
The Reduced Product of Abstract Domains and the
Combination of Decision Procedures

Patrick Cousot 2,3, Radhia Cousot 3,1, and Laurent Mauborgne 3,4

1 Centre National de la Recherche Scientifique, Paris
2 Courant Institute of Mathematical Sciences, New York University

3 École Normale Supérieure & Inria, Paris
4 Instituto Madrileño de Estudios Avanzados, Madrid

Abstract. The algebraic/model theoretic design of static analyzers uses abstract
domains based on representations of properties and pre-calculated property trans-
formers. It is very efficient. The logical/proof theoretic approach uses SMT solvers
and computation on-the-fly of property transformers. It is very expressive. We
propose a combination of the two approaches to reach the sweet spot best adapted
to a specific application domain in the precision/cost spectrum. The proposed
combination uses an iterated reduction to combine abstractions. The key obser-
vation is that the Nelson-Oppen procedure which decides satisfiability in a com-
bination of logical theories by exchanging equalities and disequalities computes
a reduced product (after the state is enhanced with some new “observations” cor-
responding to alien terms). By abandoning restrictions ensuring completeness
(such as disjointness, convexity, stably-infiniteness or shininess, etc) we can even
broaden the application scope of logical abstractions for static analysis (which is
incomplete anyway). We also introduce a semantics based on multiple interpre-
tations to deal with the soundness of that combinations on a formal basis.

1 Introduction

Recent progress in SMT solvers and theorem provers as used in program verification
[2] has been recently exploited for static analysis by abstract interpretation [3,4] using
logical abstract domains [21,10]. This approach hardly scales up and is based on a math-
ematical program semantics quite different from the implementation (such as integers
instead of modular arithmetics). Static analyzers such as Astrée [1] which are based on
algebraic abstractions of the machine semantics do not have such efficiency and sound-
ness limitations. However their expressivity is limited by that of their abstract domains.
It is therefore interesting to combine algebraic and logical abstract interpretations to get
the best of both worlds i.e. scalability, expressivity, natural interface with the end-user
using logical formulæ, and soundness with respect to the machine semantics. The pro-
posed combination is based on the understanding of the Nelson-Oppen procedure [15]
as an iterated observation reduced product.

After some syntax, we recall multi-interpreted semantics [5], a necessary mean to
describe the soundness and relative precision of the logical abstract domains defined
in sect. 2.8. Next section, we introduce observational semantics, which is a new con-
struction generalizing static analysis practices and necessary to describe the first step

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 456—472, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abstract Domains and Decision Procedures 457

of the Nelson-Oppen procedure in the abstract interpretation framework. Sect. 4 recalls
the notion of reduced product and introduces the iterated reduced product, with new
incompleteness results on that approach. Then sect. 5 is focused on the Nelson-Oppen
procedure and the links with abstract interpretation. Finally, sect. 6 develops new meth-
ods to combine classical abstract interpretation and theorem provers.

2 Syntax and semantics of programs

In this section, we recall the notions introduced in [5] necessary to deal with classical
abstract domains and logical abstract domains in a common semantic framework.

2.1 Syntax

We define a signature as a tuple Σ = 〈x, f , p〉 such that the sets x ∈ x of variables,
f ∈ f =

⋃
n>0 fn of function symbols (c ∈ f0 are constants), and p ∈ p ,

⋃
n>0 pn of

predicate symbols are mutually disjoints. The terms t ∈ T(Σ) ::= x | c | f(t1, . . . , tn).
Conjunctive clauses ϕ, ψ, . . . ∈ C(Σ) ::= a | ϕ∧ ϕ are quantifier-free formulæ in simple
conjunctive normal form. First-order logic formulæ Ψ,Φ, . . . ∈ F(Σ) ::= a | ¬Ψ |
Ψ ∧ Ψ | ∃ x : Ψ may be quantified. Finally programs of the programming language
on a given signature Σ are built out of basic expressions e ∈ E(Σ) , T(Σ) ∪A(Σ) and
imperative commands C ∈ L(Σ) including assignments and tests C ::= x := e | ϕ. Tests
appear in conditionals and loops whose syntax, as well as that of programs, is irrelevant.

2.2 Interpretations

An interpretation I for a signature Σ is a pair 〈IV, Iγ〉 such that IV is a non-empty set
of values and Iγ interprets constants, functions (into IV) and predicates (into Boolean
values B , {false, true}). Let I(Σ) be the class of all such interpretations. In a given
interpretation I ∈ I(Σ), an environment η ∈ RΣI , x→ IV is a function from variables
to values. An interpretation I and an environment η ∈ RΣI satisfy a formula Ψ , written
I |=η Ψ , in the following way:

I |=η a , JaKIη I |=η Ψ ∧ Ψ
′ , (I |=η Ψ) ∧ (I |=η Ψ

′)
I |=η ¬Ψ , ¬(I |=η Ψ) I |=η ∃ x : Ψ , ∃ v ∈ IV : I |=η[x←v] Ψ

1

where the value JaKIη ∈ B of an atomic formula a ∈ A(Σ) in environment η ∈ RΣI is

JffKIη , false Jp(t1, . . . , tn)KIη , Iγ(p)(Jt1KIη, . . . , JtnKIη), n > 1
J¬aKIη , ¬JaKIη, where ¬true = false, ¬false = true

and the value JtKIη ∈ IV of the term t ∈ T(Σ) in environment η ∈ RΣI is

JxKIη , η(x) JcKIη , Iγ(c) Jf(t1, . . . , tn)KIη , Iγ(f)(Jt1KIη, . . . , JtnKIη) .

In addition, in first-order logics with equality the interpretation of equality is always
I |=η t1 = t2 , Jt1KIη =I Jt2KIη where =I is the unique reflexive, symmetric, and
transitive relation on IV encoded by its characteristic function.

1 η[x← v] is the assignment of v to x in η where and η[x← v](y) , η(y) when x , y.

458 P. Cousot, R. Cousot, and L. Mauborgne

2.3 Multi-interpreted Program Semantics

A multi-interpreted semantics [5] assigns meanings to a program P in the context of
a set of interpretations I ⊆ I(Σ) for the program signature Σ. For example, integers
can have a mathematical interpretation or a modular interpretation on machines. Then
a program property in PΣ

I
provides for each interpretation in I , a set of environments

for variables x satisfying that property in that interpretation.

R
Σ
I
,

{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣI
}

multi-interpreted environments

P
Σ
I
, ℘(RΣ

I
) multi-interpreted properties.

The multi-interpreted concrete semantics CΣ
I
JPK ∈ PΣ

I
of a program P in the context

of multi-interpretations I is assumed to be defined in least fixpoint form CΣ
I
JPK ,

lfp⊆ FΣ
I
JPK where the concrete transformer FΣ

I
JPK ∈ PΣ

I

1
→ PΣ

I
is assumed to be in-

creasing2. Since 〈PΣ
I
, ⊆, ∅, RΣ

I
, ∪, ∩〉 is a complete lattice, lfp⊆ FΣ

I
JPK does exist by

Tarski’s fixpoint theorem. The transformer FΣ
I
JPK is defined by structural induction on

the program P in terms of the complete lattice operations and the following local trans-
formers for the

assignment postcondition fI Jx := eKP ,
{
〈I, η[x← JeKIη]〉

∣∣∣ I ∈ I ∧ 〈I, η〉 ∈ P
}

assignment precondition bI Jx := eKP ,
{
〈I, η〉

∣∣∣ I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ P
}

and tests pI JϕKP ,
{
〈I, η〉 ∈ P

∣∣∣ I ∈ I ∧ JϕKIη = true
}
.

To recover the usual concrete semantics, let = ∈ I(Σ) be the program standard in-
terpretation e.g. as defined explicitly by a standard or implicitly by a compiler, linker,
loader, operating system and network of machines. Then the standard concrete seman-
tics is I = {=}. The reason why we consider multi-interpretations is that it is the natural
setting for the logical abstract domains which are valid up to a theory (Sect. 2.7), which
can have many different interpretations.

2.4 Algebraic Abstract Domains

We let 〈AΣ
I
, v, >, t, . . . , f, p, . . .〉 be an abstract domain abstracting multi-interpreted

properties in PΣ
I

for signature Σ and multi-interpretations I with partial ordering v.
Pre-orders are assumed to be quotiented by the preorder equivalence so AΣ

I
is a poset

but may be not a complete lattice nor a cpo. The meaning of the abstract properties is
defined by an increasing concretization function γΣ

I
∈ AΣ

I

1
→PΣ

I
. In case of existence of

a best abstraction, we use a Galois connection 〈PΣ
I
, ⊆〉 −−−−→←−−−−

αΣ
I

γΣ
I

〈AΣ
I
, v〉 [4].

The soundness of abstract domains 〈AΣ
I
, v〉, is defined, for all P,Q ∈ AΣ

I
, as

(P v Q)⇒ (γΣ
I

(P) ⊆ γΣ
I

(Q)) implication γΣ
I

(>) =
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣI
}

supremum

γΣ
I

(P t Q) ⊇ (γΣ
I

(P) ∪ γΣ
I

(Q)) join ...

2 f is increasing (or monotone) if x � y implies f (x) v f (y), written f ∈ 〈P, �〉 1
→〈Q, v〉.

Abstract Domains and Decision Procedures 459

The concrete least fixpoint semantics CΣ
I
JPK of a program P in Sect. 2.3 may have no

correspondent in the abstract e.g. because the abstract domain 〈AΣ
I
, v〉 is not a cpo so

that the abstract transformer has no least fixpoint, even maybe no fixpoint. In that case,
we can define the abstract semantics C

Σ

IJPK ∈ ℘(AΣ
I

) as the set of abstract inductive

invariants for an abstract transformer F
Σ

IJPK ∈ AΣ
I
→AΣ

I
of P.

C
Σ

IJPK ,
{

P ∈ AΣ
I

∣∣∣∣∣ F
Σ

IJPK(P) v P
}

postfixpoint semantics.

In practice, only one abstract postfixpoint needs to be computed (while the abstract
semantics defines all possible ones). Such an abstract postfixpoint can be computed e.g.
by elimination or iteratively from the infimum using widenings and narrowings [3].

In the concrete semantics the least fixpoint is, by Tarski’s theorem, an equivalent
representation of the set of concrete postfixpoints.

2.5 Soundness and Completeness of Abstract Semantics

The abstract semantics CJPK ∈ A is sound with respect to a concrete semantics CJPK of
a program P for concretization γ whenever ∀P ∈ A : (∃C ∈ CJPK : C v P)⇒ (CJPK ⊆
γ(P)). It is complete whenever ∀P ∈ A : (CJPK ⊆ γ(P))⇒ (∃C ∈ CJPK : C v P). When
the concrete semantics is defined in fixpoint form CJPK , lfp⊆ FJPK and the abstract
semantics in postfixpoints, the soundness of the abstract semantics follows from the
soundness conditions of the abstraction in Sect. 2.4 and the soundness of the abstract
transformer ∀P ∈ A : FJPK ◦ γ(P) ⊆ γ ◦ FJPK(P) [3,4]. If the concrete semantics is also
defined in postfixpoint form, then the soundness condition becomes

∀P ∈ A : (∃C ∈ CJPK : C v P)⇒ (∃C ∈ CJPK : C ⊆ γ(P)) .

Moreover, the composition of sound abstractions is necessarily sound.
The soundness of FJPK can usually be proved by induction on the syntactical struc-

ture of the program P using local soundness conditions.

γ(f̄Jx := tKP) ⊇ fI Jx := tKγ(P) assignment postcondition

γ(b̄Jx := tKP) ⊇ bI Jx := tKγ(P) assignment precondition

γ(p̄JϕKP) ⊇ pI JϕKγ(P) test.

2.6 Abstractions between Multi-interpretations

The natural ordering to express abstraction (or precision) on multi-interpreted seman-
tics is the subset ordering, which gives a complete lattice structure to the set of multi-
interpreted properties: a property P2 is more abstract than P1 when P1 ⊂ P2, meaning
that P2 allows more behaviors for some interpretations, and maybe that it allows new
interpretations. Following that ordering 〈PΣ

I
, ⊆〉, we can express systematic abstractions

of the multi-interpreted semantics.
If we can only compute properties on the standard interpretation = then we can

approximate a multi-interpreted program saying that we know the possible behaviors
when the interpretation is = and we know nothing (so all properties are possible) for

460 P. Cousot, R. Cousot, and L. Mauborgne

the other interpretations of the program. On the other hand, if we analyze a program that
can only have one possible interpretation with a multi-interpreted property, then we are
doing an abstraction in the sense that we add more behaviors and forget the actual
property that should be associated with the program by the standard semantics. So, in
general, we have two sets of interpretations, one is I , the context of interpretations for
the program and the other one is I], the set of interpretations used in the analysis. The
correspondance between the two is a Galois connection.

Lemma 1. 〈PΣ
I
,⊆〉 −−−−−→←−−−−−

αΣ
I→I]

γΣ
I]→I

〈PΣ
I
] ,⊆〉with γΣ

I
]→I

(P]) ,
{
〈I, η〉 ∈ RΣ

I

∣∣∣∣ I ∈ I] ⇒ 〈I, η〉 ∈ P]
}

and αΣ
I→I]

(P) , P ∩ RΣ
I
] . ut

Note that if the intersection of I] and I is empty then the abstraction is trivially ∅ for
all properties, and if I ⊆ I] then the abstraction is the identity.

Observe that f
I
]Jx := eK and fI Jx := eK have exactly the same definition. However,

the corresponding fixpoint semantics do differ when I] , I and I * I] since 〈PΣ
I
] ,

⊆〉 , 〈PΣ
I
, ⊆〉. We have soundness.

Lemma 2. fI Jx := eK ◦ γΣ
I
]→I

(P]) = γΣ
I
]→I

◦ f
I
]Jx := eK(P]), and similarly for the

other transformers. ut

2.7 Theories and Models

The set xΨ of free variables of a formula Ψ ∈ F(Σ) is defined inductively as the set
of variables in the formula which are not in the scope of an existential quantifier. A
sentence of F(Σ) is a formula with no free variable, S(Σ) ,

{
Ψ ∈ F(Σ)

∣∣∣ xΨ = ∅
}
. A

theory T ∈ ℘(S(Σ)) is a set of sentences (called the theorems of the theory). The set of
predicate and function symbols that appear in at least one sentence of a theory T should
be contained in the signature S(T) ⊆̇ Σ of theory T .

The idea of theories is to restrict the possible meanings of functions and predicates
in order to reason under these hypotheses. The meanings which are allowed are the
meanings which make the sentences of the theory true.

An interpretation I ∈ I(Σ) is said to be a model of Ψ ∈ F(Σ) when ∃ η : I |=η Ψ
(i.e. I makes Ψ true). An interpretation is a model of a theory T if and only if it is a
model of all the theorems of the theory (i.e. makes true all theorems of the theory). The
class of all models of a theory T is

M(T) , {I ∈ I(S(T)) | ∀Ψ ∈ T : ∃ η : I |=η Ψ } = {I ∈ I(S(T)) | ∀Ψ ∈ T : ∀ η : I |=η Ψ }

since if Ψ is a sentence and if there is an I and an η such that I |=η Ψ , then for all η′,
I |=η′ Ψ .

Quite often, the set of sentences of a theory is not defined by extension, but using
a (generally finite or enumerable) set of axioms which generates the set of theorems of
the theory by implication. A theory is said to be deductive if and only if it is closed by
deduction, that is all the theorems that are true on all models of the theory are in the
theory.

This notion of models gives a natural way of approximating sets of interpretations
by a theory: a set of interpretations I can be approximated by any theory T such that

Abstract Domains and Decision Procedures 461

I ⊆ M(T). Notice, though, that because the lattice of sentences of a theory is not
complete, there is no best abstraction in general3.

2.8 Logical Abstract Domains

Given a theory T over Σ, a logical abstract domain is an abstract domain 〈AΣ
T
, v, >, t,

. . . , f, p, . . .〉 such that AΣ
T
⊆ F(Σ), v , ⇒, > , tt, t , ∨, etc, and the concretization

is γΣ
T

(Ψ) ,
{
〈I, η〉

∣∣∣∣ I ∈ M(T) and I |=η Ψ
}
. Note that a logical abstract domain is a

special case of algebraic abstract domain over a multi-interpretation.
Remark that there might be no finite formula in the language F(Σ) of the theory T

to encode a best abstraction in which case there is no Galois connection. In any case
soundness can be formalized by a concretization function as in Sect. 2.4. Moreover, in
presence of infinite ascending chains of finite first-order formulæ (e.g. (x = 0) ⇒ (x =

0 ∨ x = 1) ⇒ . . . ⇒
∨n

i=1 x = i ⇒ . . .) and descending chains of finite formulæ (e.g.
(x , −1) ⇐ (x , −1 ∧ x , −2) ⇐ . . . ⇐

∧n
i=1 x , −i ⇐ . . .) with no finite first-order

formula to express their limits, the fixpoint may not exist. Hence the fixpoint semantics
in the style of Sect. 2.3 is not well-defined in the abstract. However, following Sect. 2.4,
we can define the abstract semantics as the set of abstract inductive invariants for an
increasing abstract transformer of program P.

3 Observational Semantics

Besides values of program variables, the concrete semantics may also observe values of
auxiliary variables or values of functions over program variables. Whereas such cases
can be described in the general setting above (e.g. by inclusion of the auxiliary variables
as program variables), it is more convenient to explicitly define the observables of the
program semantics.

3.1 Observable Properties of Multi-interpreted Programs

The signature Σ = 〈x, f , p〉 of multiple interpretations I ∈ ℘(I(Σ)) is decomposed
into a program signature ΣP = 〈xP, f , p〉 over program variables x ∈ xP ⊆ x and an
observable signature ΣO = 〈xO, f , p〉 over observable identifiers x ∈ xO ⊆ x. So we
now have

program variables observable variables

η ∈ RΣPI , xP→ IV ζ ∈ RΣOI , xO→ IV program environments

R
ΣP
I
,

{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣPI

}
R
ΣO
I
,

{
〈I, ζ〉

∣∣∣∣∣ I ∈ I ∧ ζ ∈ RΣOI

} multi-interpreted
environments

P
ΣP
I
, ℘(RΣP

I
) P

ΣO
I
, ℘(RΣO

I
)

multi-interpreted
properties

3 If = interprets programs over the natural numbers there is no enumerable first-order theory
characterizing this interpretation (by Gödel first incompleteness theorem), so the poset has no
best abstraction of {=}

462 P. Cousot, R. Cousot, and L. Mauborgne

We name observables by identifiers (which, in particular, can be variable identifiers).
Observables are functions from values of program variables to values v ∈ IV (for inter-
pretation I ∈ I(Σ)).

ωI ∈ O
ΣP
I , R

ΣP
I → IV observables (for I ∈ I)

ΩI ∈ xO→O
ΣP
I observable naming.

Whereas a concrete program semantics is relative to PΣP
I

, the observational semantics
is relative to PΣO

I
and both can be specified in fixpoint or in postfixpoint form.

Example 1 (Memory model). In the memory model of [14], a 32 bits unsigned/positive
integer variable x can be encoded by its constituent bytes 〈x3, x2, x1, x0〉 so that, for
little endianness, η(x) = ΩI(x3)η × 224 + ΩI(x2)η × 216 + ΩI(x1)η × 28 + ΩI(x0)η. ut

Given a program property P ∈ PΣP
I

, the corresponding observable property is

αΩ
I

(P) ,
{
〈I, λ x .ΩI(x)η〉 ∈ RΣO

I

∣∣∣∣∣ 〈I, η〉 ∈ P
}
.

The value of the observable named x is therefore ΩI(x)η where the values of program
variables are given by η. Conversely, given an observable property Q ∈ PΣO

I
, the corre-

sponding program property is
γΩ
I

(Q) ,
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x .ΩI(x)η〉 ∈ Q
}
.

We have a Galois connection between the program and observable properties.

Theorem 1. 〈PΣP
I
, ⊆〉 −−−−→←−−−−

αΩ
I

γΩ
I

〈P
ΣO
I
, ⊆〉 . ut

3.2 Soundness of the Abstraction of Observable Properties

The observational abstraction will be of observable properties in PΣO
I

so with con-
cretization γΣO

I
∈ AΣO

I
→ P

ΣO
I

where AΣO
I

is the abstract domain. The classical direct
abstraction of program properties in PΣP

I
will be the particular case where xO = xP and

λ x .ΩI(x) is the identity. The program properties corresponding to observable ΩI are
given by γΩ,P

I
∈ AΣO

I
7→ P

ΣP
I

such that

γΩ,P
I
, γΩ

I
◦ γΣO
I

= λ P .
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x .ΩI(x)η〉 ∈ γΣO
I

(P)
}
.

Under the observational semantics, soundness conditions remain unchanged, but they
must be proved with respect to γΩ,P

I
, not γΣO

I
. So the soundness conditions on transform-

ers become slightly different. For example the soundness condition on the assignment
abstract postcondition f̄Jx := eK becomes:

Lemma 3. γΩ,P
I

(f̄ Jx := eKP) ⊇ fI Jx := eK(γΩ,P
I

(P)) and similarly for the other trans-
formers.

3.3 Observational Extension

It can sometimes be useful to extend an abstract property P for observables Ω with a
new observable ω named x. For example, this was useful for intervals in [6]. We will
write extend(x,ω)

(
P
)

for the extension of P with observable ω for observable identifier
x.

Abstract Domains and Decision Procedures 463

Example 2. Let AxO be the abstract domain mapping observable identifiers x ∈ xO to an
interval of values [3]. Assume that intervals of program variables are observable, that is
xP ⊆ xO and let x ∈ xP be a program variables for which we want to observe the square
x2 so ωI , Jx2KI . Let x2 < xO be a fresh name for this observable. This extension of
observable properties with a new observable extend(x2,Jx2K) ∈ AxO → AxO∪{x2} can be
defined as

extend(x2,Jx2K)

(
P
)
, λ x ∈ xO ∪ {x2} . (x , x2 ? P(x) : P(x) ⊗ P(x))

(where ⊗ is the product of intervals) is sound. ut

The extension operation is assumed to be defined so that its semantics satisfies the
following soundness condition

γ
λ I . λ y . y = x ?ωI : ΩI(y), P
I

(
extend(x,ω)

(
P
))
⊇ γΩ,P

I

(
P
)
.

The introduction of auxiliary variables to name alien terms in logical abstract domains
is an observational extension of the domains.

Lemma 4. For the logical abstract domain A , F(Σ) with γΣO
I

(Ψ) ,
{
〈I, η〉

∣∣∣∣ I ∈I ∧ I |=ηΨ
}
,

extend(x,JeK) (Ψ [x← e]) , ∃ x : (x = e ∧ Ψ) is sound. ut

This extension operation can also be used for vectors of fresh variables and vectors of
observables in the natural way.

4 Iterated Reduction and Reduced Product

A reduction makes a property more precise in the abstract without changing its con-
crete meaning. By iterating this reduction, one can improve the precision of a static
analysis without altering its soundness. A case of iterated reduction was proposed by
[8] following [4].

Definition 1 (Reduction). Let 〈A, v〉 be a poset which is an abstract domain with
concretization γ ∈ A 1

→C where 〈C, ⊆〉 is the concrete domain. A reduction is ρ ∈ A→A
which is reductive that is ∀P ∈ A : ρ(P) v P and sound in that ∀P ∈ A : γ(ρ(P)) = γ(P).
The iterates of the reduction are ρ0 , λ P . P, ρλ+1 = ρ(ρλ) for successor ordinals and
ρλ =

d
β<λ ρ

β for limit ordinals. The iterates are well-defined when the greatest lower
bounds

d
(glb) do exist in the poset 〈A, v〉. ut

Theorem 2 (Iterated reduction). Given a sound reduction ρ, for all ordinals λ, ρλ is a
sound reduction. If the iterates of ρ from P are well-defined then their limit ρ∗(P) exists.
We have ∀β < λ : ρ∗(P) v ρλ(P) v ρβ(P) v P. If γ is the upper adjoint of a Galois
connection then ρ∗ is a sound reduction. If ρ is increasing then ρ∗ = λ P . gfpv

P
ρ is the

greatest fixpoint (gfp) of ρ less than or equal to P. ut

The reduced product is defined as follows [4].

464 P. Cousot, R. Cousot, and L. Mauborgne

Definition 2 (Reduced product). Let 〈Ai, vi〉, i ∈ ∆, ∆ finite, be abstract domains
with increasing concretization γi ∈ Ai→P

ΣO
I

. Their Cartesian product is 〈A, v〉 where
A ,
�

i∈∆ Ai, (P v Q) ,
∧

i∈∆(Pi vi Qi) and γ ∈
�

i∈∆ Ai→P
ΣO
I

is γ(P) ,
⋂

i∈∆ γi(Pi).
In particular the product 〈Ai×A j,vi j〉 is such that 〈x, y〉 vi j 〈x′, y′〉 , (x vi x′)∧(y v j y′)
and γi j(〈x, y〉) , γi(x) ∩ γ j(y).

Their reduced product is 〈
(�

i∈∆ Ai
)
/≡, v〉 where (P ≡ Q) , (γ(P) = γ(Q)) and γ

as well as v are naturally extended to the equivalence classes [P]/≡, P ∈ A, of ≡. ut

The simple cartesian product can be a representation for the reduced product, but if
we just apply abstract transformers componentwise, then we obtain the same result as
running analyses with each abstract domain independently. We can obtain much more
precise results if we try to compute precise abstract values for each abstract domain,
while staying in the same class of the reduced product. Computing such values is natu-
rally a reduction.

Implementations of the most precise reduction (if it exists) can hardly be modular
since in general adding a new abstract domain to increase precision implies that the
reduced product must be completely redesigned. On the contrary, the pairwise iterated
product reduction below, is more modular, in that the introduction of a new abstract
domain only requires defining the reduction with the other existing abstract domains.

Definition 3 (Iterated pairwise reduction). For i, j ∈ ∆, i , j, let ρi j ∈ 〈Ai × A j,
vi j〉 7→ 〈Ai×A j, vi j〉 be pairwise reductions (so that ∀〈x, y〉 ∈ Ai×A j : ρi j(〈x, y〉) vi j 〈x,
y〉, preferably lower closure operators i.e. reductive, increasing and idempotent). Define
the pairwise reductions ρi j ∈ 〈A, v〉 7→ 〈A, v〉 of the Cartesian product as

ρi j(P) , let 〈P′i , P′j〉 , ρi j(〈Pi, P j〉) in P[i← P′i][j← P′j]

where P[i← x]i = x and P[i← x] j = P j when i , j. Define the iterated pairwise
reductions ρ n

, ρ
∗
∈ 〈A, v〉 7→ 〈A, v〉, n > 0 of the Cartesian product as in Def. 1 for

ρ , ©
i, j ∈ ∆,
i, j

ρi j (1)

where
n
©
i=1

fi , fπ1
◦ . . . ◦ fπn is the function composition for some arbitrary permutation

π of [1, n]. ut

The pairwise reductions ρi j and the iterated ones ρ n, n > 0 as well as their closure ρ ?,
if any, are sound over-approximations of the reduced product in that

Theorem 3. Under the hypotheses of Def. 1 and assuming the limit of the iterated
reductions is well defined, the reductions are such that ∀P ∈ A : ∀λ : ρ ?(P) v
ρ
λ(P) v ρi j(P) v P, i, j ∈ ∆, i , j and sound since ρ λ(P), ρi j(P), P ∈ [P]/≡ and if γ

preserves lower bounds then ρ ?(P) ∈ [P]/≡. ut

The following theorem proves that the iterated reduction may not be as precise as the
reduced product, a fact underestimated in the literature. It is nevertheless easier to im-
plement.

Theorem 4. In general ρ ?(P) may not be a minimal element of the reduced product
class [P]/≡ (in which case ∃Q ∈ [P]/≡ : Q @ ρ ?(P)). ut

Abstract Domains and Decision Procedures 465

Sufficient conditions exist for the iterated pairwise reduction to be a total reduction to
the reduced product.

Theorem 5. If the 〈Ai, vi, ti〉, i ∈ ∆ are complete lattices, the ρi j, i, j ∈ ∆, i , j, are

lower closure operators, and ∀P,Q :
(
γ (P) ⊆ γ (Q)

)
⇒

(
∃ n > 0 :

(ḋ
i, j ∈ ∆,
i, j

ρi j

)n
(P) v Q

)
then ∀P : ρ ?(P) is the minimum of the class P/≡. ut

4.1 Observational Reduced Product

The observational reduced product of abstract domains 〈Ai, vi〉, i ∈ ∆ consists in in-
troducing observables to increase the precision of the Cartesian product. We will write
Ω�

i∈∆ Ai for the observational Cartesian product with observables named by Ω. It can
be seen as the application of the extension operator of Sect. 3 followed by a Carte-
sian product

�
i∈∆ Ai. This operation is not very fruitful, as the shared observables will

not bring much information. But used in conjunction with an iterated reduction, it can
give very precise results since information about the observables can bring additional
reductions.

Definition 4 (Observational reduced product). For all i ∈ ∆, let 〈iAΣO
I
, iv〉, 〈iAΣO′

I
,

iv′〉 be abstract domains, Ω′ be the new observables, and iextendΩ′ ∈ iAΣO
I
→ iAΣO′

I
be

sound extensions in the sense that iγΩ
′,P
I

(
iextendΩ′

(
P
))
⊇ iγΩ,P

I

(
P
)

.

The observational cartesian product is Ω′�
i∈∆

iAΣO
I
,
�

i∈∆
iextendΩ′

(
iAΣO
I

)
and

the observational reduced product is 〈
(
Ω�

i∈∆ Ai

)
/≡, v〉. ut

5 The Nelson-Oppen Combination Procedure

The Nelson-Oppen procedure which decides satisfiability in a combination of logical
theories by exchanging equalities and disequalities is shown to consist in computing a
reduced product after the state is enhanced with some new “observations” correspond-
ing to alien terms.

5.1 Formula Purification

Formula Purification in the Nelson-Oppen Theory Combination Procedure Given
disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality and decision procedures
sati for satisfiability of quantifier-free conjunctive formulæ ϕi ∈ C(Σi), i = 1, ..., n,
the Nelson-Oppen combination procedure [15] decides the satisfiability of a quantifier-
free conjunctive formula ϕ ∈ C(

⋃n
i=1 Σi) in theory T =

⋃n
i=1 Ti such that M(T) =⋂n

i=1M(Ti).

The first “purification” phase [18, Sect. 2] of the Nelson-Oppen combination pro-
cedure consists in repeating the replacement of (all occurrences of) an alien subterm
t ∈ T(Σi) \ x of a subformula ψ[t] < C(Σi) (including equality or inequality predicates
ψ[t] = (t = t′) or (t′ = t)) of ϕ by a fresh variable x ∈ x and introducing the equation

466 P. Cousot, R. Cousot, and L. Mauborgne

x = t (i.e. ϕ[ψ[t]] is replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively ap-
plied to ϕ[ψ[x]] and x = t). Upon termination, the quantifier-free conjunctive formula ϕ
is transformed into a formula ϕ′ of the form

ϕ′ = ∃ x1, . . . , xn :
n∧

i=1

ϕi where ϕi = ϕ′i ∧
∧
xi∈xi

xi = txi ,

x ,
⋃n

i=1 xi is the set of auxiliary variables xi ∈ xi introduced by the purification, each
txi ∈ T(Σi) is an alien subterm of ϕ renamed as xi ∈ x and each ϕ′i (hence each ϕi) is a
quantifier-free conjunctive formula in C(Σ i

O
). We have ϕ ⇔

∧n
i=1 ϕ

′
i[xi ← txi]xi∈xi

so ϕ
and ϕ′ are equisatisfiable.

Example 3 (Formula purification). Assume f ∈ f1 and g ∈ f2. ϕ = (g(x) = f (g(g(x))))
→ (∃ y : y = f (g(y)) ∧ y = g(x)) → (∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y)) →
(∃ y : ∃ z : ϕ1 ∧ ϕ2) = ϕ′ where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ut

In case of non-disjoint theories Ti, i = 1, ..., n, purification is still possible, by consider-
ing the worst case (so as to purify any subterm of theories Ti or T j occurring in a term
of theories Ti or T j). The reason the Nelson-Oppen purification requires disjointness of
theory signatures is that otherwise they can share more than equalities and cardinality,
a sufficient reason for the procedure to be incomplete. Nevertheless, the purification
procedure remains sound for non-disjoint theories, which can be exploited for static
analysis, as shown below.

The Nelson-Oppen Purification as an Observational Cartesian Product Let the ob-
servable identifiers be the free variables of ϕ ∈ C(Σ), xP = xϕ plus the fresh auxiliary
variables x introduced by the purification xO = xP ∪ x. Let ΣP and ΣO be the corre-
sponding signatures of Σ. Given an interpretation I ∈ I , with values IV, the observable
naming Ωϕ

I ∈ xO→R
ΣP
I → IV is such that

Ω
ϕ
I (x)η , η(x) when x ∈ xP,

, JtxKη when x ∈ x .

From a model-theoretic point of view, the purification of ϕ ∈ A into 〈ϕ1, . . . , ϕn〉

can be considered as an abstraction of the program properties in PΣO
I

abstracted by
ϕ to observable properties in RΣO

I
themselves abstracted to the observational cartesian

product Ω
ϕ�

i∈∆
iAΣO
I

where the component abstract domains are 〈iAΣO
I
, vi〉 , 〈C(Σ i

O
),

⇒〉 with concretizations iγΣO
I
∈ C(Σ i

O
) → iP

ΣO
I

and iγΣO
I

(ϕ) ,
{
〈I, η〉 ∈ RΣO

I

∣∣∣∣ I ∈

M(Ti) ∧ I |=η ϕ
}
, i = 1, . . . , n. This follows from the fact that the concretization is the

same.

Theorem 6. γP
I

(ϕ′) = γΩ
ϕ,P
I

(
Ωϕ�n

i=1 ϕ
′
i

)
. ut

After purification, the components of the observational cartesian product are not yet the
most precise ones.

5.2 Formula Reduction

Formula Reduction in the Nelson-Oppen Theory Combination Procedure After
purification, the Nelson-Oppen combination procedure [15] includes a reduction phase

Abstract Domains and Decision Procedures 467

where all variable equalities x = y and inequalities x , y deducible from one com-
ponent ϕi in its theory Ti are propagated to all components ϕ j.The decision procedure
for Ti is used to determine all possible disjunctions of conjunctions of (in)equalities
that are implied by ϕi. These are determined by exhaustively trying all possibilities in
the nondeterministic version of the procedure or by an incremental construction in the
deterministic version, which is more efficient for convex theories [18]. The reduction is
iterated until no new disjunction of (in)equalities is found.

The Nelson-Oppen Reduction as an Iterated Fixpoint Reduction of the Product
Let E(S) be the set of all equivalence relations on S . Define the pairwise reduction
ρi j(ϕi, ϕ j) , 〈ϕi ∧ Ei j ∧ E ji, ϕ j ∧ E ji ∧ Ei j〉 where

eq(E) ,
∨
≡∈E

∧
x≡y

x = y ∧
∧
x.y

x , y

 and Ei j ,
∧{
eq(E)

∣∣∣∣ E ⊆ E(xϕi ∩ xϕ j) ∧ ϕi ⇒ eq(E)
}
.

The Nelson-Oppen reduction of ϕ purified into Ωϕ�n
i=1 ϕ

′
i consists in computing the

iterated pairwise reduction ρ ∗
(
Ωϕ�n

i=1 ϕ
′
i

)
.

Example 4. Let ϕ1 , (x = a∨ x = b)∧y = a∧z = b and ϕ2 , f(x) , f(y)∧f(x) , f(z)
so that ϕ , ϕ1∧ϕ2 is purified. We have E12 , (x = y)∨(x = z) and E21 , (x , y)∧(x , z)
so that ρ ∗ (ϕ) = ff. ut

Example 5. A classical example showing that the Nelson-Oppen reduction may not be
as precise as the reduced product is given by [18, p. 11] where ϕ1 , f(x) , f(y) in the
theory of Booleans admitting models of cardinality at most 2 and ϕ2 , g(x) , g(z) ∧
g(y) , g(z) in a disjoint theory admitting models of any cardinality so that ϕ = ϕ1 ∧ ϕ2
is purified. The reduction yields ϕ∧ x , y∧ x , z∧y∧ z and not ff since the cardinality
information is not propagated whereas it would be propagated by the reduced product
which is defined at the interpretation level. Therefore the pairwise reduction ought to
be refined to include cardinality information, as proposed by [20]. ut

Formula Reduction and the Reduced Product A formula over a set of theories is
equivalent to its purification, so that to find an invariant or to check that a formula is
invariant, we could first purify it and then proceed with the computation of the trans-
former of the program. This would lead to the same result as simply using one mixed
formula if the reduction is total at each step of the computation. Such a process would
be unnecessarily expensive if decision procedures could handle arbitrary formulæ. But
this is not the case actually: most of the time, they cannot deal with quantifiers, and
assignments introduce existential quantifiers which have to be approximated. Such ap-
proximations have to be redesigned for each set of formulæ. Using a reduced product of
formulæ on base theories allows reusing the approximations on each theory (as in [12],
even if the authors didn’t recognize the reduced product). In that way, a reduced product
of logical abstract domains will provide a modular approach to invariant proofs.

468 P. Cousot, R. Cousot, and L. Mauborgne

5.3 Formula Satisfiability

After purification and reduction, the Nelson-Oppen combination procedure [15] in-
cludes a decision phase to decide satisfiability of the formula by testing the satisfiability
of its purified components. This phase can also be performed during the program static
analysis since an unsatisfiability result means unreachability encoded by ff. The satis-
fiability decision can also be used as an approximation to check for a postfixpoint and
that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination
procedure [15] but Shostak combination procedure [17] can be handled in exactly the
same way. The idea of iterated reduction also applies to theorem proving [13].

6 Reduced Product of Logical and Algebraic Abstract Domains

6.1 Combining Logical and Algebraic Abstract Domains

Static analyzers such as Astrée [1] and Clousot [7] are based on an iterated pairwise
reduction of a product of abstract domains over-approximating their reduced product.
Since logical abstract domains as combined by the Nelson-Oppen combination proce-
dure are indeed an iterated pairwise reduction of a product of abstract domains over-
approximating their reduced product, as shown in Sect. 5.2, the design of abstract in-
terpreters based on an approximation of the reduced product can use both logical and
algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that
the reduction mechanism can be implemented once for all while the addition of a new
abstract domain to improve precision essentially requires the addition of a reduction
with the other existing abstract domains when necessary.

Notice that the Nelson-Oppen procedure and its followers aim at so-called "sound-
ness" and refutation completeness (for the reduction to ff). In the theorem prover com-
munity, "soundness" here means that if the procedure answers no, then the formula is
not satisfiable. In program analysis we have a slightly different notion, where soundness
means that whatever the answer, it is correct, and that would mean that if the procedure
here answers yes, then the formula is satisfiable. This notion of soundness, when the
only answers are yes it is satisfiable or no it is not, is equivalent to the old "soundness"
plus completeness. This is obtained by restricting the applicability of the procedure e.g.
to stably-infinite theories [18] or other similar hypotheses on interpretations [20] to en-
sure that models of the various theories all have the same cardinalities, and additionaly
by requiring that the theories are disjoint to avoid having to reduce on other properties
than [dis]equality. In absence of such applicability restrictions, one can retain unsat-
isfiability if one component formula is unsatisfiability and abandon satisfiability if all
component formula are satisfiable in favor of “unknown”, which yields reductions that
are sound although potentially not optimal.

So the classical restrictions on the Nelson-Oppen procedure unnecessarily restrict
its applicability to static analysis. Lifting them yields reductions that may not be op-
timal but preserves the soundness of the analyses which have to be imprecise anyway
by undecidability. Hence, abandoning refutation completeness hypotheses, broaden the

Abstract Domains and Decision Procedures 469

applicability of SMT solvers to static analysis. Many SMT solvers already contain lots
of sound, but incomplete, heuristics hence no longer insist on refutational completeness.

Example 6. As a simple example, consider the combination of the logical domain of
Presburger arithmetics (where the multiplication is inexpressible) and the domain of
sign analysis (which is complete for multiplication). The abstraction of a first-order
formula to a formula of Presburger arithmetics is by abstraction to a subsignature elim-
inating all terms of the signature not in the subsignature:

αΣ(x) , x
αΣ(f(t1, . . . , tn)) , ?, f < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?

, f(t1, . . . , tn), otherwise
αΣ(ff) , ff

αΣ(p(t1, . . . , tn)) , tt, p < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in positive position
, ff, p < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in negative position
, p(t1, . . . , tn), otherwise

αΣ(¬Ψ) , ¬αΣ(Ψ) αΣ(Ψ ∧ Ψ ′) , αΣ(Ψ) ∧ αΣ(Ψ ′)) αΣ(∃ x : Ψ) , ∃ x : αΣ(Ψ) .

The abstract transformers for Presburger arithmetics become simply fPJx := eKP ,
αΣP (∃ x′ : P[x← x′] ∧ x = e[x← x′]), pPJϕKP , αΣP (P ∧ ϕ), etc, where ΣP is the
signature of Presburger arithmetics.

The reduction of the Presburger arithmetics logical abstract domain by the sign
algebraic abstract domain is given by the concretization function for signs.

Ei j(η) ,
∧

x∈dom(η)

γ(x, η(x)) where γ(x, pos0) , (x > 0), γ(x, pos) , (x > 0), etc.

Assume the precondition 〈P(x), x : >〉 holds, then after the assignment x := x × x,
the post condition 〈∃ x′ : P(x′)∧x = x′ × x′, x : pos0〉 holds, which must be abstracted
by αΣP to the Presburger arithmetics logical abstract domain that is 〈∃ x′ : P(x′), x :
pos0〉. The reduction reduces the postcondition to 〈∃ x′ : P(x′) ∧ x ≥ 0, x : pos0〉.

Symmetrically, the sign abstract domain may benefit from equality information. For
example, if the sign of x is unknown then it would remain unknown after the code y :=
x; x := x * y whereas knowing that x = y is enough to conclude that x is positive.

Of course the same result could be achieved by encoding by hand the Presburger
arithmetics transformer for the assignment to cope with this case and other similar ones.
Here the same result is achieved by the reduction without specific programming effort
for each possible particular case. ut

6.2 Program Purification

Whereas the reduced product proceeds componentwise, logical abstract domains often
combine all these components into the single formula of their conjunction which is then
globally propagated by property transformers before being purified again into compo-
nents by the Nelson-Oppen procedure. These successive abstractions by purification
and concretization by conjunction can be avoided when implementing the logical ab-
stract domain as an iterated reduction of the product of the component and program pu-

470 P. Cousot, R. Cousot, and L. Mauborgne

rification, as defined below. The observational semantics is then naturally implemented
by a program transformation.

Given disjoint signatures 〈fi, pi〉, i = 1, ..., n, the purification of a program P over
C(x,

⋃n
i=1 fi,

⋃n
i=1 pi) consists in purifying the terms t in its assignments x := e and the

clauses in simple conjunctive normal form ϕ appearing in conditional or iteration tests.
A term t ∈ T(x,

⋃n
i=1 fi) not reduced to a variable is said “to have type i” when it is of

the form c ∈ f0
i or f(t1, . . . , tn) with f ∈ fn

i . As a side note, one may observe that this
could very well be equivalent to using the variable and term types in a typed language.

The purification of an assignment x := e[t] where term e has type i and the alien
subterm t has type j, j , i consists in replacing this assignment by x = t; x := e[x] where
x ∈ x is a fresh variable, e[x] is obtained from e[t] by replacing all occurrences of the
alien subterm t by the fresh variable x in e, and in recursively applying the replacement
to x = t and x := e[x] until no alien subterm is left.

An atomic formula a ∈ A(x,
⋃n

i=1 fi,
⋃n

i=1 pi) not reduced to false is said to have
type i when it is of the form p(t1, . . . , tn) with p ∈ pn

i or t1 = t2 and t1 has type i or
x = t2 and t2 has type i. Then we can purify an assignment x := a[t] exactly in the same
way as with terms. Finaly the purification of a clause in a test consists in replacing
each atomic subformula a of the clause by a fresh variable and introducing assignments
x := a before the test and in recursively purifying the assignments x := a.

Example 7. Assume that f ∈ f1 and g ∈ f2. The purification is

if (g(w) = f (g(g(w)))) then . . .
→ x := (g(w) = f (g(g(w)))); if x then . . .
→ y := g(w); x := (y = f (g(y))); if x then . . .

Hg(w) has type 2 and f (g(g(w))) has type 1I
→ y := g(w); z := g(y); x := (y = f (z)); if x then . . .

H(y = f (g(y))) has type 1 and g(y) has type 2 .I ut

After purification all program terms and clauses are pure in that no term of a theory has
a subterm in a different theory or a clause containing terms of different theories. So all
term assignments x := e (or atomic formulæ x := a) have t ∈ T(Σ i

O
) for some i ∈ [1, n]

and all clauses in tests are Boolean expressions written using only variables, ¬ and ∧.
We let the observable identifiers xO = xP ∪ x be the program variables xP plus the

fresh auxiliary variables x ∈ x introduced by the purification with assignments x := ex.
Given an interpretation I, with values IV, the observable naming ΩI ∈ xO 7→ (xP 7→
IV) 7→ IV is

ΩI(x)η , η(x) when x ∈ xP
, JexKη when x ∈ x .

This program transformation provides a simple implementation of the observational
product of Def. 4. Moreover, the logical abstract domains no longer need to perform
purification.

Theorem 7. A static analysis of the transformed program with a (reduced/iteratively
reduced) product of logical abstract domains only involves purified formulæ hence can

Abstract Domains and Decision Procedures 471

be performed componentwise (with reduction) without changing the observational se-
mantics. ut

Purification can also be performed for non-disjoint theories, but this requires using as
many variables as the number of theories that contain the expression e in their language,
so that we can use existentials and remain precise by asserting the equality between
thoses variables.

7 Related Work

SMT solvers have been used in abstract interpretation, e.g. to implement specific log-
ical abstract domains such as uninterpreted functions [11] or to automatically design
transformers in presence of a best abstraction [16].

Contrary to the logical abstract interpretation framework developed by [12,21,10]
we do not assume that the behavior of the program is described by formulæ in the
same theory as the theory of the logical abstract domain, which offers no soundness
guarantee, but instead we give the semantics of the logical abstract domains with re-
spect to a set of possible semantics which includes the possibility of a sound combi-
nation of a mathematical semantics and a machine semantics, which is hard to achieve
in SMT solvers without breaking down their performances (e.g. by encoding modu-
lar arithmetics in integer arithmetics or encoding floats either bitwise or with reals and
roundings). So, our approach allows the description of the abstraction mechanism, com-
parisons of logical abstract domains, and to provide proofs of soundness on a formal
basis.

Specific combinations of theories have been proposed for static analysis such as
linear arithmetic and uninterpreted functions [12], universally quantified formulæ over
theories such as linear arithmetic and uninterpreted functions [10] or the combination
of a shape analysis with a numerical analysis [9]4. The framework that we propose to
combine algebraic and logical abstract domains can be used to design static analyzers
incrementally, with minimal efforts to include new abstractions to improve precision
either globally for the whole program analysis or locally, e.g. to prove loop invariants
provided by the end user.

8 Conclusion

We have proposed a new design method of static analyzers based on the reduced prod-
uct or its approximation by the iterated reduction of the product to combine algebraic
and logical abstract domains. This is for invariance inference but is also applicable to
invariant verification. The key points were to consider an observational semantics with
multiple interpretations and the understanding of the Nelson-Oppen theory combination
procedure [15] and its followers, as well as consequence finding in structured theories
[13], as an iterated reduction of the product of theories so that algebraic and logical
abstract domains can be symmetrically combined in a product either reduced or with it-
erated reduction. The interest of the (reduced) product in logical abstract interpretation

4 These approaches can be formalized as observational reduced products.

472 P. Cousot, R. Cousot, and L. Mauborgne

is that the analysis for each theory can be separated, even when they are not disjoint,
thus allowing for an effective use of dedicated SMT solvers for each of the components.

Finally, having shown the similarity and complementarity of analysis by abstract
interpretation and program proofs by theorem provers and SMT solvers, we hope that
our framework will allow reuse and cooperations between developments in both com-
munities.
Acknowledgments We thank D. Jovanović and A. Podelski for help and comments.

References
[1] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static

analysis and verification of aerospace software by abstract interpretation. Infotech@Aerospace,
2010–3385, 2010.

[2] A.R. Bradley and Z. Manna. The Calculus of Computation, Decision procedures with Ap-
plications to Verification. Springer, 2007.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. 4th POPL, 238–252, 1977.

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. 6th POPL,
269–282, 1979.

[5] P. Cousot, R. Cousot and L. Mauborgne. Logical Abstract Domains and Interpretations. In
The Future of Engineering, S. Nanz (Ed.), Springer, 2010.

[6] M. Elder, D. Gopan and T. Reps. View-Augmented Abstractions. 2nd NSAD, ENTCS, 2010.
[7] P. Ferrara, F. Logozzo, and M. Fähndrich. Safer unsafe code in .NET. OOPSLA, 329–346,

2008.
[8] P. Granger. Improving the results of static analyses of programs by local decreasing itera-

tions. FST and TCS, LNCS 652, 68–79, 1992.
[9] S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking partition

sizes. 36th POPL, 239–251, 2009.
[10] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified logical

domains. 35th POPL, 235–246, 2008.
[11] S. Gulwani and G.C. Necula. Path-sensitive analysis for linear arithmetic and uninterpreted

functions. SAS, LNCS 3148, 328–343, 2007.
[12] S. Gulwani and A. Tiwari. Combining abstract interpreters. PLDI, 376–386, 2006.
[13] S.A. McIlraith and E. Amir. Theorem proving with structured theories. IJCAI, 624–634,

2001.
[14] A. Miné. Field-sensitive value analysis of embedded C programs with union types and

pointer arithmetics. LCTES, 54–63, 2006.
[15] G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. TOPLAS,

1(2):245–257, 1979.
[16] T.W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.

VMCAI, LNCS 2937, 252–266, 2004.
[17] N. Shankar and H. Rueß. Combining Shostak theories. Rewriting Techniques and Applica-

tions, LNCS 2378, 1–18, 2002.
[18] C. Tinelli and M.T. Harandi. A new correctness proof of the Nelson–Oppen combination

procedure. Frontiers of Combining Systems, 103–120. Kluwer Academic Publishers, 1996.
[19] C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of satisfia-

bility procedures. Theor. Comput. Sci., 290(1):291–353, 2003.
[20] P. Tinelli and C.G. Zarba. Combining non-stably infinite theories. Electr. Notes Theor.

Comput. Sci., 86(1), 2003.
[21] A. Tiwari and S. Gulwani. Logical interpretation: Static program analysis using theorem

proving. Automated Deduction – CADE-21, LNCS 4603, 147–166. Springer, 2007.

