⟨⟨ℓ,
𝜌⟩⟨brk-toJSK, 𝜌⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪ {⟨⟨ℓ, 𝜌⟩⟨brk-toJSK,
𝜌⟩, R″⟩ | R′ ∉ R𝜀 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧ ⟨𝜚,
⟨brk-toJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K} HR ∉ R𝜀, case analysis on R′ ∈ R𝜀, and(18)I

The proofs are similar in the cases (36) of an alternative statement S ∶∶=
if ℓ (B) S𝑡 else S𝑓 and (37) of a a compound statement S ∶∶= { Sl } □

9. Notes on implementations and expressivity

Of course further hypotheses and refinements would be necessary to get an
effective algorithm as specified by the Def. 17 of structural model checking. A
common hypothesis in model checking is that the set of states 𝕊 is finite. Traces
may still be infinite so the fixpoint computation (33) may not converge. However,
infinite traces on finite states must involve an initial finite prefix followed by a
finite cycle (often called a lasso) [34]. It follows that the infinite set of prefix
traces can be finitely represented by a finite set of maximal finite traces and finite
lassos. Regular expressions L : B can be attached to the states as determined
by the analysis, and there are finitely many of them in the specification. These
finiteness properties can be taken into account to ensure the convergence of the
fixpoint computation in (33).

A symbolic representation of the states in finite/lasso traces may be useful
as in symbolic execution [32] or using BDDs [6] for boolean encodings of pro-
grams. By Kleene theorem [45, Theorem 2.1, p. 87], a convenient representation
of regular expressions is by (deterministic) finite automata e.g. [37]. Symbolic
automata-based algorithms can be used to implement a data structure for op-
erations over sets of sequences [26].

Of course the hypothesis that the state space is finite and small enough
to scale up and limit the combinatorial blow up of the finite state-space is
unrealistic [11]. In practice, the set of states 𝕊 is very large, so abstraction and
a widening/dual narrowing are necessary. A typical trivial widening is bounded
model checking (e.g. widen to all states after 𝑛 fixpoint iterations) [5]. Those of
[39] for BDDs are more elaborated.

10. Conclusion

We have illustrated the idea that model checking is an abstract interpre-
tation, as first introduced in [17]. This point of view also yields specification-
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preserving abstract model checking [18] as well as abstraction refinement algo-
rithms [23].

Specifications by temporal logics are not commonly accepted by program-
mers. For example, in [40], the specifications had to be written by academics.
Regular expressions or path expressions [8] or more expressive extensions such
as [25, 49, 20, 7, 30, 22] might turn out to be more familiar. Moreover, for secu-
rity monitors the false alarms of the static analysis can be checked at runtime
[46, 38].

Convergence of model checking requires expressivity restrictions on both the
considered models of computation and the considered temporal logics. For some
expressive models of computation and temporal logics, state finiteness is not
enough to guarantee termination of model checking [17, 24]. Finite enumeration
is limited, even with symbolic encodings. Beyond finiteness, scalability is always
a problem with model checking and the regular software model checking algo-
rithm �̂� is no exception, so abstraction and induction are ultimately required
to reason on programs.

Most often, abstract model checking uses homomorphic/partitioning ab-
stractions e.g. [4]. This is because the abstraction of a transition system on
concrete states is a transition system on abstract states so model checkers are
reusable in the abstract. However, excluding edgy abstractions as in [13], state-
based finite abstraction is very restrictive [24] and do not guarantee scalability
(e.g. SLAM [3]). Such restrictions on abstractions do not apply to structural
model checking so that abstractions more powerful than partitioning can be
considered.

As an alternative approach, a regular expression can be automatically ex-
tracted by static analysis of the program trace semantics that recognizes all
feasible execution paths and usually more [19]. Then model-checking a regular
specification becomes a regular language inclusion problem [36].
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Appendix A. Syntactic component relation

The strict syntactic order ◁ for the programs of Section 2.1 is defined as
follows.
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P ∶∶= Sl ℓ Sl◁ P
S ∶∶=

x = E ; x◁ S, E◁ S
| ;
| if (B) S𝑡 B◁ S, S𝑡 ◁ S
| if (B) S𝑡 else S𝑓 B◁ S, S𝑡 ◁ S, S𝑓 ◁ S
| while (B) S𝑏 B◁ S, S𝑏 ◁ S
| break ;
| { Sl } Sl◁ S

Sl ∶∶= Sl′ S | 𝜖 Sl′ ◁ Sl, S◁ Sl, 𝜖 ◁ Sl

◁ is well-founded since it is defined on program components which have finite
tree representations and S′ ◁ S implies that finite tree representation of S′ has
at least one node less than the tree representation of S.

Appendix B. Program labeling

The program labeling informally introduced in Section 2.2 is left unspeci-
fied but must satisfies the following postulates. atJSK is the program point at
which execution of program component S starts. aftJSK is the program point at
which execution of S is supposed to terminate, if ever. After executing program
component S, execution will continue at that program point (unless there is a
break ; or the statement does not terminate).
P ∶∶= Sl atJPK ≜ atJSlK aftJPK ≜ aftJSlK
Sl ∶∶= Sl′ S atJSlK ≜ atJSl′K aftJSl′K ≜ atJSK, aftJSK ≜ aftJSlK
Sl ∶∶= 𝜖 atJSlK ≜ aftJSlK
S ∶∶= { Sl } atJSK ≜ atJSlK
S ∶∶= if (B) S𝑡 aftJS𝑡K ≜ aftJSK
S ∶∶= if (B) S𝑡 else S𝑓 aftJS𝑡K ≜ aftJS𝑓K ≜ aftJSK
S ∶∶= while (B) S𝑏 aftJS𝑏K ≜ atJSK
S ∶∶= { Sl } atJSK ≜ atJSlK aftJSlK ≜ aftJSK

We use explicit labelling in examples and proofs as the following shorthand for
labels.

S ∶∶= ℓ x = E ; ℓ = atJSK
S ∶∶= ℓ; ℓ = atJSK
S ∶∶= if ℓ (B) S𝑡 ℓ = atJSK
S ∶∶= if ℓ (B) S𝑡 else S𝑓 ℓ = atJSK
S ∶∶= while ℓ (B) S𝑏 ℓ = atJSK
S ∶∶= ℓ break ; ℓ = atJSK
P ∶∶= Sl ℓ ℓ = aftJPK = aftJSlK
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escJSK is tt if and only if the program component S ∈ Pc contains a break ;
statement escaping out of that component S to the program point brk-toJSK
(which is well-defined only when escJSK = tt).

P ∶∶= Sl escJPK ≜ escJSlK, escJPK = ff
Sl ∶∶= Sl′ S escJSlK ≜ escJSl′K ∨ escJSK

brk-toJSl′K ≜ brk-toJSK ≜ brk-toJSlK
Sl ∶∶= 𝜖 escJSlK ≜ ff
S ∶∶= x = E ; escJSK ≜ ff
S ∶∶= ; escJSK ≜ ff
S ∶∶= if (B) S𝑡 escJSK ≜ escJS𝑡K, brk-toJS𝑡K ≜ brk-toJSK
S ∶∶= if (B) S𝑡 else S𝑓 escJSK ≜ escJS𝑡K ∨ escJS𝑓K

brk-toJS𝑡K ≜ brk-toJS𝑓K ≜ brk-toJSK
S ∶∶= while (B) S𝑏 escJSK ≜ ff, brk-toJS𝑏K ≜ aftJSK
S ∶∶= break ; escJSK ≜ tt
S ∶∶= { Sl } escJSK ≜ escJSlK, brk-toJSlK ≜ brk-toJSK

brks-ofJSK collects the labels of all break ; program components that can escape
out of S (so excluding break ; statements inside an iteration statement within
S). The definition checks that break ; statements can only appear within loops;

P ∶∶= Sl brks-ofJPK ≜ brks-ofJSlK brks-ofJPK = ∅
Sl ∶∶= Sl′ S brks-ofJSlK ≜ brks-ofJSl′K ∪ brks-ofJSK
Sl ∶∶= 𝜖 brks-ofJSlK ≜ ∅
S ∶∶= x = E ; brks-ofJSK ≜ ∅
S ∶∶= ; brks-ofJSK ≜ ∅
S ∶∶= if (B) S𝑡 brks-ofJSK ≜ brks-ofJS𝑡K
S ∶∶= if (B) S𝑡 else S𝑓 brks-ofJSK ≜ brks-ofJS𝑡K ∪ brks-ofJS𝑓K
S ∶∶= while (B) S𝑏 brks-ofJSK ≜ ∅
S ∶∶= ℓ break ; brks-ofJSK ≜ {atJSK}
S ∶∶= { Sl } brks-ofJSK ≜ brks-ofJSlK

labsJSK is the set of potentially reachable program points while executing the
program component S either in or after S, or resulting from a break.

labsJSK ≜ inJSK ∪ {aftJSK} ∪ ( escJSK ? {brk-toJSK} : ∅ )

Proof (of Lem. 1). By structural induction on S.
In the base case, for example, if Sl ∶∶= 𝜖 then inJSlK ≜ {atJSlK} so atJSlK ∈

inJSlK and for S ∶∶= ℓ x = E ; then inJSK ≜ {ℓ} where atJSK ≜ ℓ. Similarly
for the other base cases S ∶∶= ;, S ∶∶= if (B) S𝑡, S ∶∶= if (B) S𝑡 else S𝑓,
S ∶∶= while (B) S𝑏, and S ∶∶= break ;.

For the induction cases, if S ∶∶= { Sl } then atJSK = atJSlK ∈ inJSlK = inJSK
by def. at, in, and induction hypothesis. If Sl ∶∶= Sl′ S then atJSlK = atJSl′K ∈
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inJSl′K ⊆ inJSlK by def. at, in, and induction hypothesis. Otherwise, P ∶∶= Sl ℓ
and atJPK = atJSlK ∈ inJSlK ⊆ inJPK by def. at, in, and induction hypothesis. □

Proof (of Lem. 2). The proof is by induction on the distance 𝛿(S) of S to the
root of the abstract syntax tree of P.

• For the basis P ∶∶= Sl ℓ, where 𝛿(P) = 0, we have aftJPK ≜ aftJSlK ≜ ℓ and
inJPK ≜ inJSlK with ℓ ∉ inJSlK so aftJPK ∉ inJPK and aftJSlK ∉ inJSlK.

• For Sl ∶∶= Sl′ S where 𝛿(Sl′) = 𝛿(S) = 𝛿(Sl) + 1, we have aftJSl′K ≜ atJSK,
aftJSK ≜ aftJSlK, inJSlK ≜ inJSl′K ∪ inJSK, inJSl′K ∩ inJSK = ∅ since Sl′ ≠ 𝜖
and, by Lem. 1, atJSK ∈ inJSK so aftJSl′K = atJSK ∉ inJSl′K. Moreover, aftJSK =
aftJSlK ∉ inJSlK by induction hypothesis hence aftJSK ∉ inJSK.

• If S ∶∶= if ℓ (B) S𝑡 then aftJS𝑡K ≜ aftJSK, aftJSK ∉ inJSK by induction hypothesis
since 𝛿(S𝑡) = 𝛿(S) + 1, so aftJS𝑡K ∉ inJS𝑡K since inJS𝑡K ⊆ inJSK.

• By a similar argument, aftJS𝑡K ∉ inJS𝑡K and aftJS𝑓K ∉ inJS𝑓K when S ∶∶=
if ℓ (B) S𝑡 else S𝑓.

• If S ∶∶= while ℓ (B) S𝑏 then aftJS𝑏K ≜ ℓ and ℓ ∉ inJS𝑏K by def. inJSK.
• If S ∶∶= { Sl } and Sl ≠ { … { 𝜖 }… } then aftJSlK ≜ aftJSK, inJSK ≜ inJSlK,

and 𝛿(Sl) = 𝛿(S) + 1 so aftJSK ∉ inJSK by induction hypothesis since S ≠ 𝜖 ,
proving aftJSlK ∉ inJSlK. □
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