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Abstract. In order to verify semialgebraic programs, we automatize
the Floyd/Naur/Hoare proof method. The main task is to automatically
infer valid invariants and rank functions.
First we express the program semantics in polynomial form. Then the
unknown rank function and invariants are abstracted in parametric form.
The implication in the Floyd/Naur/Hoare verification conditions is han-
dled by abstraction into numerical constraints by Lagrangian relaxation.
The remaining universal quantification is handled by semidefinite pro-
gramming relaxation. Finally the parameters are computed using semidef-
inite programming solvers.
This new approach exploits the recent progress in the numerical resolu-
tion of linear or bilinear matrix inequalities by semidefinite programming
using efficient polynomial primal/dual interior point methods generaliz-
ing those well-known in linear programming to convex optimization.
The framework is applied to invariance and termination proof of sequen-
tial, nondeterministic, concurrent, and fair parallel imperative polyno-
mial programs and can easily be extended to other safety and liveness
properties.

Keywords: Bilinear matrix inequality (BMI), Convex optimization, In-
variance, Lagrangian relaxation, Linear matrix inequality (LMI), Live-
ness, Parametric abstraction, Polynomial optimization, Proof, Rank func-
tion, Safety, S-procedure, Semidefinite programming, Termination pre-
condition, Termination, Program verification.

1 Introduction

Program verification is based on reasonings by induction (e.g. on program steps)
which involves the discovery of unknown inductive arguments (e.g. rank func-
tions, invariants) satisfying universally quantified verification conditions. For
static analysis the discovery of the inductive arguments must be automated,
which consists in solving the constraints provided by the verification conditions.
Several methods have been considered: recurrence/difference equation resolu-
tion; iteration, possibly with convergence acceleration; or direct methods (such
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as elimination). All these methods involve some form of simplification of the
constraints by abstraction.

In this paper, we explore parametric abstraction and direct resolution by
Lagrangian relaxation into semidefinite programming. This is applied to termi-
nation (a typical liveness property) of semialgebraic programs. The extension to
invariance (a typical safety property) is sketched.

The automatic determination of loop invariant/rank function can be sum-
marized as follows:

1. Establish the relational semantics of the loop body (Sec. 2) (may be strength-
ened with correctness preconditions (Sec. 2.2), abstract invariants (Sec. 2.3),
and/or simplified by relational abstraction (Sec. 2.4));

2. Set up the termination/invariance verification conditions (Sec. 3);
3. Choose a parametric abstraction (Sec. 4). The resolution of the abstract

logical verification conditions by first-order quantifier elimination can be
considered, but is very often too costly (Sec. 5);

4. Abstract further the abstract logical verification conditions into numerical
constraints (Sec. 8) by Lagrangian relaxation (Sec. 6) obtaining Linear Ma-
trix Inequalities for termination (Sec. 6.2) or Bilinear Matrix Inequalities for
invariance (Sec. 12);

5. Solve the numerical constraints (Sec. 9) by semidefinite programming (Sec.
7);

After a series of examples (Sec. 10), we consider more complex language features
including disjunctions in the loop test and conditionals in the loop body (Sec.
11.1), nested loops (Sec. 11.2), nondeterminism and concurrency (Sec. 11.3),
bounded weakly fair parallelism (Sec. 11.4), and semi-algebraic/polynomial pro-
grams, for which a further relaxation into a sum of squares is applied (Sec. 11.5).
The case of invariance is illustrated in Sec. 12. Potential problems with solvers
are discussed in Sec. 13, before concluding (Sec. 14).

2 Relational Semantics of Programs

2.1 Semialgebraic Programs

We consider numerical iterative programs while B do C od where B is a
boolean condition and C is an imperative command (assignment, test or loop)
on the global program variables. We assume that the operational semantics of
the loop is given for an iteration as:

�B;C�(x0, x) =
N∧

k=1

σk(x0, x) ≥ 0 (1)

where x0 is the line vector of values of the n program variables before an itera-
tion, x is the line vector of values of the n program variables after this iteration
and the relationship between x0 and x during a single iteration is expressed as
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a conjunction of N real valued positivity constraints with σk ∈ R
n × R

n −→ R,
k = 1, . . . , N1. Algorithmically interesting particular cases are when the con-
straints σk ≥ 0 can be expressed as linear constraints, quadratic forms and
polynomial positivity. Equalities σk(x0, x) = 0 have to be written as σk(x0, x) ≥
0 ∧ −σk(x0, x) ≥ 0.

Example 1 (Factorial). The program below computes the greatest factorial less
than or equal to a given N, if any. The operational semantics of the loop body
can be defined by the following constraints:

n := 0;

f := 1;

while (f <= N) do

n := n + 1;

f := n * f

od

−f0 + N0 ≥ 0
n0 ≥ 0

f0 − 1 ≥ 0
−n0 + n − 1 = 0
−f0.n + f = 0
−N0 + N = 0

All constraints are linear but f − n.f0 = 0 which is quadratic (of the form
[x0 x]A[x0 x]� + 2[x0 x] q + r ≥ 0, where A is symmetric, q is a column vector, r
is a constant, and � is transposition), and can be written as follows:

[n0 f0 N0 n f N ]

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 − 1

2 0 0
0 0 0 0 0 0
0 − 1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

n0

f0

N0

n
f
N

⎤

⎥⎥⎥⎥⎥⎥⎦
+ 2[n0f0N0nfN ]

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
2
0

⎤

⎥⎥⎥⎥⎥⎥⎦
+ 0 = 0,

or equivalently as [x0 x 1]M [x0 x 1]� ≥ 0 where M is symmetric, that is:

[n0 f0 N0 n f N 1]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 − 1

2 0 0 0
0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0
0 0 0 0 0 0 1

2
0 0 0 0 0 0 0
0 0 0 0 1

2 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0

f0

N0

n
f
N
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 .

��

2.2 Establishing Necessary Correctness Preconditions

Iterated Forward/Backward Static Analysis. Program verification may
be unsuccessful when the program execution may fail under some circumstances
1 Any Boolean constraint on numerical variables can be written in that form using

an appropriate numerical encoding of the boolean values and embedding of the
numerical values into R.
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(e.g. non termination, run-time errors). As part of the correctness proof, it is
therefore mandatory to establish correctness preconditions excluding such mis-
behaviors. Such a necessary termination and absence of runtime errors precon-
dition can be discovered automatically by an iterated forward/backward static
analysis [8, 13].

Discovering a Termination Precondition by the Auxiliary Termination
Counter Method. Termination requirements can be incorporated into the
iterated forward/backward static analysis in the form of an auxiliary termination
counter k which is strictly decremented in the loop and is asserted to be zero
on loop exit. For relational analyzes, this strengthens the necessary termination
precondition.

Example 2. The following example is from [4]. The analyzer uses the polyhedral
abstract domain [15] implemented using the New Polka library [21].

while (x <> y) do

x := x - 1;

y := y + 1

od

{x>=y}

while (x <> y) do

{x>=y+2}

x := x - 1;

{x>=y+1}

y := y + 1

{x>=y}

od

{x=y}

{x=y+2k,x>=y}

while (x <> y) do

{x=y+2k,x>=y+2}

k := k - 1;

x := x - 1;

y := y + 1

{x=y+2k,x>=y}

od

{x=y,k=0}

assume (k = 0)

Program Iterated forward/backward
static analysis

Iterated forward/backward static
analysis with termination counter.

The use of the auxiliary termination counter allows the iterated forward/back-
ward polyhedral analysis to discover the necessary termination condition that
the initial difference between the two variables should be even. ��

2.3 Strengthening the Relational Semantics

Proofs can be made easier by strengthening the relational semantics through
incorporation of known facts about the program runtime behavior. For example
an invariant may be needed, in addition to a termination precondition, to prove
termination. Such a loop invariant can be determined automatically by a forward
static analysis [9] assuming the initial termination precondition.

Example 3 (Ex. 2 continued). A forward polyhedral analysis [15] yields linear
invariants:
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assume (x=y+2*k) & (x>=y);

while (x <> y) do

k := k - 1;

x := x - 1;

y := y + 1

od

assume (x=y+2*k) & (x>=y);

{x=y+2k,x>=y}

{loop invariant: x=y+2k}

while (x <> y) do

{x=y+2k}

k := k - 1;

x := x - 1;

y := y + 1

{x=y+2k}

od

{k=0,x=y}

Program Forward polyhedral analysis. ��

2.4 Abstracting the Relational Semantics

Program verification may be made easier when the big-step operational seman-
tics of the loop body (1) is simplified e.g. through abstraction. To get such
a simplified but sound semantics, one can use any relational abstraction. The
technique consists in using auxiliary initial variables to denote the values of the
program variables at the beginning of the loop iteration (whence satisfying the
loop invariant and the loop condition). The invariant at the end of the loop body
is then a sound approximation of the relational semantics (1) of the loop body2.
The polyhedral abstraction [15] will be particularly useful to derive automati-
cally an approximate linear semantics.

Example 4 (Ex. 3 continued). Handling the operator <> (different) by case anal-
ysis, we get3:

assume (x=y+2*k)&(x>=y);

{x=y+2k,x>=y}

assume (x < y);

empty(6)

assume (x0=x)&(y0=y)&(k0=k);

k := k - 1;

x := x - 1;

y := y + 1

empty(6)

assume (x=y+2*k)&(x>=y);

{x=y+2k,1>=0,x>=y}

assume (x > y);

{x=y+2k,1>=0,x>=y+1}

assume (x0=x)&(y0=y)&(k0=k);

k := k - 1;

x := x - 1;

y := y + 1

{x+2=y+2k0,y=y0+1,x+1=x0,x=y+2k,x+1>=y} ��

3 Verification Condition Setup

3.1 Floyd/Naur/Hoare Invariance Proof Method

Given a loop precondition P (x) ≥ 0 which holds before loop entry, the invariance
proof method [17, 20, 26] consists in proving that the invariant I(x) ≥ 0 is initial
2 The technique was first used in the context of static analysis for context-sensitive

interprocedural analysis to compute summaries of recursive procedures [10].
3 empty(6) denotes the empty polyhedron in 6 variables, that is unreachability ⊥.
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(that is to say holds on loop entry) and inductive (i.e. remains true after each
loop iteration):

∀x ∈ R
n : (P (x) ≥ 0) ⇒ (I(x) ≥ 0), (2)

∀x0, x ∈ R
n : (I(x0) ≥ 0 ∧

N∧

k=1

σk(x0, x) ≥ 0) ⇒ (I(x) ≥ 0) . (3)

3.2 Floyd Rank Function Termination Proof Method

Floyd’s method [17] for proving loop termination consists in discovering a rank
function r ∈ R

n −→ W of the values of the program variables into a well-
founded set 〈W, 
〉 which is strictly decreasing at each iteration of the loop.
If the nondeterminism is bounded, one can choose 〈W, 
〉 = 〈N, ≤〉. In what
follows, we will often use real valued rank functions r which are nonnegative on
loop body entry and strictly decrease at each iteration by a positive quantity
bounded from below4. In such a case, and up to an isomorphism, the rank
function r can be embedded into N.

In general a loop terminates for some initial values of the variables only,
satisfying some loop termination precondition P (x) ≥ 0 so that the strict decre-
mentation can be requested for states reachable from this initial condition only,
as characterized by an invariant I(x) ≥ 0 in the sense of [17, 20, 26].

Floyd’s verification conditions [17] for proving loop termination become:

∃r ∈ R
n −→ R, ∃δ ∈ R:

∀x0 ∈ R
n : (I(x0) ≥ 0) ⇒ (r(x0) ≥ 0), (4)

∀x0, x ∈ R
n : (I(x0) ≥ 0 ∧

N∧

k=1

σk(x0, x) ≥ 0) ⇒ (r(x0) − r(x) − δ ≥ 0), (5)

δ > 0 . (6)

Remark 1. We can also choose δ = 1 but it is sometimes more flexible to let its
value be computed by the solver (see later Rem. 4). ��
Remark 2. As proved in [12, Sec. 9, p. 290], the above choice of I and r not
depending upon initial states is incomplete so that, more generally, we may have
to use I(x, x′) and r(x, x′) where x ∈ R

n denotes the initial value of the variables
before loop entry and x′ ∈ R

n their current value that is x0 at the beginning of
an iteration of the loop body and x at the end of that same iteration. ��

4 Parametric Abstraction

Fixing the form of the unknown invariant I(x) in (2) and (3) or of the rank func-
tion r in (4) and (5) in terms of p unknown parameters a ∈ R

p to be determined
by the analysis is an abstraction [11]. An example is the affine abstraction [22].
4 to avoid the Zeno phenomenon, that is, a strict decrease by 1, 1

2
, 1

4
, 1

8
, . . . , which

could be infinite.
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More generally, a function f(x) can be abstracted in the form fa(x) where
a is a line vector of unknown parameters and x is the line vector of values
of the loop variables5. For example, the linear case is fa(x) = a.x� and the
affine case is fa(x) = a.(x 1)�. A quadratic choice would be fa(x) = x.a.x� or
fa(x) = (x 1).a.(x 1)� where a is a symmetric matrix of unknown parameters.

After parametric abstraction, it remains to compute the parameters a by
solving the verification constraints. For example, the termination verification
conditions (4), (5), and (6) become:

∃a ∈ R
p : ∃δ ∈ R :

∀x0 ∈ R
n : (I(x0) ≥ 0) ⇒ (ra(x0) ≥ 0), (7)

∀x0, x ∈ R
n : (I(x0) ≥ 0 ∧

N∧

k=1

σk(x0, x) ≥ 0) ⇒ (ra(x0) − ra(x) − δ ≥ 0), (8)

δ > 0 . (9)

The resolution of these termination constraints in the case of linear programs
and rank functions has been explored by [7], using a reduction of the constraints
based on the construction of polars, intersection and projection of polyhedral
cones (with limitations, such as that the loop test contains no disjunction and
the body contains no test).

5 Solving the Abstract Verification Conditions by
First-order Quantifier Elimination

The Tarski-Seidenberg decision procedure for the first-order theory of real closed
fields by quantifier elimination can be used to solve (7), (8), and (9) since it trans-
forms a formula Q1x1 : . . .Qnxn : F (x1, . . . , xn) (where the Qi are first-order
quantifiers ∀, ∃ and F is a logical combination of polynomial equations and in-
equalities in the variables x1, . . . , xn) into an equivalent quantifier free formula.
However Tarski’s method cannot be bound by any tower of exponentials. The
cylindrical algebraic decomposition method by Collins [6] has a worst-case time-
complexity for real quantifier elimination which is “only” doubly exponential in
the number of quantifier blocks. It is implemented in Mathematica r© but can-
not be expected to scale up to large problems. So we rely on another abstraction
method described below.

5 The sets of constraints fa(x) ≥ 0 for all a may not be a Moore family for the
pointwise ordering, in which case a concretization function γ may be used [14].
For simplicity we make no distinction between the representation of the constraint
fa(x) ≥ 0 and its value γ(fa(x) ≥ 0) = {x ∈ R

n | fa(x) ≥ 0}. In consequence, the
use of a concretization function will remain implicit.
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6 Abstraction of the Verification Conditions into
Numerical Constraints by Lagrangian Relaxation

6.1 The Lagrangian Relaxation Method

Let V be a finite dimensional linear vector space, N > 0 and ∀k ∈ [0, N ] : σk ∈
V −→ R (not necessarily linear). Let R

+ = {x ≥ 0 | x ∈ R}. To prove:

∀x ∈ V :

(
N∧

k=1

σk(x) ≥ 0

)
⇒ (σ0(x) ≥ 0), (10)

the Lagrangian relaxation consists in proving that:

∃λ ∈ [1, N ] −→ R
+ : ∀x ∈ V : σ0(x) −

N∑

k=1

λkσk(x) ≥ 0, (11)

where the λk are called Lagrange coefficients. The interest of Lagrangian relax-
ation is that the implication ⇒ and conjunction

∧
in (10) are eliminated in

(11).
The approach is obviously sound, since the hypothesis

∧N
k=1 σk(x) ≥ 0 in

(10) and the positivity of the Lagrange coefficients λ ∈ [1, N ] −→ R
+ implies

the positivity of
∑N

k=1 λkσk(x). Hence, by the antecedent of (10) and transitivity,
σ0(x) ≥ 0 holds in the consequent of (10).

Observe that equality constraints can be handled in the same way by request-
ing the corresponding Lagrange coefficients to be reals (as opposed to nonnega-
tive reals for inequality constraints). Indeed for equality constraints σk(x) = 0,
we can use (11) for both σk(x) ≥ 0 and −σk(x) ≥ 0 with respective coefficients
λk ≥ 0 and λ′

k ≥ 0 so that the terms λkσk(x)+λ′
k(−σk(x)) can be grouped into

a single term (λk − λ′
k)σk(x) with no sign restriction on λk − λ′

k. Since any real
is equal to the difference of some nonnegative reals, we can equivalently use a
single term λ′′

kσk(x) with λ′′
k ∈ R.

Lagrangian relaxation is in general incomplete (that is (10) �⇒ (11), also
called lossy). However it is complete (also called lossless)) in the linear case
(by the affine Farkas’ lemma) and the linear case with at most two quadratic
constraints (by Yakubovitch’s S-procedure [34, Th. 1]).

6.2 Lagrangian Relaxation of Floyd Termination Verification
Conditions on Rank Functions

Relaxing Floyd’s parametric verification conditions (7), (8), and (9), we get:

∃a ∈ R
p : ∃δ ∈ R : ∃µ ∈ R

+ : ∃λ ∈ [0, N ] −→ R
+ :

∀x0 ∈ R
n : ra(x0) − µ.I(x0) ≥ 0, (12)

∀x0, x ∈ R
n : ra(x0) − ra(x) − δ − λ0.I(x0) −

N∑

k=1

λk.σk(x0, x) ≥ 0, (13)

δ > 0 . (14)
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In [30], the constraints σk(x, x′) ≥ 0 are assumed to be linear in which case
the Lagrange coefficients can be eliminated by hand. Then the problem reduces
to linear programming (with limitations, such as that the loop test contains no
disjunction, the loop body contains no tests and the method cannot identify the
cases when the loop does not terminate). We can use semidefinite programming
to overcome the linearity limitation.

7 Semidefinite Programming

The semidefinite programming optimization problem is to find a solution to the
constraints:

{
∃x ∈ R

m : M(x) < 0

Minimizing c�x

where c ∈ R
m is a given real vector, the linear matrix inequality (LMI) [3]

M(x) < 0 is of the form:

M(x) = M0 +
m∑

k=1

xk.Mk

with symmetric matrices (Mk = Mk
�), and positive semidefiniteness is defined

as:

M(x) < 0 ∆= ∀X ∈ R
N : XM(x)X� ≥ 0 .

The semidefinite programming feasibility problem consists in finding a solution
to the constraints M(x) < 0. A feasibility problem can be converted into the
optimization program min{−y ∈ R | ∧N

i=1 Mi(x) − y < 0}.

8 LMI Constraint Setup for Termination

For programs which invariant and operational semantics (1) can be expressed in
the form:

I(x0) ∧ �B;C�(x0, x) =
N∧

k=1

(x0 x 1)Mk(x0 x 1)� ≥ 0, (15)

the constraints (12), (13), and (14) become LMIs (in the unknown a, µ, δ and
the λk, k = 1, . . . , N by parametric abstraction (Sec. 4) of ra in the form ra(x) =
(x 1)R(x 1)� where R is a real (n + 1) × (n + 1)-symmetric matrix of unknown
parameters).

The conjunction of LMIs M1(x) < 0∧ . . .∧Mk(x) < 0 can be expressed as a
single LMI diag(M1(x), . . . , Mk(x)) < 0 where diag(M1(x), . . . , Mk(x)) denotes
the block-diagonal matrix with M1(x), . . . , Mk(x) on its diagonal.

These LMIs can then be solved by semidefinite programming.
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Example 5. To show this, we prove the linear termination of the linear example
program below, considered as in general semidefinite form (so that the general-
ization to (15) is immediate). The semantics of the loop body can be determined
by a forward symbolic analysis of the loop body assuming the loop invariant (here
the loop condition) and by naming the values of the variables at the beginning
of the loop body6:

while (x >= 1) & (y >= 1) do

x := x - y

od

assume (x0 > 0) & (y0 > 0);

{y0>=1,x0>=1}

assume (x = x0) & (y = y0);

{y0=y,x0=x,y0>=1,x0>=1}

x := x - y

{y0=y,x0=x+y,y0>=1,x0>=1}

Program Semantics of the loop body.

The constraints σk(x0, x) are encoded as (x0 x 1)Mk(x0 x 1)� . For the above
example, we have:

Mk(:,:,1) =

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1/2 0 0 0 -1

Mk(:,:,2) =

0 0 0 0 0

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 0

0 1/2 0 0 -1

Mk(:,:,3) =

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 -1/2

0 0 0 0 -1/2

1/2 0- 1/2 -1/2 0

Mk(:,:,4) =

0 0 0 0 0

0 0 0 0 -1/2

0 0 0 0 0

0 0 0 0 1/2

0 -1/2 0 1/2 0

that is in symbolic form:

x0 − 1 ≥ 0 (x0 y0 x y 1)Mk(:, :, 1)(x0 y0 x y 1)� ≥ 0

y0 − 1 ≥ 0 (x0 y0 x y 1)Mk(:, :, 2)(x0 y0 x y 1)� ≥ 0

x0 − x − y = 0 (x0 y0 x y 1)Mk(:, :, 3)(x0 y0 x y 1)� = 0

−y0 + y = 0 (x0 y0 x y 1)Mk(:, :, 4)(x0 y0 x y 1)� = 0 .

The termination constraints (12), (13), and (14) now become the following
LMIs7:
6 as considered in Sec. 2.4, which is different from Rem. 2 where the values of variables

were remembered before loop entry.
7 Notice that if (x 1)A(x 1)� ≥ 0 for all x, this is the same as (y t)A(y t)� ≥ 0 for all y

and all t �= 0 (multiply the original inequality by t2 and call xt = y). Since the latter
inequality holds true for all x and all t �= 0, by continuity it holds true for all x, t,
that is, the original inequality is equivalent to positive semidefiniteness of A (thanks
Arkadi Nemirovski for this argument).
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M0-l0(1,1)*Mk(:,:,1)-

l0(2,1)*Mk(:,:,2)-l0(3,1)*Mk(:,:,3)-l0(4,1)*Mk(:,:,4)>=0

M0-M_0-delta-

l(1,1)*Mk(:,:,1)-l(2,1)*Mk(:,:,2)-l(3,1)*Mk(:,:,3)-l(4,1)*Mk(:,:,4)>=0

where >= is semidefinite positiveness < in LMI constraints, the l0(i,j) and
l(i,j) are the Lagrange coefficients which are requested to be nonnegative for
inequality constraints:

l0(1,1)>=0 l0(2,1)>=0 l(1,1)>=0 l(2,1)>=0

(where >= is the real comparison for elementwise constraints), the rank function

r(x) = (x 1).R.(x 1)� appears in M0 =

⎡

⎣
R1:n,1:n 0n×n R1:n,n+1

0n×n 0n×n 0n×1

Rn+1,1:n 01×n Rn+1,n+1

⎤

⎦ such that

∀x : r(x0) = (x0 x 1).M0.(x0 x 1)� and in M 0 =
[

0n×n 0n×n+1

0n+1×n R

]
such that

∀x0 : r(x) = (x0 x 1).M 0.(x0 x 1)� and delta =
[
02n×2n 02n×1

01×2n δ

]
so that ∀x0, x :

(x0 x 1).delta.(x0 x 1)� = δ. ��
Remark 3. An affine (linear by abuse of language) rank function ra(x) = a.(x 1)�

where x ∈ R
n and a ∈ R

n can be enforced by choosing R =
[

0n,n (a
2 )�1:n

(a
2 )1:n an:n

]
. ��

9 Solving the Termination LMI Constraints

Following the extension of the interior point method for linear programming
to convex cones [28], numerous solvers have been developed for semidefinite
programming such as bnb8 [24], CSDP [2], DSDP4 [1], lmilab [18], PenBMI9 [23],
Sdplr [5], Sdpt3 [33], SeDuMi [32], with common interfaces under Matlab r©

such as YALMIP [24].

Example 6 (Ex. 5 continued). Choosing δ = 1 and a linear rank function as in
Rem. 3, we can solve the LMI constraints of Ex. 5 using various solvers under
YALMIP:
r(x,y) = +4.x +2.y -3 bnb

r(x,y) = +5.268942e+02.x +4.956309e+02.y -5.270981e+02 CSDP-4.9

r(x,y) = +2.040148e+07.x +2.222757e+07.y +9.096450e+06 DSDP4-4.7

r(x,y) = +2.767658e+11.x +2.265404e+11.y -1.311440e+11 lmilab

r(x,y) = +4.031146e+03.x +3.903684e+03.y +1.401577e+03 lmilab10

r(x,y) = +1.042725e+00.x +4.890035e-01.y +1.975391e-01 Sdplr-1.01

r(x,y) = +9.888097e+01.x +1.343247e+02.y -1.725408e+02 Sdpt3-3.02

r(x,y) = +1.291131e+00.x +4.498515e-01.y -1.316373e+00 SeDuMi-1.05

8 for integer semidefinite programming (bnb is a higher level module of YALMIP for
solving integer programs over convex cones using the other referenced solvers).

9 to solve bilinear matrix inequalities.
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Since different solvers use different resolution strategies, each one may provide a
different solution. Moreover, since there are infinitely many different rank func-
tions (e.g. just multiply by or add a positive constant), the solution may not be
the one a human being would naturally think of. Indeed, in the above example,
any r(x, y) = ax + by + c with a ≥ 1, b ≥ 0 and a + b + c ≥ 0 will do. ��
Remark 4. It is also possible to let δ be an unknown parameter with the con-
straint δ > 0 as in (14). In this case, looking for a linear rank function with bnb,
we get r(x,y) = +2.x -2 and δ = 8.193079e-01. ��
Remark 5. It is possible to check a rank function by fixing R as well as δ and
then by checking for the feasibility of the constraints (12), (13), and (14), which
returns the Lagrange coefficients. For example to check r(x,y) = +1.x, we use R
= [[0,0,1/2]; [0,0,0]; [1/2,0,0]] and δ = 1 while performing the feasibility
check with bnb. ��

10 Examples

The examples illustrate different kind of ranking functions.

10.1 Examples of Linear Termination of a Linear Loop

Example 7. Choosing δ = 1 and a linear rank function for the näıve Euclidean
division:

assume (y >= 1);

q := 0; r := x;

while (y <= r) do

r := r - y;

q := q + 1

od

y − 1 ≥ 0
q − 1 ≥ 0

r ≥ 0

−q0 + q − 1 = 0
−x0 + x = 0
−y0 + y = 0

−r0 + y + r = 0

The linear semantics of the loop body (with polyhedral invariant) is provided
on the right. Solving the corresponding termination constraints with bnb, we
automatically get the ranking function r’(x,y,q,r) = -2.y +2.q +6.r, which
is certainly less intuitive than Floyd’s proposal r′(x, y, q, r) = x− q [17] but has
the advantage not to depend upon the nonlinear loop invariant x = r + qy. ��
Example 8 (Ex. 4 continued). For the example Ex. 4 from [4] considered in Sec.
2.2, where the difference <> was handled as a disjunction and one case was shown
to be impossible, we get:

assume (x=y+2*k) & (x>=y);

while (x <> y) do

k := k - 1;

x := x - 1;

y := y + 1

od

x − y + 1 ≥ 0
−2k0 + x − y + 2 = 0

−y0 + y − 1 = 0
−x0 + x + 1 = 0

x − y − 2k = 0
10 with a feasibility radius of ρ = 1.0e4, constraining the solution x to lie in the ball

x�x < ρ2 where ρ > 0.
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With bnb, the proposed rank function is r(x,y,k) = +4.k, proving that the
necessary termination precondition automatically determined by the auxiliary
termination counter method of Sec. 2.2 is also sufficient. ��

10.2 Example of Quadratic Termination of a Linear Loop

Example 9. Let us consider the program below which oddly simulates for i =
n downto 1 do for j = n downto 1 do skip end end. The termination pre-
condition has been automatically determined by iterated forward/backward poly-
hedral analysis. The loop invariant has been automatically determined by a for-
ward polyhedral analysis, assuming the termination precondition. The analysis
of the loop body involves a partitioning according to the test (j > 0), as later
explained in Sec. 11.1. For each case, the polyhedral approximation of the se-
mantics of the loop body (where initially (n0 = n) & (i0 = i) & (j0 = j))
is given on the right:

assume (n >= 0);

i := n; j := n;

while (i <> 0) do

assume ((j>=0) & (i>=0) &

(n>=i) & (n>=j));

if (j > 0) then

j := j - 1

else

j := n; i := i - 1

fi

od

Case (j0 > 0):

n − i ≥ 0
i − 1 ≥ 0

j ≥ 0
n − j − 1 ≥ 0

−j0 + j + 1 = 0
−i0 + i = 0

−n0 + n = 0

Case (j0 ≤ 0):

i ≥ 0
−i + j − 1 ≥ 0

−n0 + j = 0
j0 = 0

−i0 + i + 1 = 0
−n + j = 0

Choosing δ = 1 and a quadratic rank function, the resolution of the LMI con-
straints given in next Sec. 11.1 by Sdplr-1.01 (with feasibility radius of 1.0e+3)
yield the solution:

r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i -2.809222e-03.n.j...
+1.533829e-02.n +1.569773e-03.i^2 +7.077127e-05.i.j ...
+3.093629e+01.i -7.021870e-04.j^2 +9.940151e-01.j ...
+4.237694e+00 .

Successive values of r(n, i, j) dur-
ing program execution are plotted
above for n = 10 on loop entry.
They strictly decrease along the
inclined plane.

Nested loops are better han-
dled by induction on the nesting
level, as shown in Sec. 11.2. ��

10.3 Example of Linear Termination of a Quadratic Loop

Example 10. The following program computes the least factorial strictly greater
than a given integer N:
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n := 0; f := 1;

while (f <= N) do

n := n + 1; f := n * f

od

−f0 + N0 ≥ 0
n0 ≥ 0

f0 − 1 ≥ 0

−n0 + n − 1 = 0
−f0.n + f = 0
−N0 + N = 0

The non-linear semantics of the loop body (with polyhedral invariant) is provided
on the right. It has only one quadratic constraint, a case when the Lagrangian
relaxation is complete. The ranking function found by SeDuMi-1.05 (with fea-
sibility radius of 1.0e+3) is r(n,f,N) = -9.993455e-01.n +4.346533e-04.f
+2.689218e+02.N +8.744670e+02. ��

11 Extension To More Complex Language Features

11.1 Disjunctions in the Loop Test and Conditionals in the Loop
Body

Disjunctions in the loop test and/or conditionals within the loop body can be
analyzed by partitioning along the values of the boolean expressions [11, Sec.
10.2]. Equivalently, a case analysis of the boolean expressions yields an opera-
tional semantics of the loop body of the form:

�B;C�(x, x′) =
M∨

j=1

Nj∧

k=1

σjk(x, x′) ≥ 0 . (16)

Whichever alternative is chosen, the rank function must strictly decrease while
remaining nonnegative. Hence, we just have to consider the conjunction of all
terminating constraints for each of the possible alternatives. We have already
seen Ex. 9. Here is another one.
Example 11. For the program below:

while (x < y) do

if (i >= 0) then

x := x+i+1

else

y := y+i

fi

od

Case (x0 < y0):

−x0 + y0 − 1 ≥ 0
i0 ≥ 0

−i0 − x0 + x − 1 = 0
−y0 + y = 0
−i0 + i = 0

Case (x0 ≥ y0):

−x0 + y0 − 1 ≥ 0
−i0 − 1 ≥ 0

−i0 − y0 + y = 0
−x0 + x = 0
−i0 + i = 0

the cases are listed on the right11. The termination constraints are given below
(the P(j).Mk(:,:,k) corresponding to the k-th constraint in the j-th case, the
corresponding Lagrange coefficients being l0(j).v(k,j) for the nonnegativity
and l(j).v(k,j) for decrementation by at least δ = 1. The matrices M0 and M 0
encapsulate the matrix R of the ranking function r(x) = (x 1).R.(x 1)� while
(x 1).delta.(x 1) = δ as explained in Sec. 8):
11 Since the alternatives are considered on loop entry, a backward analysis may in

general have to be used if some variable involved in a test of the loop body is
modified in the body before that test.
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M0-l0(1).v(1,1)*P(1).Mk(:,:,1)-l0(1).v(2,1)*P(1).Mk(:,:,2)-...

l0(1).v(3,1)*P(1).Mk(:,:,3)-l0(1).v(4,1)*P(1).Mk(:,:,4)-...

l0(1).v(5,1)*P(1).Mk(:,:,5) >= 0

M0-M_0-delta-l(1).v(1,1)*P(1).Mk(:,:,1)-l(1).v(2,1)*P(1).Mk(:,:,2)-...

l(1).v(3,1)*P(1).Mk(:,:,3)-l(1).v(4,1)*P(1).Mk(:,:,4)-...

l(1).v(5,1)*P(1).Mk(:,:,5) >= 0

l0(1).v(1,1) >= 0

l0(1).v(2,1) >= 0

l(1).v(1,1) >= 0

l(1).v(2,1) >= 0

M0-l0(2).v(1,1)*P(2).Mk(:,:,1)-l0(2).v(2,1)*P(2).Mk(:,:,2)-...

l0(2).v(3,1)*P(2).Mk(:,:,3)-l0(2).v(4,1)*P(2).Mk(:,:,4)-...

l0(2).v(5,1)*P(2).Mk(:,:,5) >= 0

M0-M_0-delta-l(2).v(1,1)*P(2).Mk(:,:,1)-l(2).v(2,1)*P(2).Mk(:,:,2)-...

l(2).v(3,1)*P(2).Mk(:,:,3)-l(2).v(4,1)*P(2).Mk(:,:,4)-...

l(2).v(5,1)*P(2).Mk(:,:,5) >= 0

l0(2).v(1,1) >= 0

l0(2).v(2,1) >= 0

l(2).v(1,1) >= 0

l(2).v(2,1) >= 0

Solving these LMI and elementwise constraints with bnb, we get r(i,x,y) =
-4.x +4.y, that is essentially y− x, which corresponds to the intuition. ��

11.2 Nested Loops

In the case of nested loops, the loops are handled one at a time, starting from
the inner ones.

Example 12 (Manna’s original bubble sort). For the bubble sort example below
(taken literally from [25, p. 191]), the necessary termination precondition N ≥ 0 is
automatically determined by the iterated forward/backward method of Sec. 2.2.
A further automatic forward reachability analysis starting from this termination
precondition yields loop invariants:

assume (N >= 0);

n := N;

i := n;

loop invariant: {N=n,i>=0,n>=i}

while (i <> 0 ) do

j := 0;

loop invariant: {N=n,j>=0,i>=j,i>=1,N>=i}

while (j <> i) do

j := j + 1

od;

i := i - 1

od

The result of this global analysis is used to determine the semantics of the
inner loop body as given by its forward analysis:
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assume ((N=n) & (j>=0) & (i>=j) & (i>=1) & (N>=i));

assume (j <> i);

assume ((N0=N) & (n0=n) & (i0=i) & (j0=j));

j := j + 1

{j=j0+1,i=i0,N=n0,N=N0,N=n,j>=1,N>=i,j<=i}

The termination of the inner loop is then proved by solving the correspond-
ing termination constraints as shown in Sec. 8. The bnb solver yields the rank
function r(N,n,i,j) = +2.n +4.i -4.j -4.

Next, the semantics of the outer loop body is given by its forward polyhedral
analysis:

assume ((N=n) & (i>=0) & (n>=i));

assume (i <> 0 );

assume ((N0=N) & (n0=n) & (i0=i) & (j0=j));

j := 0;

while (j <> i) do

j := j + 1

od;

i := i - 1

{i+1=j,i+1=i0,N=n0,N=N0,N=n,N>=i+1,i>=0}

The termination of the outer loop is then proved by solving the corresponding
termination constraints as shown in Sec. 8. With bnb, we get the rank function
r(N,n,i,j) = +2.n +4.i -3. ��
In case the program graph is irreducible, the program has to be considered as
a whole, with different ranking functions attached to cutpoints (the choice of
which may not be unique).

11.3 Nondeterminism and Concurrency

Nondeterministic semantics are similar to (16) in Sec. 11.1. Nondeterminism can
be used to handle concurrency by nondeterministic interleaving.

Example 13. The following concurrent program (where atomic actions are square
bracketed) does terminate without any fairness hypothesis. If one process is never
activated then the other process will terminate and so the remaining one will
then be activated.

[|

while [x+2 < y] do

[x := x + 1]

od

||

while [x+2 < y] do

[y := y - 1]

od

|]

while (x+2 < y) do

if (??) then

x := x + 1

else if (??) then

y := y - 1

else

x := x + 1;

y := y - 1

fi fi

od
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By nondeterministic interleaving, the program is equivalent to the nondeter-
ministic one on its right. The conditionals in the loop body can be handled as
explained in Sec. 11.1. An even simpler solution is to consider an abstract inter-
pretation of the semantics of the loop body through a polyhedral approximation
(the resulting constraints are given on the right):

assume (x+2 < y);

assume ((x0 = x) & (y0 = y));

if (??) then

x := x + 1

else if (??) then

y := y - 1

else

x := x + 1;

y := y - 1

fi fi

{y+1>=y0,x<=x0+1,x+y0>=y+x0+1,x0+3<=y0}

−y0 + y + 1 ≥ 0
x0 − x + 1 ≥ 0

−x0 + y0 + x − y − 1 ≥ 0
−x0 + y0 − 3 ≥ 0

Establishing the termination constraints as explained in Sec. 8, and solving with
bnb, we get the following termination function r(x,y) = -4.x +4.y -9. ��

11.4 Bounded Weakly Fair Parallelism

One way of handling fair parallelism is to consider nondeterministic interleaving
with a scheduler to ensure bounded weak fairness.

Example 14. The following weakly fair parallel program (where atomic actions
are bracketed):

[[ while [(x > 0) | (y > 0) do

x := x - 1]

od

|| while [(x > 0) | (y > 0) do

y := y - 1]

od ]]

does not terminate when x and y are initially positive and any one of the pro-
cesses is never activated. Because of the bounded fairness hypothesis, the parallel
program is semantically equivalent to the following nondeterministic program:

assume (m >= 1);

t := ?;

assume (0 <= t & t <= 1);

s := ?;

assume ((1 <= s) & (s <= m));

while ((x > 0) | (y > 0)) do

if (t = 1) then

x := x - 1

else

y := y - 1

fi;

if (s = 1) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

else

s := s - 1

fi

od

The nondeterministic program incorporates an explicit scheduler of the two par-
allel processes where the turn t indicates which process is running and s indicates
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the number of atomic steps remaining to run before activating another process.
The nondeterminism is bounded by m which ensures the existence of an integer-
valued rank function. Notice however that, as found in practice, although the
nondeterminism is known to be bounded, it is not known of how much (m can
take any positive integer value, including very large ones). The theoretical no-
tion of weak fairness corresponds to the case when m → ∞ that is unbounded
nondeterminism, which may require ordinal-valued rank functions. In practice
one can use lexicographic orderings on N.

A forward analysis of the program determines the loop invariant {t<=1,s<=m,
s>=1,t>=0}. The disjunction in the loop test is handled by partitioning, see Sec.
11.1. There are two cases for the loop test (x > 0), or (y > 0). In each case,
the loop body is partitioned according to the value of s which, according to the
invariant determined by the forward polyhedral analysis is either (s = 1) or (s
> 1). The case (x > 0 ∧ s > 1) is illustrated below (empty(10) stands for ⊥,
that is unreachability):

assume (t <= 1) & (s <= m) & (s >= 1) & (t >= 0);

assume (x > 0);

assume (s = 1);

assume ((x0 =x) & (y0 = y) & (t0 = t) & (s0 = s) & (m0 = m));

if (t = 1) then x := x - 1 else y := y - 1 fi;

if (s = 1) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

{empty(10)}

else

s := s - 1

fi

{m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t+x>=1,s>=1}

The other three forward analyses are similar and yield the following affine
operational semantics for each of the alternatives:

x > 0 ∧ s > 1 {m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t<=y,s>=1}
x > 0 ∧ s = 1 {m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t<=y,s>=1}
y > 0 ∧ s > 1 {m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t<=y,s>=1}
y > 0 ∧ s = 1 {m=m0,s0=1,t+t0=1,t+y=y0,t+x0=x+1,t<=1,s<=m,s>=1,t>=0,t+y>=1}

The LMI termination constraints can then be established, as explained in Sec.
11.1. Solving with SeDuMi-1.05 (with a feasibility radius of 1.0e+4), we get the
quadratic rank function:

r(x,y,m,s,t) = +8.078228e-06.x^2 +8.889797e-10.x.y +2.061102e-10.x.m

+2.360326e-11.x.s +2.763786e-09.x.t +9.998548e-01.x +9.770849e-07.y^2

+7.219411e-07.y.m -1.091400e-07.y.s -2.098975e-06.y.t +6.158628e+02.y
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+4.044804e-06.m^2 -2.266154e-08.m.s +1.794800e-06.m.t +4.524134e-04.m

+7.994478e-06.s^2 -1.899723e-08.s.t -3.197335e-05.s +2.450149e-06.t^2

+3.556544e-04.t +9.696939e+03 .

��

11.5 Semi-algebraic/Polynomial Programs

The termination constraints (12), (13), and (14) for semi-algebraic/polynomial
programs lead to polynomial inequalities. A necessary condition for ∀x : p(x) ≥ 0
is that the degree m = 2d of p be even. A sufficient condition for nonnegativity
of p(x) is that p(x) ≥ q(x) where q(x) is a sum of squares (SOS) of other
polynomials q(x) =

∑
i r2

i (x) for some ri(x) ∈ R[x] of degree d [27]. However the
condition is not necessary.

The Gram matrix method [29] consists in fixing a priori the form of the base
polynomials ri(x) in the sum of squares and in assuming that q(x) = z(x)�Qz(x)

where z(x) is the vector of N =
„
n + d

d

«
monomials of the monomial basis Bd,n

in any total monomial order (for example z(x) == [1, x1, . . ., xn, x2
1, x1x2,

. . ., xd
n]) and Q is a symmetric positive definite matrix of reals. Since Q <

0, Q has a Cholesky decomposition L which is an upper triangular matrix L
such that Q=L�L. It follows that q(x) = z(x)�Qz(x) = z(x)�L�Lz(x) =
(Lz(x))�Lz(x) = [Li,: · z(x)]�[Li,: · z(x)] =

∑
i(Li,: · z(x))2 (where · is the vector

dot product x · y =
∑

i xiyi), proving that q(x) is a sum of squares.
Finally, z(x)�z(x) contains all monomials in x appearing in p(x) and so

∀x : p(x) − q(x) ≥ 0 can be expressed in the form ∀x : z(x)�Mz(x) ≥ 0 where
M is a square symmetric matrix depending upon the coefficients of p(x) and
the unknowns in Q. By letting X be z(x), the problem can be relaxed into the
feasibility of ∀X : X�MX which can be expressed as a semidefinite problem. If
the problem is feasible, then the solution provides the value of Q whence a proof
that p(x) is positive.

The method is implemented both by sostool [31] and by an entirely inde-
pendent built-in module of YALMIP [24] under Matlab r©.

Example 15 (Logistic map). The deterministic logistic map f(x) = ax(1 − x)
with bifurcation parameter a such that 0 ≤ a < 1 has a sink at 0 and every ini-
tial condition between 0 and 1 is attracted to this sink. So the following program
(where z > 0 is implemented as z ≥ ε with a small ε) terminates.

eps = 1.0e-10;

while (0<=a) & (a<=1-eps)

& (eps<=x) & (x<=1) do

x := a*x*(1-x)

od

�
�
�
�
�
�
�
�
�

���

� �

The Matlab r© program below establishes the termination conditions with La-
grangian relaxation (12), (13), and (14):
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pvar a x0 x1 c0 d0 e0 l1 l2 l3 l4 l5 m1 m2 m3 m4 m5;

eps=1.0e-10;

iv = [a;x0;x1];

uv = [c0;d0;l1;l2;l3;l4;l5;m1;m2; m3;m4;m5];

pb = sosprogram(iv,uv);

pb = sosineq(pb,l1); pb = sosineq(pb,l2);

pb = sosineq(pb,l3); pb = sosineq(pb,l4);

pb = sosineq(pb,c0*x0+d0-l1*a-l2*(1-eps-a)-l3*(x0-eps)-l4*(1-x0)...

-l5*(x1-a*x0*(1-x0)));

pb = sosineq(pb,m1); pb = sosineq(pb,m2);

pb = sosineq(pb,m3); pb = sosineq(pb,m4);

pb = sosineq(pb,c0*x0-c0*x1-eps^2-m1*a-m2*(1-eps-a)-m3*(x0-eps)...

-m4*(1-x0)-m5*(x1-a*x0*(1-x0)));

spb = sossolve(pb);

c = sosgetsol(spb,c0); d = sosgetsol(spb,d0);

disp(sprintf(’r(x) = %i.x + %i’, double(c),double(d)));

These polynomial constraints are relaxed by sostools v2.00 into a semidefinite
program which is then solved by SeDuMi-1.05. The result is:

r(x) = 1.222356e-13.x + 1.406392e+00 . ��

12 Invariance

In the same way, loop invariants can be generated automatically by parametric
abstraction (Sec. 4) and resolution of the Lagrangian relaxation (Sec. 6.1) of
Floyd’s invariance verification conditions (2) and (3). We get:

∃a ∈ R
p : ∃µ ∈ R

+ : ∃λ ∈ [0, N ] −→ R
+ :

∀x ∈ R
n : Ia(x) − µ.P (x) ≥ 0, (17)

∀x0, x ∈ R
n : Ia(x) − λ0.Ia(x0) −

N∑

k=1

λk.σk(x0, x) ≥ 0 . (18)

There is an additional difficulty however since the appearance of the paramet-
ric abstraction of the invariant on the left of the implication in (3) yields, by
Lagrangian relaxation, to the term λ0.Ia(x0) in (18), which is bilinear in λ0

and a. For programs which operational semantics has the form �B;C�(x0, x) =∧N
k=1(x0 x 1)Mk(x0 x 1)� ≥ 0, constraint (18) is a bilinear matrix inequality

(BMI), which can be solved by BMI solvers, which first appeared only recently,
such as PenBMI [23] and bmibnb [24]. Contrary to iterative methods (at least
when the ascending chain condition is satisfied), the invariant need not be the
strongest one.

Example 16. This is illustrated by the following example from [15] where the
invariant is obtained by forward polyhedral analysis:
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i := 2;

j := 0;

while (??) do

{j>=0,i>=2j+2}

if (??) then

i := i + 4

else

i := i + 2;

j := j + 1

fi

od;

clear all; yalmip(’clear’);

[iv,v] = variables(’i’,’j’);

p = parameters(’a’,’b’,’c’, ’m’, ’l’);

F = set(a*2+c>=0);

F = F + set(sos(a*(i+4)+b*j-m*(a*i+b*j+c)));

F = F + set(m>=0);

F = F + set(sos(a*(i+2)+b*(j+1)+c-l*(a*i+b*j+c)));

F = F + set(l>=0);

sol = solvesos(F,[],sdpsettings(’solver’,’penbmi’),p);

disp(sprintf(’%+g*i %+g*j %+g >= 0’,double(a),...

double(b),double(c)));

Solving the given constraints with the SOS-solver in YALMIP yields the solution:

+2.14678e-12*i -3.12793e-10*j +0.486712 >= 0,

which is not the strongest possible one. However, satisfiability is easily checked
by setting a = 1, b = −2 and c = −2. ��
However one can imagine other methods to discover the parameters (e.g. random
interpretation [19]). Then a proof of invariance can be given by semidefinite
programming relaxation.

In program verification, the assertions to be proved yields additional con-
straints which can be useful in the resolution.
Example 17 (Ex. 7 continued). In the Euclidean division of Ex. 7 from [17], we
have to prove the postcondition (x=qy+r)&(r<y). For a parametric invariant
I=a*x+b*q*y+c*r, the constraints are the following:
clear all; yalmip(’clear’);

[iv,v] = variables(’x’,’y’,’q’,’r’);

p = parameters(’a’,’b’,’c’,’m1’,’m2’,’m3’,’m4’,’m5’,’m6’,’l0’,’l1’,...

’l2’,’l3’,’l4’,’l5’,’l6’,’n1’,’n2’);

I0=a*x0+b*q0*y0+c*r0; I=a*x+b*q*y+c*r;

F = set(sos(I0-m1*(y0-1)-m2*q0-m3*(r0-x0)));

F = F + set(m1>=0);

F = F + set(sos(I-l0*I0-l1*(y0-1)-l2*(r0-y0)-l3*(r-r0+y0)-l4*(q-q0-1)...

-l5*(x-x0)-l6*(y-y0)));

F = F + set(l0>=0) + set(l1>=0) + set(l2>=0);

P=x-q*y-r;

F = F + set(sos(P-n1*I-n2*(r-y+1)));

F = F + set(n2>=0);

[sol,m,B] = solvesos(F,m1,sdpsettings(’solver’,’penbmi’),p)

disp(sprintf(’%+g*x %+g*q*y %+g*r >= 0’,double(a),double(b),double(c)));

Solving with YALMIP, we get:
+2.11831e-05*x -2.11831e-05*q*y -2.11831e-05*r >= 0 .

Then, in the other direction (where I0, I, P are respectively replaced by -I0,
-I, -P), the SOS-solver in YALMIP yields the loop invariant:

+0.000167275*x -0.000167275*q*y -0.000167275*r >= 0 .
By normalization of the coefficients and antisymmetry, the total correctness
proof is finished. ��
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13 Potential Problems With Solvers

13.1 Constraint Resolution Failure

The resolution of the termination constraints will definitely fail when the pro-
gram does not terminate. The same way, the invariance constraints may be infea-
sible. However, infeasibility of the constraints does not mean “non termination”
or “non invariance” but simply failure. First the parametric abstraction of Sec.
4 may be too coarse (so that e.g. a quadratic or even polynomial invariant/rank
function may have to be considered instead of a linear one). Second, the solver
may have failed (e.g. due to numerical difficulties when handling equalities) but
may succeed with some help (e.g. by adding a shift [24]).

13.2 Numerical Computations

LMI/BMI solvers perform numerical computations with rounding errors, shifts,
etc. It follows that the parameters of the parametric abstraction are subject
to numerical errors and so the logical rigor of the proof may be questionable.
Obviously the use of integer solvers or the concordant conclusions of several
different solvers will be conclusive, at least from an experimental point of view,
anyway more rigorous than mere tests.

Obviously, the hard point is to discover a candidate for the rank function or
invariant and it is much less difficult, when it is known, to re-check for satisfaction
(e.g. by static analysis or a proof assistant).

14 Conclusion

The resolution of systems of fixpoint (in)equations involving linear, semidefi-
nite, and even polynomial numerical constraints by parametric abstraction and
Lagrangian relaxation appears promising thanks to the spectacular progress in
semidefinite programming and LMI/BMI solvers this last decade.

The approach seems naturally useful for termination since one is essentially
interested in the existence of a rank function, even if it looks “unnatural”. This
is true of all inevitability/liveness properties for which generalization presents
no fundamental problem.

The situation looks different for invariance since unnatural solutions may look
less acceptable in the context of static analysis. However, the situation is different
for correctness proofs, where the nature of the invariants has no importance
provided the proof can be done. A difficulty is nevertheless to establish the form
of the parametric abstraction, since the most general form would be costly at
higher degrees.

To conclude, beyond numerical programs, parametric abstraction remains to
be explored in other non-numerical contexts, such as symbolic computations.



Proving Program Invariance and Termination 23

Acknowledgements
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d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
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12. P. Cousot and R. Cousot. ‘À la Floyd’ induction principles for proving inevitability
properties of programs. In Algebraic Methods in Semantics, ch. 8, pp. 277–312.
Cambridge U. Press, 1985.

13. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams12. J. Logic Programming, 13(2–3):103–179, 1992.

14. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp.,
2(4):511–547, 1992.

15. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. 5th POPL, pp. 84–97, 1978. ACM Press.

12 The editor of J. Logic Programming has mistakenly published the unreadable galley
proof. For a correct version of this paper, see http://www.di.ens.fr/∼cousot.



24 Patrick Cousot

16. É. Féron. Abstraction mechanisms across the board: A short introduction. Work-
shop on Robustness, Abstractions and Computations. Philadelphia, 18 Mar. 2004.

17. R. Floyd. Assigning meaning to programs. Proc. Symposium in Applied Mathe-
matics, vol. 19, pp. 19–32. AMS, 1967.

18. P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali. LMI Control Toolbox for use
with Matlab r©, user’s guide. 1995.

19. S. Gulwani and G. Necula. Discovering affine equalities using random interpreta-
tion. 30th POPL, pp. 74–84, 2003. ACM Press.

20. C. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576–580, 1969.

21. B. Jeannet. New Polka. http://www.irisa.fr/prive/bjeannet/newpolka.html.
22. M. Karr. Affine relationships among variables of a program. Acta Informat.,

6:133–151, 1976.
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