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1 Introduction

Abstracting from Floyd’s [6] invariant assertions and well-
ordered set method for proving total correctness of sequential programs,
we present induction principles for proving inevitability properties of
transition systems. These induction principles are shown to be sound,
semantically complete and equivalent. This formalizes Floyd’s method
independently of any particular programming and assertion language and
generalizes it to non-deterministic transition systems (in particular
partitioned ones) hence to parallel programs. Considering various classes
of bounded nondeterminacy we characterize the corresponding well-
founded relations which are necessary and sufficient for completeness.

When the behavior of the transition system is specified by a non-closed
set of execution traces (e.g. fair parallelism) Floyd’s computational
induction method cannot be applied without using auxiliary variables.
One approach consists in using Floyd’s method for an auxiliary transition
relation on states and history variables that exactly generates the original
set of traces. Another approach consists in a generalization of the use of
loop cutpoints in Floyd’s method, in that the choice of the cutpoints
(where some termination function has to be decreased) may depend upon
computation histories cumulated into auxiliary variables.

2 Programs as transition systems

The operational semantics of a programming language associates
a transition system {8, t, &) with each program of the language.
§ is a non-empty class of states.
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te(S x S — {tt,ff}) is a transition relation, understood as a
function from pairs of states into truth values (tt is true and fT is
false). t(s, s') means that starting in state s and executing one
program step can put the program into state 5. For a non-
deterministic program, there may be several possible next states s'.

¢ € (S — {tt, ff}) characterizes initial states.

Program execution as complete traces

Executions of a program (S, t,e> are modelled by the set

¥(S, t,&) of sequences of states called complete execution traces. A
Sequence p = Pg, P1, P2, - .- in XS, 1, &) represents an execution that starts
in state po, performs the first program step to reach state p,, performs the
next program step to reach state p,, etc.

Since execution may not terminate this sequence may be infinite. A finite
sequence po, ..., P, Tepresents an execution in which the program is
blocked in state p, which has no possible successor state.

More formally,

@ is the set of natural numbers,
0 is the empty set or zero,
Ifnewand n>0thenn={0,...,n— 1},
If Eis a set and x€ E then E ~ x = {y e E: y # x}.
Be(S — {tt, ff})
B=As.[Vs'eS.t(s, s)] Characterizes blocking states
»0¢S, it e)=0
(S, t,e) = {pe(n— S e(po) A (Vie(n—1).
t(pis Pi+1) A B(Pa-1)}
Finite complete traces of length
n>0
(For short, we write p; instead of p(i)).
39S, t,&) = {pe(w — 5): &(po) A (Vi€ w.1(p, Pi+1))}
Infinite traces

3¢S, 1,6 = (U =S, a)) UZ2(S, 1, &)

nem
Complete traces

Inevitability properties of programs

A property @ is invariant for a program if it holds for all states

which can be reached during program execution (except perhaps for the
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final states). Absence of global deadlocks for parallel programs is an
example of an invariance property.

A property ¥ is inevitable for a program if any program execution
eventually leads to a final state satisfying ‘¥'. Termination, total correctness
and absence of individual starvation of parallel processes are inevitability
properties of programs.

More formally, if ®, ¥ e (S x S — {tt, ff}) are relations between states
then @ is invariant and ¥ inevitable for (S, t, &) if and only if

Vp e 2<8, t, &) .3i € Dom(p).[Vj € i.®(po, p;) A ¥(po, p)]  (0)

(Dom( p) is the domain of function (or relation) p, Rng(p) its range and
Fld(p) = Dom(p) v Rng(p) its field).

5 Floyd’s invariant assertions and well-ordered set method for
proving total correctness

Floyd [6] considers programs with states of the form (¢, m)
where c € C is a control point and me M is a memory state (assigning
values to variables). Let e (M x M — {tt, ff}) be an output specification
and o e (S — {tt, fT}) be the characteristic function of exit states. Let
Ye(S xS —{tt, ff}) be

MLe, mp, <&, mp). y(m, m).

Total correctness is an inevitability property of the form:

VpeZ(S,t,e).3ie Dom(p).[(Yjei. 1 a(py) A a(p:) A ¥(po, pi)]

According to Floyd’s method, one proves total correctness by proving
first partial correctness, then clean behavior and finally termination.

5.1 Partial correctness

Floyd [6]-Naur’s [10] method for proving partial correctness
consists in first associating an assertion P, with each control point ¢ of the
program, then showing that these assertions are invariant and finally
proving that the assertion for final states implies the input-output
specification.

The assertion P/(m, m) attached to each program control point ¢ € C
relates the current memory state m to the initial one m. We take
P.e (M x M — {tt, ff}) (so that using sets (or their characteristic func-
tions) and not formal languages we can get rid of those uncompleteness
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problems which are related to the unconvenient choice of assertion
languages which are too weak for describing these sets).

For proving that these assertions are invariant it must first be shown
that the entry assertion holds:

Vee C,me M. [e({c,m)) = P(m,m)]

Then for every command of the program it must be verified that if
control should enter the command by a control point ¢ with P, true, then
control must leave the command, if at all, by an exit ¢’ with P, true:

Ve,c'eC,m,m,m' e M.
([P(m, m) A 71 0(Ke, mp) A t({e, m), ', m'))] = Pe(m, m'))

The partial correctness proof ends by showing that if control should
reach an exit point of the program then the associated assertion should
imply the input-output specification:

Vee C, m,me M .([P.m, m) n a({c, m))] = y(m, m))

3.2 Clean behavior (or absence of blocking states)

If partial operations are used in a program then a proof of clean
behavior must show that their use cannot give rise to undefined effects. If
the operational semantics agrees on the convention that states that would
lead to such undefined effects are blocking states then the clean behavior
proof simply consists in showing that reachable states which are not final
must have at least one successor:

Yee C,myme M.

([P(mm) A 1 o({c,m))] = [3c'eC,meM.
t(<e, m), <, m'H)])

53 Termination

Floyd’s method for proving termination consists in first associat-
ing with each program control point c¢e C a termination function
Jee (M x M — Rng(f.))-

This termination function is then shown to take its values in a
well-ordering (W, —), W = Rng([.):

Yee C,myme M.([P(m,m) n —1a({c,m))] = fum, m)e W)

Finally, termination is proved by showing that after each execution of a
command, the current value of the termination function associated with
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the exit is strictly less than the prior value of the termination function
associated with the entrance:

Ye,c'e C,m,m,m' € M.
([P(m, m) A 71 06({c, mp) A t(<e, mp, {c',m')]
= [fe(m, m") — fu(m, m)])

6 The basic induction principle

Instead of using local assertions P, attached to program control
point ¢ € C, we can use a global invariant I such that (Cousot & Cousot

[30):
Ie(S xS - {tt, ff})
I = A({e, mp, {¢,mp).[Pm, m)]
and a global termination function f such that:
fe(S xS —(J){Rng(f):ceC})
[ =ML, m), <e,mp).[ fo(m, m)]
Then it is trivial to check that Floyd’s verification conditions (as defined in

section 5) are equivalent to the following ones:

Partial correctness:
[(e(s) = I(s, 8))
AN
([1(s, ) A 10(s) A t(s, )] = I(s, §))
A
(LI(s, 5) A a(5)] = (s, 5))]
Absence of blocking states:
(LI(s, ) A T10(s)] = [3s' € 8.1(s, 5)])
Termination:

[([I(s, 5) A T1a(s)] = f(s5,5) € W)

AN
(LI(s, 8) A T10(s) A (s, 8)] = [f(s,8) — f(s, 5)])]
If we now define:
@, We(S xS {ttff})
D = As,5).[ 1 a(s)]
¥ = A(s, §).[0(5) A ¥i(s. 5)]

then easy checks show that Floyd’s method rests upon the following
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induction principle:

@I, e(S x S — {tt, ff}), fi € (S x S = Rug(fy)), Wy = Rng(f)), )
—4 € (Rng(f1) x Rng(f1) — {tt, ff}).
Wo(Wy, —4)
A
[Vs,s€S.
(e(s) = I1(s, 5)) L (1)
A
(Il('s.! S) = ‘P(Es S)
v
[D(s, ) A fi(s,8) e WA 35’ €8.1(s,5) A
Vs' € S.(t(s, s") = [I,(s,5) A
fi(s, ) = fi(s, )DDD) )
Where

Wo(W, —) = Lo(W,—) n Wf(W,—)
characterizes well-orderings on W
Lo(W,—) = Spo(W,—) A
[Vx, ye W.((x #y) = (x—~y v y—x))]
characterizes linear orderings on W
WAW, —) = Rel(W,—) A
VEcC W.[E#0=3yeE.(m3zeE.z— )]
characterizes well-founded relations on W
Spo(W, —) = Rel(W, —) A [Vxe W.1 (x—x)] A
[Vx,p,ze W.(x—y A y—z) = (x—z]]
characterizes strict partial orders on W
Rel(W, —) = [W x W < Dom(—) A Rng(—) = {tt, f{}]
characterizes relations on W

Equivalent induction principles

A number of variants of the basic induction principle have been

used. We now introduce successive transformations which lead to different
induction principles. These induction principles will all be shown to be
equivalent to the basic one (1).

The

range of the termination function f; can always be chosen so as to

coincide with the well-founded part W; of the ordering —:
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(BI,e(S x S — {tt, fI}), f>e(S x S — Rng(f2)),
—, € (Rng(f2) x Rng(f2)— {tt, ff}).
Wo(Rng(f2), —2)
M
[Vs, s€8.
(e(s) = Ix(s, 8))
as
(12(59 S) = Lp(é'r S)
v
[D(s.5) A 5" € 8.1(s,8) A
Vs' e S.(t(s, 8") = [I5(s, 8")
A f2(s, 8)— fo(s, )DDD

Proof. (1) = (2).

Choose
I, = Als, 5).[(fi(s, 8) € Wy A 14(s, ) v (s, 5)]
Rng(fo) =W, u{l} with L1¢W,
J2 = Us, 9).Lif fi(s, s) € Wy then fi(s, s) else 1]
— =AW, w).[W =1L AweW)
viweW, awe W, A w—w)]

r 2

O

A termination function need not be associated to all program control

points but only to loop cut-points:
BK S, I;e(K x K x S - (tt, fT}), f3e(K x K - Rng(f3)),
—3 € (Rng(f3) x Rng(f3) — {tt, ff}).
Cutset{S, t, e)(K)
P

Wo(Rng(f3), —s)

Fas
[Vs,seK,s e8.
(&(s) = I3(s, 5, 8))
A
Us(s.5,8) = ¥(ss)
v
[D(s, s') A Is" €S.1(s", 5")
AVYs"eS. (s, s") =
[(S” eK A f3(§> 5”) _':3.{3(‘}:1 S)
A I3(s, 5", 5"))

V(5" K A Ix(s s, $")DD])

v (3
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where
Cutset{S,t,e)(K)=[(K = 8§) A (Vs€S.(e(s) = s€ K))
VpeZ9S, t, tt).diew.p;e K]

A cutset is a class of states (which, for simplicity, includes initial states
and) such that if there were an infinite computation of the program,
execution would pass through an infinite sequence of states in the cutset.

Proof. (2) = (3).

Choose I3 = A(s, 5,8").[I2(5, ') A s = 5], Rng(f3) = Rng(f2), f3 =f2,—
= and k=S O

The use of well-orderings is not mandatory. Well-founded relations are

sufficient (and sometimes more convenient):

AL, e (S x S — {tt, ff}), foe (S x S — Rng(f1)), 3
—q e (Rng(fs) x Rng(fa) — {tt, ).

Wf(Rng(fa), —)
A

[Vs,s€S.
(e(s) = La(s, 9))
A
(a(s, ) = Y¥(s,9)
v
[D(s, s) A 35" € S.1(s, s") A
Vs' € S.(t(s,s) = [Lals, §)
A Ja(s, 8') —a fa(s, )11 J

P @

Proof. (3) = (4).

Let (Ord, <) be the well-ordered class of ordinals. Since Wo(Rng(f3), —a)
implies Wf(Rng(f3), —3) it is easy to prove by transfinite induction on —;
that p =4w.|J {p(W) + 1: W € Rng(f3) A w'—3 w} (where |J is the
supremum of a class of ordinals, | J0 =0 and +} is ordinal addition) is
well-defined. Hence we have p € (Rng(f3) — Ord) so that we can define:
(i) pe(S x S — Ord)
w=As5).if (VseS.7115(s,5,8) v (s, 5)) then 0 else
N {p(fals,5) + 1: s€S A I35, 5,8) A 71 '¥(s, 8}
(where () is the least element of a non-empty class of ordinals)
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(ii) f4€(S xS —0rd x8)
Ja=A(s,8).{uls, ), >
(iti) « e(S x § — {tt, ff}) such that s’ «< s iff [t(s, s") A 5" ¢ K]
(iv) —4 € (Rng(fy) x Rng(fy) — {tt, ff}) such that
W, s> — w, sy Iff (W <w) v (W =was «5))

Since Wf(Ord, <) and Cutset{S, t, e>(K) implies Wf(S, «) we have
Wf(Rng(fs),—4). Choosing I4 = A(s,s'). [3se€ S.I3(s,s,5")] the proof
then essentially consists in showing that:

[@seS.1i(s,5,8)) A 1H(s,5) A ts,s") As"e K] =
(s, s) > uls, s))
and
[(3seS.I3(s, 5 8) A T ‘{;‘(g, SYatls,s")Ans"¢K] =

(u(s, s) = p(s, s"). O

The use of a termination function can be avoided when using instead an
auxiliary variable (w, not appearing as a prograrﬁ variable) which ranges
over the field of a well-founded relation and is ‘strictly decreased’ after
each program step:
AWs, —s € (Ws x Ws — {tt, ff}), Ise (Ws x § x S — {tt, fi}). 3
Wf(Ws,—s)
N
[Vs,se S, we Ws.
(e(s) = [Fw e Ws.15(w. 5. 5)])
A b (5)
(Is(w,s,8) = ¥(s9)
v
[®(s,8) A 35" €S.t(s,5) A
Vs € S.(t(s, s") = [Iw —sw.

Is(w', 5,5)1)1)]) y

Proof. (4) = (5).

Choose W5 = Rng(fs), —s = —4, Is = AW, 5,5).[w = fu(s,5) A L4(s, 9)]-
]

Since well-founded relations can be embedded into well-orderings,
isomorphism restricted to well-orderings is an equivalence relation and
the ordinals pick out exactly one representative from each equivalence
class, one can always use the well-ordering < on the class Ord of ordinals
for inevitability proofs:
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(36 Ord, Is (6 x S x S — {tt, ff}). )
[Vs,s,8,5e8, o <d.

(e(s) = [F2 < 9.16(2 8, 8)])
A

([Ls(t, 8, 8) A o> 0] = [D(s, 5) A Is'€S.1(s,5)]) t (6)
A

([Le(et, 5. 8) A o> 0 A t(s,8)] = [Fo’ < a.Ig(@, 5,5)])
A

(16(07 3, E) o qJ(S! E)):[) <

Proof. (5) = (6).

Define a rank function p e (Ws — Ord) as:
p(w) = () {ox € Ord: Yw' € Ws.[W —s w = p(w) < a]}
(This definition is easily justified, using transfinite induction on —s, since
—s is a well-founded relation on Ws).
Observe that Yw', we Ws.[(W —sw) = (p(w) < p(w))].
Define: & = (| ) {p(w) + 1: we Ws}) 41
Choose:
Is(o, 5,8) = ( [0=0 A ¥(s,5)]
v
[Iw e Ws.(Is(w, 5, 5) A o= p(w) + 1)]). O

The auxiliary well-founded class (W, Rng(f3), Rng(f3), Rng(fs) or Ws)
can always be chosen as (Ord, <) but also as (§ x S, —) where — is some
suitable well-founded relation on pairs of states:

AL (8 x 8 — {tt, f1}), — € (5 x 5) x (S x ) = {tt, 7). )
WI(S x S, —)
A
[V¥s,seS.
(&(s) = I5(s, 5))
A b (1)
(I7(s,5) = ¥(s,9)
W
[D(s,5) A Ts'€S.1(s,8") A
Vs' € S.(t(s, s) = [I1(5,8) A
(8,8) =<5, )DD]) )
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Proof. (t?) = (7).

Choose
I(s,s) = [3a < 6.1e(as 5, 5)]
(8,5 — (5, s)iff [ =5 A Jau < b.15(, 5,5) A —1¥(s, 8) A
Vo < 0. ([Ls(on, s, 8) A o> 0] = Ja’ < a.lg(e, s, s))]
O

The induction principles (1) to (7) are all equivalent in the sense that once
a proof has been found which rests upon some induction principle (i)
involving I;, —, ... the proof can be rephrased for any other induction
principle (j), since I;, —;,... can be derived from [, —;, ... using the
rewriting rules given in the proofs (i) = (i mod7 + 1) =+ = (j). The last
necessary proof is:

Proof. (7) = (1).

Choose W,=Rng(f}))=0rd, —« =<, I;=1; and fi(ss)=
U {fils, 8) + 1: (s, 8°) — (s, 8D} O

Using a contrapositive version of these induction principles one can prove
inevitability properties of programs by reductio ad absurdum. For example,
the contrapositive version of (6) is:
(F6€0rd, I;€ (6 x S x § — {tt, fT}).
[Vs,s, 5,58, a<d.
(7W(s, 5) = I(0, 5, §))

N

-

([ >0 A (M1D(s,5) v Vs €S.11(s, 5))] = Ii(e, s, 5) » (6)
A
([ >0 A (s, 8") A Vo' < a.fz(o, s, 8)] = (e, s, 8))
A
(e(s) = Bz < 6. 71 I, 5, 9] )
Positive and contrapositive versions of the induction principles are
obviously equivalent.

Proof

@ =@),i=1,...,7. Choose ;= =1I;
(D)=, i=1,..,7. Choose'l; = -1 L. U
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8 Soundness and semantic completeness

@ is invariant and W is inevitable for {8, t, &) if and only if any one
of the induction principles is applicable.

Proof. Soundness, (1) = (0).

Assume by reductio ad absurdum that there exists p € (8§, t, &) such that
Vie Dom(p).[(Vj€i.®(po, p;)) = 71 ¥(po, p:)]. Then by induction on i,
(1) implies  Vie Dom(p).[(Vj€ (i +1).®(po, pp)) A I1(po, p)]. If
dne(w ~ 0).pe Z"(S, t, &) then I,(pg, pu—1), 71 ¥(po, ps—1) and (1) imply
ds' € S.t(p,—1, "), a contradiction. Else, p e £°{S, t, &) so that forallie @
we have I (po,p;) and t(p;, pi+1) whence by (1) that fi(po, pi) € Wi,
fi(po, pi+1) € Wy and  fi(po, pi+1) —4 fi(po, pi)) in contradiction with
Wo(Wy, —). U

Proof. Completeness, (0) = (4).

Let us define W and — e (W x W — {tt, ff}) such that
(i) W={{s.sp)e(Sx8):3peX{S, t,&p,icDom(p), kei.[Vjiei.
(@(po, pj) A 1 (po, pj)) A ¥(po, pi)
AS=poAs=pl}
(i) <5, 8" ) —(s,5) <> (3Bpe (8, t, ), i€ Dom(p), ke w.[Vjei.(D(po, p;)
A 71W(po, pj)) A
W(po,p) AS =s=ponk+1<ins=p
A S = Pret])

Since (s, s'>—{s,s) implies (s =35 A @(s, 5) A T1¥(s, 5) A (s, 5) A
D(s, s") A 1 W(s, 8") we have Wf(W,—). (Otherwise, there would be a
chain {s, so) —<{s, 81 ) —... hence an infinite trace s, py,..., Pr+ 1. S0, St - - -
with all states s satisfying ®(s, s) A =1 ¥(s, §) in contradiction with (0)).
Let us now define Rng(fy) = Wu {<s,s): ¥(s,8)}, fa= A5 5).{s, 5>
and (8,8 —a<s, 8) iff [(F(, ) As'=snLs,speW) v
S, 8DYeW A (s, s)e W AKS,s)—Ls sp)]. We have Wf(Rng(fs), —a)
so that choosing I, = A(s, 5).[{s,s) € Rng(fy)] the verification condi-
tions of (4) are obviously verified. J

) On the use of assertional or relational induction hypotheses

If one is only interested in proving that assertions ® = A(s, s). ¢(s)
is invariant and W = A(s, s).(s) is inevitable for ¢S, t, &), the induction
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hypothesis I; in induction principles (i), i = 1, ..., 7, may be independent of
the initial states. In this case it is also complete to choose f; in (i), i =
1,...,4 as a function not depending upon the initial states. (If moreover
¢ =As.[tt], ¥ = As.[Vs'€ S.71t(s,5)], (Rng(fs), —2) = (Ord, <) then
induction principle (2) amounts to Lehmann, Pnueli & Stavi’s [9] method
for proving total convergence).

In general, W is a relation between initial and final states, and in this case
the induction hypothesis has to be chosen as a relation (between initial
and current states).

Proof. Consider § = {0, 1, 2}, e = As.[0 < s < 1], t = A(s, ). [(s+1€e8)
AE"=5+1)], ®=A(s,s).tt. Then ¥ =1¢ is obviously inevitable.
Assume we can find I, of the form A(s,s).I(s) in (1). Then
(1) = Iy(1, 1). Since —1¥(1,1) and t(1,2) we have I (1, 2)=1Q2) =
1,(0, 2). But 1'P(0,2) and Vs’ e S.14(2, 5), a.contradiction. O

The same way, in induction principle (1) it is not complete to choose [ as a
unary function not depending upon initial states.

Proof. Let us consider S =, &= As.tt, t = A(s,s').[s' =s + 1] and
® = A(s, s).tt. Then y = i(s, 5).[5 = s + 2] is obviously inevitable. But (1)
cannot be applied with f; of the form A(s,s).f(s). By reductio ad
absurdum we would have for all se w, &(s) = I(s, s) so that I,(s,s) A
AW, s+ 1) At(s, s+ 1) would imply fi(s,8) e W, and
Ji(s, s + 1) =4 fi(s, ) that is f(s)e Wy and f(s+ 1)~ f(s) in contra-
diction with We(W,, —). O

If one insists upon using assertional but not relational induction
principles, one can use the well-known trick which consists in using
auxiliary program variables.
Inevitability properties of (S, t,&) can always be proved by reasoning
upon {8, t', &) such that:
St=N8¢§
' = MLs, 8, €55,8)).[s = 5 A 1(s, 5]
&' = A(s, 50 . [e(s) A s = 5]
since
Vp € X<, t, &) . 3i € Dom(p).[(Vj € i.®(po, p;)) A ¥(po, Pi)]
< Vp' e Z(S', t', &Y. die Dom(p).[(Vjei. ®(p;) A P(p)]
However auxiliary variables are easier to introduce in proofs than in
programs (which have a rigid syntax). Moreover this allows reasonings
about program proof methods which are language independent.
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10 On nondeterminacy being bounded

Floyd [6] noticed that it may be necessary to use other well-
orderings than the set (o, <) of natural numbers for termination proofs.
Dijkstra [5, p. 77] gave the counter-example S =7, t= A(x,x).
[(x<0AX>0v(x>0aAx=x—1)], e=Ax.[x < 0], ® = A(x, x).
[tt]and ¥ = A(x, X).[X = 0] for which no finite upper bound on the number
of transitionsrequired for termination can be given. Dijkstra also proved that
when nondeterminacy is bounded then termination can always be proved
using (w, <). These results are now extended to a more general notion of
bounded nondeterminacy.

10.1 m-bounded nondeterminacy

For any set E, |E| is the cardinality of E.

A transition system {8, t, &) is said to be deterministic if Vs € S.[|{s" € S:
t(s, s')}| < 1] and nondeterministic otherwise.

Nondeterminacy is said to be finite (Dijkstra says bounded) if
VseS.dnew.[|{s'€S:t(s,s)}| <n] or, and this is equivalent, if
VseS.[|{s' € S: t(s , s')}| < w] and infinite otherwise.

Nondeterminacy is said to be countable if Vs € S.[|{s' € S: 1(s, s')}| < w]
and uncountable otherwise.

More generally, if me Card is a cardinal, then we say that the
nondeterminacy of a transition system (S,t,&) is m-bounded if
VseS.[|{s eS: t(s, s)}| <m].

(In particular nondeterminacy of (S, &) is always |S|"-bounded.
Moreover nondeterminacy is countable if and only if it is w;-bounded
where w, is the least cardinal strictly greater than w).

10.2 Inevitability can be proved using well-ordering (m', <) when
nondeterminacy is m-bounded

A cardinal m is said to be regular if for all ' = m, if [['| < m then
U I' < m, otherwise it is said to be singular.
For any ordinal o, " is the least cardinal strictly greater than e.
m=0 ifm=<o,
m' =m  if m is an infinite regular cardinal,
m' =m" if mis an infinite singular cardinal.
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(For any cardinal m, m' is regular (since w is regular, and assuming the
axiom of choice, for any infinite cardinal m, m™ is regular)).

The following induction principle is sound (since (8) = (6)) and
complete for proving inevitability properties of transition systems <8, t, &>
with m-bounded nondeterminacy:

(Alze(m' x § x § — {tt, f{}). )
[Vs, s, s, s€8, a<m
(a) (e(s) = [Fo < m'.Ig(e, 5, 8)])
A
(b) ([Tg(et, 8, 8) A 00> 0] = [D(s,8) A Is € S.1(s, 5)]) f (8)
A
(¢) (Us(on 5, 8) A o> 0 A (s, 8)] = [Fo' < . Ig(e), 5, 57)])
AN
(d) (15(0, 5, §) = ¥(s, 5))]) J

Proof. (0) = (8).

For all s € S, let us define:
(i) A(s) ={seS:dpe XS, t,&y.3ie Dom(p).[po =5 A (Vjei.D(po,p;)
A 1¥(po, py))
A ¥(po, i)
A dkei.p, = 5]}
(A(s) is the set of those states which are accessible before reaching a
final state during some execution starting from g).
(i) F(s) = {5eS:dpeZ(S, t.e).Jie Dom(p).[po = s A (Vj€i.®(po, p;)
A 1Y¥(po, py)
A W(pos pi) A pi = 5]}
(F(s) is the set of final states which are reached by executions from s).
(iii) —, € (S x § — {tt, f}), such that s'— s iff [s € A(s) A (s, 5)].

Let us first prove that Vs e S, Wf(A(s) v F(s), —,).

If —1e(s) then A(s) U F(s) = 0 and any relation is well-founded on the
empty set 0. Otherwise, by reductio ad absurdum, assume that there exists
an infinite sequence g of states in A(s)u F(s) such that for all ie w,
gi+1— qi. If s € F(5) then s ¢ A(s) so that Vs’ e §. 1(s'—,5). Hence no g;
can belong to F(s). In particular since g, € A(s) we can assume that g, = s
(otherwise there exists a prefix s=po,...,pr=¢go of some trace
pe X{S,t, ey with p; 1 —, p; for j e k which can be adjoined to the left of
q).
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We have &(qo). Moreover for all i€ w, ;11— q; hence (q;, gi+1)- It
follows that qeX(S,t,&). But View, g€ A(qo) whence we have
D(qo. g;) A 1¥(qgo, q;) in contradiction with hypothesis (0).

Let us define py(s) = | {ps) + 1: s'—;s} for se(A(s) U F(s)). By
transfinite induction on the well-founded relation —,, p, is well defined and
p.€ (A@®) U F(s) > Ord).

Let us now prove that Vs, se S, [p(s)| < m".

The proof is by transfinite induction on the well-founded relation —. If
{s: s'—s} is empty then [p(s)| =0 <o < m'. Otherwise s’ —, s implies
t(s, ') so that |{s’:s'—s}| < |{s: t(s,5)}| <m < m' and |p(s)| < m' for
s'—,s by induction hypothesis. Hence either |p(s')] < @ and lp(s") + 1]
= |p(s)| 4 L < w <m' or [p(s')| = w in which case |p(s") + 1] = [p(s)]
< m'. If nis an infinite regular cardinal, then for every system {p;: i € I} of
cardinals with p; < nfor each i e I and |I| < m we have U;E; p; < n. Hence
we conclude that [p,(s)| = |l {pi(s") + 1: 8’ —s}| <m".

Finally let Is be A(a,s,s).[se(A(s) U F(s)) A @ = p(s)]. We have
Ise(m' x S x S — {tt, ff}) and the verification conditions of (8) are
satisfied:

(a) &(s) = [se€ (A() VF(9)] = [Tz < o« <m".Ig(x, 5, 5)]

(b) If [Ig(a,5,5) Ao>0] then () {p(s) + 1:s'—s} >0 so that
there exists s’ such that s’ —, s (since otherwise {p,(s") + 1: s'—s}
would be the empty set 0 and U 0 = 0). This implies (s, s") and
s € A(s) hence @(s, ).

(¢) If [Ig(a s, 8) A 0> 0 A 1(s,5')] then s € A(s) so that according to
hypothesis (0) we must have s’ € (A(s) U F(s)) and s'—,s whence
p(s") < py(s) and Tg(p,(s'), 5, 5).

(d) Ig(0, 5, 5)= (p,(s) = 0) = s € F(s) = ¥(s,5) O

In particular when nondeterminacy is finite one can choose well-orderings
isomorphic with (w, <) and when nondeterminacy is countable one can
choose well-orderings isomorphic with (w;, <) for proving inevitability
properties of transition systems (w and @, = w" are regular so that o=
w and o} = w;).

10.3 Which ordinals are necessary?

Let m be a finite or infinite and regular cardinal. Assume that we
consider transition systems ¢S, t, &) the nondeterminacy of which is m-
bounded and we want to prove (0) using induction principle (6) with o
< m' = m. This is not complete.
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Proof. This is obvious when m = @ and 4 is a natural number so that we
can assume 4 > .

Define S={L}u(d+1) where L ¢ (5+ 1). We have |S|=1+6 + 1| =
|6 + 1| = |6| < 6 < m' = m. Hence the nondeterminacy of ¢S, ¢, ¢)> is m-
bounded. Define t = A(x, x).[(x=LAax'<d) v 0<x'<x<d)] e=
Ax.[x = 1], ® = Ax, x).[tt] and ¥ = A(x, X).[x = 0].

An execution trace peX(S,t,&) is such that p,= 1, p;eOrd,
ie(w~0)and p; > p; > ... so that we must eventually have some p; = 0
since Wo(Ord, <). Hence W is inevitable for ¢S, t, &).

However this cannot be proved by (6). Otherwise, having found I
satisfying the verification conditions of (6) we could build an infinite
strictly decreasing sequence yo > 7, > ... of ordinals as follows: set yo =
Since &(L) we must have some o < é such that Ig(e, L, 1). Set y; = a.
Since —1W(l,Ll) we have —1I40, Ll,.1) hence 7p;>0. But [y,
>0 A Ie(yrs L, L) A (L, yo)] = [P < yyTg(et, L, p0)]- Set 3, = a. We
have 6 =y>y, >y, and Ie(yz, L, 70). ~Since 7y,>0 we have
1 W(L, yo) hence —114(0, L, y¢) and y, # 0. Assume we have constructed
the sequence up to y;+5 with f > y; > 941 > 9j42 > 0 and Ig(y)42, L, 7))
According to (6) we have [y;12 > 0 A Ts(yj+2, L, y) A 8y v5+1)] = [Fa
<Vj+2.delt, L, y;4+1)]. Set y;.3=0a Since y;4+,>0 we have
T1W(L, ;+41) so that B> i1 > 9542 > 7543 >0 and Ig(yj43, L, ¥4 1).
And so, the sequence can be indefinitely extended. O

Although it is restricted to regular cardinal, the result is very general since
the first infinite singular cardinal is @, = Uiew w; (which seems to be large
enough not to be of genuine importance in computer science).

11 Decomposition of the verification conditions for partitioned
transition systems

Conventional program proof methods can be formally construc-
ted by decomposition of the verification conditions involved in the
previous induction principles applied to partitioned transition systems

[2].
11.1 States partitioning

A states-partitioned transition system is a tuple ¢S, r, m, t, &) such
that:

(1 <S,t, &> is a transition system,
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(i) r is a finite non-empty set of block names,
(iii) me (r — (S — {tt, ff})) characterizes a cover of the class § of states,
ie. VseS.3ker.m(s).

(A transition system can be partitioned by giving a name to blocks of
states playing similar roles. For instance a 7, k € r may characterize states
with a given control component).

A proof of invariance of ® and inevitability of ¥ for a partitioned
transition system ¢S, r, @, t, &) can be decomposed for each block of the
states cover:

(36 € Ord, Ise (r — (6 x S x S — {tt, ff})). )

[Vk,ler,s,s, 5,58, 0 <0.

([e(s) A m(9)] = [Fo < 6. Tou(%, 5, 5)1)
A
([Lox(2, 5, 5) A T(s) A &> 0] = [D(s, s) A 35" € S.1(s,5)])
A
([ox(2t, 5, 5) A T(s) A &> 0 A 1(s,s") A m(s')]
= [Fo' < a.lo(o, s, 5)])

» (9:s)

A

(10, 5, 5) A m(3)] = ¥(s, 5))])

Proof

(i) Soundness, (9.5) = (6).
Choose 6¢ = 0o, Ig(e, 5, 5) = [Fk e r.(mi(s) A Lox(2t, 3, 5))].
(i) Semantic completeness; (6) = (9.s).
Choose &g = 36, Toi(, 8, 5) = [m(s) A Ig(at, s, 8)]. [

Example

A version of Floyd’s method for programs with states of the form <{¢, m)
where ¢ e C is a control point and m € M is a memory state can be derived
from (9.s) by choosing r = C, m(<c, m)) = [c = k], @({¢c, mp, {c,m)) =
=1 0(<c, my) and W({¢, m), (¢, m)) = [0(Cc, m)) A Y(m, m)].

To compare with paragraph 5, we can let P(m, m) be
[3c e C. Io(<c, m), <&, m))]. O

12 Transitions partitioning

A transitions-partitioned transition system is a tuple (S, n,t, &)
such that:
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8 is a non-empty class of states,

n is a non-empty finite set of block names,

te(n— (S x §— {tt, ff})) is the transition relation for individual
blocks,

e (S — {tt, ff}) characterizes entry states,

(S, \/ken tr, €) is a transition system.

(A transition system can be partitioned by giving a name to blocks of
transitions playing similar réles. A t,, ken can be understood as the
transition relation for a command of the program, or for an individual
process of a parallel program, etc.).

A proof of invariance of ® and inevitability of ¥ for a partitioned
transition system (8§, n, t, &) can be decomposed into

n independent proofs of invariance and termination for each
block of the partition ((9.t)(a, b, c, d))

n % (n— 1) checks that the proofs for distinct blocks do not
interfere ((9.t)(e)),

a proof of absence of blocking states (e.g. by reductio ad absurdum)

(O0()).

N

(Fé6eO0rd, Ihe(n - (6 x Sx S = {tt, fT})).
[Vken.
(Vs,s,5eS, o< 4.
(a) (e(8) = [Bx < 6. Joxl(as, 8, 5)])
A
(b) ([lor(o, 5, 8) A o> 0 A (s, 8')] = [Fo' < o Loyl 5.5
A
(©) ([for(er, 5, 8) A o0 > 0] = (s, 5))
A
(@) Usx(0,5,5) = [¥(s,9) v Bu])] ¢ O
A
[Vkenle(n ~ k).
(¥s,s5,5'e S, <9,y <.
(e) ([lor(et, 5, 5) A Toi(p, 8, 8) A9 >0 A ti(s, 5)]
= [E'OI( =l 191((3’5 §'s S(]J))]
A
[Vs,seSs.
(f) ([Vken.fi(s) A 1¥P(s,8)] = [Tken.Ya< .
T oi(, 8, 5)])]) J
where

Be(n — (S — {tt, ff})) characterizes blocking states of process k
B = As.[Vs' € S. 1 tx(s, )]
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Proof

(i) Soundness, (9.t) implies (5) for {8, \/ks,, Ly, &,
Choose W5 =(n—9),y —syiff Gken.[(y, <) A (Vje(n ~ k).
¥;<v)]) and Is = A(y, 5, 5).[Vk € n. Loy(ys, s, 8)].

(i1) Semantic completeness, (6) for (S, v-ksn ty, & implies (9.t).

Choose Iy = ik.[Me, 5,8). [(Te(et, 5,8) A T1P(s,8) A a>0) v
(‘F(s, 8) A= 0)]]. O
Example

A version of the Lamport [8] proof method for parallel programs
[Pol|...||P,—1] can be derived from (9.t). The transition relation as-
sociated with the program is partitioned into n blocks t, corresponding to
each process P, hence g, is a global invariant for process Py [4]. 0

113 Multilevels states and transitions partitioning

Partitionings of states and transitions can be combined and
applied recursively so as to induce more refined decompositions of the
verification conditions. For example, we can consider partitioned
transition systems of the form {§,n,r, 7, t, &> where tre(n - (S x S —
{tt,ff}))) and Vken, me(m— (@S- {t,ff}) with VseS,
k e n.3i e r,.ni(s). The corresponding induction principle is:

(36€0rd, I.[Vken,ier, . lope(d x 8§ x § — {tt, fi})] A )

[Vk € n.
(Vi, i ery. -
“(Vs,s,5eS, a<d.
(a) ([e(s) A m(s)] = [Tz < 0. Lo, 5, 5)])
AN
(b) ([Toi(a, 5, 8) A Th(s) A ot >0 A (s, 8) A mh(s)]
= [’ < a. (o, 5,8)])
© (s s 9) A 1) A @ > 0] = B, )
A : : ¢ (9.ts)
(d) ([Lo(0, 5, 8) A m(s)] = ['¥(s, 5) v f()])))]
A

[Vken, i, i'en,le(n~k)jer.
(Vs,5,8'eS,a<é,y<d.

(8] ([I‘QL(% S, S) A ?Tir(s.) A 19{(?& 3, S) A TE{_{S]
A (s, s) A m(s)] = [F < o Igi (o, 5, 5')1))]
AN
[Vs,seS.
() (IVk e n.fus) A 71 ¥(s, 9] = [Fken.Vier,.

(mi(s) = Yoo < 6. 71 I5(a, 5, 5)))])



298 P. Cousot, R. Cousot

Proof

(i) Soundness, (9.ts) = (9.t) for ¢S, n, t, &).
Choose Ig (@, 5, 5) = [Fi € 1. (m(s) A Loyi(a s, )]
(i) Semantic completeness, (9.t) for (S, n, t, &) = (9.ts).
Choose Ioui(@, 5, 5) = [7i(s) A Tok(t, $, 5)] |

Example

A version of the Lamport [7] and Owicki & Gries [11] proof method for
parallel programs [Py||...||P,—1] can be derived from (9.ts). The tran-
sition relation associated with the program is partitioned into n blocks ¢,
corresponding to each process Py, 1y is the set of control points of process k
and 7, holds for states such that their control component for process k is
equal to i. It follows that Io; can be attached .to point i of process k.
Moreover, executing an atomic action of process I cannot modify control
in process, k so that the only case to be considered in (9.ts)(e) is i = i’ [3].

[

12 Induction principles for proving inevitability properties of restricted
classes of execution traces

12.1 Admissible complete traces

Given a set S of states for a program P, computations of P can be
specified by a set 6(S) of complete traces on § or by a transition relation on
states (in which case the corresponding set of complete traces is ¢S, t, )
where ¢ = 1s.tt).

The advantage of using a transition relation on states is that inevita-
bility proofs can be done by computational induction. The disadvantage is
that the corresponding set of complete traces £(S, t, &) may be too large
(e-g- when taking fairness requirements into account).

On the contrary any program behaviour can be specified by a set 6(S) of
complete traces on S. However there may be no transition relation on S
generating exactly 6(S).

Therefore we choose to represent (somewhat redundantly) program
behaviors by a partitioned transition system {(S,n, t,¢)> and a set
0¢S,n,t,6) S T(ZC(S, \Vken tis €)) of admissible complete traces
(I'(Z<S, \/,‘,__.11 tx, £)) is the prefix closure of XS, \/keu Iy, €». More pre-
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cisely, let Z*{S> be Umew (m— 8), Z°¢(S) be (w— S) and Z{S) be
RS> UE?(S). When peX{(S» and me(Dom(p)~0), p[m]=
Po --- Pm—1 is the prefix of length m of p. Then when E = £(S), I'(E) =
Eu {p[m]: pe E A me (Dom(p) ~ 0)}).

Example

An execution trace of a partitioned transition system is said to be weakly
fair if it is finite or if it is infinite but there is no process which beyond a
certain point, is continuously enabled but never activated:

Bwf¢S,n,t,ed = J =" ¢S,/ tw &)
ken

mew
L

{pex¢S, \/ te): [Fkendiew.Vj> i.
ken

(1 B(py) A T tlpy i+ )]} O

12.2 Closed sets of admissible complete traces

When pe Z*(8), se 8, qeZ{S), pq (respectively psq) is the
concatenation of p and g (respectively p, s and g).
We say that 8 = £{§) is closed iff:

({Vp1, p2 € Z*(8), s€ S, q1, 2 € Z{(S) .(p1591 € 0 A p25q; € 0)

= (p15q2 € 0)]
ALYpeZe(S).(Vme(w ~0).3ge Z{(S>.p[mlge ) = (ped)])

Counter-example.

Assume S={a, b}, n=2, to=A(s,5).[(s=a) A (5 =b)], t; = A5, 5).

[s=s=a],e=As.[s=a]. Owf(S, n, t, ) is not closed because it contains

all finite traces of the form a... ab but not the infinite trace a...a....
[

A set 6 of complete traces on a set S of states can be exactly generated by a
transition relation on § if and only if it is closed:
VS.¥0 = Z{S>.[(Fte(S x S — {tt, ff}), e (S — {tt, ff}).

Z{8,t,&e) = B) <= (0 is closed)]
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Proof

= istrivial. For <= wedefinee = As.[Ip € 0. py = s]andt = A(s, s) .[Ip €6,
i€ Dom(p).i>0 A s=p;_; ASs =p;] so that obviously 8 < Z(8, t, &).
Moreover if p € 28, t, &) then &(po) implies poq° € 0 for some g° € T(S).
Assume, by induction hypothesis, that py...pi_1g ‘€8 for some
g'~' € Z(S) and i € Dom(p). Then by definition of (S, t, &> and t there
existr e Z*(S), ¢' € (S such that rp;_; p;g' € @ so that po ... p;— 1 pig' € 0
since 0 is closed. If p € ¥"(S) then in particular pg ... pn—1g™ ' €8 and
g™ ! is the empty trace (otherwise p,,_ ; could not be a blocking state since
Hpm-1,45 ') so that pef. Else pe £°(S) and (Vme(w~0).3ge
28> .plm]q € 6) so that p e 0 because 8 is closed. O

When considering closed sets of admissible traces 6<S,n,t, &), any
induction principle (1) to (9) can be used for some adequate transition
relation on §. i

12.3 The transformational approach for proving inevitability
properties of non-closed sets of admissible complete traces

If we want to use induction principles (1) to (9) in order to prove
inevitability properties for a non-closed set of admissible traces then we
must abandon the idea of using a transition relation on S. However we can
use any auxiliary transition system (5% ¢%,&*> which, up to some
correspondence p* € (S* — §), exactly generates the admissible traces:
PESE L) =adSin, 1, &)
where
p*(E) = {p*(x): xe E} when E is a set and
p*(f) = x.p*(f(x)) ~ when f is a map

Itis clear that in general {S¥, ¢*, ¢*) is a mathematical object which may
not be computable (think of the case when 60<(S, n,t &> = Umm
Z"(S, \/ken tx, £). However from a theoretical point of view, the auxiliary
transition system can always be naively defined as:

SF=6(S,n,t,ed> x @

t* = A<p, i), <P, i")).[i+1)eDom(p) AP =p Ai =i+ 1]
et=2dp: > =10]

with

p* = A{p,i).p;
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Moreover we are interested by admissible traces that, in practice, have
to be realized by machines so that more constructive definitions of
(8%, ¥, &*) for specifying 0¢S, n, t, &) do exist.

Example

Weak fairness can be guaranteed by scheduling execution of individual
processes. There are many such schedulers [1, 12, 13]; here is another
one:

S2=(n— ) xS
t2 = A(<lm, s, (m',s')).[Fken. s, s') A ([me >0 A my < my
A Yje (@ ~k).(m; =m;)]
v [Vjen.((Bi(s) v mj=0)

A m; > 0)])]
g9 = A{m, s> .&(s)
with
P8 = Alm, 5).s

(The scheduler organizes an execution into rounds. During a round all
continuously enabled processes will be actived at least once but finitely
often. From state {in, s on, a process f;, k € n can be activated at most m
times within the current round. A new round can begin in state s, if all
unblocked processes have been activated at least once and at most as
many times as predicted at the begining of the round.)

Proof. p2(Z{S?, t%, e% )= Owf{S,n, t, &).

If p2 € 2¢(SY, (2, 2 then p?(p?) € Owf<S, n, t, &). This is obvious if p¥ is
finite. Otherwise let me (w — (n —> w)) and pe(w — §) be such that
View.(p? = (m;, p;p). Assume that p = p?(p?)e (S, \/ken li, &) is
unfair, so that Jken.die w.Vj > i.(71f(p;) A Tt pjs Pj+1)). Within a
round Y., mjy strictly decreases at each step, so that no round can be
infinite. In particular the round to which i belongs must finish at i’ > i. At
the beginning of the next round we have m 1x > 0 and the my are not
modified during this round which must eventually end at i” > i. Then we
have =1 Bu(pir) A My, = Mg 41 > 0, a contradiction.

If p € Bwf(S, n, t, &) we construct m € (Dom(p) — (n — w)) such that p?
defined by (Dom(p?) = Dom(p) A Yie Dom(p).(pf = {my, p;))) belongs
toZ(SE e £,

If Dom(p) = d e (w — {0, 1}) then m; = Ak. 3521 if tx(p;, pj+1) then 1
else 0.
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If Dom(p) = w then thanks to the weak fairness hypothesis, we can
inductively define ye(w > w) by y,=0 and y,.;= min{j € w:
Vken.[(VI=y:i.pp1) v Alew.y; <1 <j A ti(pr, pr+1))]} so that all
processes not continuously disabled after y; are activated at least once
between y; and y;. ;. Define n € (w — w) such that #; is the 7j+1 such that
Vi <1 <7y;+1. Then we let m; = Ak. 31, if ty(pj, pj+1) then 1 else 0.

]

Whenever 0(S, n, t, &) = p*(£{S? *, £*)), inevitability properties for ad-
missible traces of (S, n, t, &):

Vp € 6<S, n, 1, £).3i € Dom(p).[(Vj € i.®(po, p;)) A ¥(po, pi)] (10)
can be proved by proving similar inevitability properties for all complete
traces of (S% t* &*):

Vp e £(S% t%, &%) .3i € Dom(p). [(Vj € i.D(p*(po), p*(p)))) A P(p*(po),

P(p)] | (11)
Such a proof can be done by application of any one of the induction
principles (1) to (9) to {S% t¥, &*).

When 5% t* and &' are defined in term of S, n, ¢, ¢ (and auxiliary
domains), we can substitute these definitions for S¥, t*, &* in the verification
conditions dealing with (5% t¥, &*) so as to obtain equivalent verification
conditions dealing with the original (S, n, t, &) (and auxiliary variables).
Then, by construction, the derived induction principle is sound and
semantically complete.

Example

Using induction principle (6) for (S%,t%, &%) and letting Is(x, (m, s,
{m,s>) be I,;(o, m,s,s) we obtain an induction principle for proving
inevitability properties of (S, n, ¢, ¢) under weak fairness hypothesis
(30 € Ord, 1,5(0 x (n - w) x § x § — {tt, f{}).
[Vs,5,8,5€8, 0 <d,mym,me(n - w), ken.
(e(s) = [z < 6. 112(2, m, 5, 5)])
FAS

(L1120, m, 5, 8) A o> 0]

= [D(s,5) A I5'€ S, ken.tls, ) A (m >0 v B(m, 5))]) [

N

A
(L1200 m, 5,8) A a0 >0 A (s, 8) A ([mx >0 A m' <k=m]
v [B(m, ) Am' > 0])] = [T’ <a.liy(e, m),s,s)])
A

{II 2{0, m, §& Sj = ‘P(gs S-))]) 4
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where

B = A(m,s).[Vjen.(B(s) v m;j=0)]

m <k=m iff (m <m AVje(@n~k).(m;=my)
m >0 iff (Vjen.m;>0)

For the standard example [X: = false||while X do skip od] where S =
{t, ), t;=Axx).["xT], t2=4xX).[x AX], e=ix.tt, ®=
Alx, x).tt, ¥ =Ax, X).[71x], (12) is satisfied by I,; = A(a, m, X, X).
[(e=0 A —1x) v (& =m; + m; > 0)]. |

124 The dynamic cutset approach for proving inevitability
properties of non-closed sets of admissible complete traces

Let P be a program specified by a partitioned transition system
{S,n,t,e) and a non-closed set 0<S,n,t, &) S I'(Z{S, \/ken th €)) Of
admissible traces. If we want to prove inevitability properties of P by
computational induction on f, we have to find an invariant and a
termination argument.

This invariant must hold for all states that are reachable by admissible
traces. Let us first consider the simple case when these states are exactly
those which are reachable by successive transitions \/ke., iy

{seS:Ipeb{S,n,t, ¢, ieDom(p).(p; = s)}

{s eS:Ise S.(e(s) A (\/ tk)* (s, s)} (13)

ken

(where r* is the reflexive transitive closure of relation r) which holds in
particular when

Vs e S.(e(s) = [s e I'(6<S, n, t, £))])
VA%
Vme(w~0),pe(m— S),ken,seSs.
([peTl(6<S,n,t,&)) A til pm—1,5)] = [ps e [(8(S, n, t, ))]) (14)

Notice that (13) = (14).

Proof. (14) = (13).

If pe 6<S, n, t, &) then &(po) and Vi e Dom(p).(\/ken t)*(Po, P;). Recipro-
cally, if e(s) A (\/ken t)*(s, s) then there are m € (w ~ 0), p € (m — §) such
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that po = s, Yie (Dom(p) ~ 0).3k e n.ty(pi—1, p;) and p,—, = s. By (14),
poe(6¢S,n,t,ey) and if i e (m ~ 0) and p[i] e I'(B(S, n, t, &}) by induc-
tion hypothesis then p[ilp; e T'(0{S,n, t,&>) so that pe [(B<(S, n, t, &d).
Hence 3p' € 6(S, n, t, &), i € Dom(p').p; = s. O

Example

Owf{S, n, t, ) satisfies (14) hence (13) so that invariance proofs with fair
execution hypothesis can be made without taking fairness into account.

O

When (14) holds, \/ken t; can be used for the invariance proof.

Let us now consider the termination argument. For finite admissible
traces we have to show that the goal must be reached before the end of the
trace. This is simple when admissible traces end with blocking states:

Yme(w~0), pe((8{S,n, t,e))n(m — 8)), ken, s €S. 1 t(pm—1,5")
(15)
or equivalently

6¢S, n, £, £) < 3¢S, n, 1, &) " (15)

since it is sufficient to show that blocking states cannot satisfy the
invariant. For infinite admissible traces, we ensure that progress is made
toward the goal by finding a termination function that decreases on a
cutset of the trace. However this progress along a trace might not be
continuous (e.g. when assuming fair execution) so that there may exist no
such ‘static’ cutset (i.e. depending only upon the set S of states (e.g. loop
cutsets for sequential programs)). In general, the choice of the cutpoints
indicating progress toward the goal should be ‘dynamic’ (i.e. depends upon
the trace itself so that auxiliary variables are needed to capture histories).
These remarks inspired the following induction principle:
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Intuitively, for no infinite admissible trace p and auxiliary trace a on A
(the first element of which is defined by F, the next ones by ¢ but for
finitely many cuts defined by C) we can have the invariant I true
everywhere. (The invariant I has not been incorporated into F, C and ¢
only for the sake of convenience).

Example

If 6¢S,n,t,e)=2(S, \Vienlr, &y and there exists K <=S such that
Cutset{S, \/ken ti: €)(K) then choosing A ={Ll}, F=As a).tt,
I=A(sa).tt, C=Ma ks a).tt, €=AMals,a).[f¢K] and I3=
ety 5,5).[116(e, 5,5, 1)] one obtains a version of (3). O

Proof. Conditional soundness (15) = [(16) = (10)].

Assume (16) and p € 8¢S, n, t, £). If there is i € Dom( p) such that ¥(po, p;)
then for the least such i there are ae (i — 6) and a e (i - A) such that
Vjei.l (2, Pos pj»a;) hence Vjei.®(po, py). It is not possible that
Vi e Dom(p). 1 ¥(pos, pi). Otherwise there would be o € (Dom(p) — 9) and
a € (Dom(p) — A) such that F(po, ao) and Vj € Dom(p).I16(2;, Pos Pj» 4;)
hence Vj e Dom(p).I(p;, a;) and moreover Vje (Dom(p) ~ 0).0;—1 = o;.
When p is finite we have pef(S,n,te) =T(0{S,n,t¢>) and
Ii6(0m—1> Pos Pm—1, @m—1) Where Dom(p) =m. This implies dJken,
s' € S.tu( pm—1, 8") in contradiction with (15). When p is infinite (in which
case the infinite sequence of ordinals o; cannot be strictly decreasing) there
are finitely many places y; € w, i € m, m € w where o; is strictly decreased
and C holds. Everywhere else ¢ would hold, in contradiction with the
dynamic cutset condition (17). 1

Proof. Conditional weak semantic completeness (14) A (15) =

[(10) = (16)].

Assume (10) and define A=3X*S), F=AUsa).[a=s5], 1=
A(s, a).[Vie Dom(a). 7 W(ag,a)]l, C=C€=Maks,a).[a@=as]. U
we can find pe(8(S,n,t.e)n(w—3S8)), ac(w—>A), me(w~0),
y€(m— w) not satisfying (17) then we have F(po,ao) hence
ao = po = p[1]. Assume by induction hypothesis that a;= p[j + 1].
Then either (j+1)%#y for all iem in which case
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Jken.ty(ps, pj+1) A €(aj k, pj+1saj41)) implies aji g = p[j + 1]1pjs+1
whencea; = p[j + 2]. Else Jie m.y; = (j + 1) so that y; # O hence i # 0
and (3ken.t(p;, pj+1) A Claj k, pj+1,aj41)) implies a4+ = p[j + 2].
The contradiction with (10) is now that Vjew.I(p;a;) whence
I(pjplj+1]) so that —1¥(po,p;. We conclude D-cutset
0<S, n, t, e)(A, F, I, C, €).

Let us now choose d =2 and I;4 = A, 8,5, a).[(x =0 A (s, 5) v
(0 =1Aael(0{Sn,t,e)) Adme (0 ~ 0).Dom(@) =mA Gy = $ A Q-1 =
s A [Yiem.(®(ag, a;) A 1¥(ap, a;)])]. Then assuming (14) and (15), I,
satisfies (16). |

The above completeness result is weak in the sense that the cutset that is
chosen for the completeness proof depends upon the property ¥ which is
proved to be inevitable.

It is sometimes possible to find auxiliary variables and a corresponding
dynamic cutset which is adequate for proving any inevitable property for a
given class of admissible traces.

Example

If ¢S, n, t, &) = Owf (S, n, t, &) then one can choose 4 = n, F = i(s, I). tt
I=/s0D.[35€8.t:(s,5)], C=MlLks,I).tt and €=A0ks,1).
U#kAl=1].

If there are p € Gwf(S,n, t,¢) and | e (Dom(p) — n) not satisfying the
cutset condition (17) then either Dom(p) = j e (w ~ 0) so that p;_, is a
blocking state in contradiction with I(p;- 1, I;—,) or Dom(p) = w in which
case there is some k = I, . such that # is continuously enabled
(Vj = Ym-1,l; =k so that I(p; ;) implies 3s'€ S.t(p;,s')) and never
activated (Vj > ym—1, Jien.ti(pj—1, pj) A C-1, i, Py, l;) so that i # k), in
contradiction with the weak fairness hypothesis.

Replacing 4, F, I, C, € in (16) by the above definitions we get:
(36 €O0rd, I;ge (0 x S x S x n — {tt, ff}). )

(Vs,s5eS,a<d,len.
(e(s) = [Bu < 6, 1en.Iyg(, 5,5, 1)])
FaN
(lls(ay s, §, 1) i ‘P(§s S)
v
[@(s,5) A ds'€8S.t,(s, §)
AVken, s eS.(ts,s) =
[@d <o, l"en.tigled,s, §,1)) Vv
(1 #k A Lig(a 5,8, D)) )

\ (18)
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A version of (18) was proposed by Lehmann, Pnueli & Stavi [9] and
their semantic completeness proof is easy to adapt. This proof is
independent of ® and . O

Let us now consider the general case.

For soundness, verification conditions (16) have to be strengthened
when (15) does not hold. It must be ensured that for finite admissible
traces the goal must be reached before the end of the trace (which may not
be a blocking state).

For completeness, verification conditions (16) have to be weakened
when (14) does not hold. The invariant must hold for all states that are
reachable by an admissible trace but may not hold for states that are
reachable by successive transitions \/k“ Ly
@E e (S > {tt, fi}), A, Fe (S x 4 > {tt, ff}), )

Te(SxA- {ttff}), L,Re(S x A xn x S - {tt, ff}),
C,Ce(AxnxSxA- {ttff}).
Entry 0(S,n,t, e)(E)
At
Live 6<{S,n,t,eX(A4,F,1,C, C)(L)
A
Next 6(S,n,t, eMA, F, I, C, €)(R)
A
D-cutset 0{S,n,t,e>(A,F,I,C, )
A
(30€0rd, I,5€ (0 x S x S x A — {tt, ff}).
(Vs,se S, <d,ae A.
(E(s) = [Fz < 0,a€ A.(F(s,a) A L15(2 5, 5, a))]
A b (19)
(I1s(0, 8,5, a) = (s, 5)
v
[®(s, 5) A I(s, a)
A
dken, s’ eS.[1f(s,s)
A L(s,a, k, s')]
A
Vken, s eS.([ts, s")
A R(s,a,k,5")] =
[Ge <a,deA.Cla, ks, a')
A Lo, s, 8, a))
W
(3d' e A.C(a, k,s', a')
A Lo, 5,8, a'))1)))) /




‘A la Floyd' induction principles for proving inevitability 309

where
Entry 0(S,n,t,e)(E)=[Vpe (S, n,t ey E(po)] (20)
Live 6{S,n,t,e)(A F,I,C,C)L)=
(Yme(w~0), pe (@S, nte))n(m—S)),ae(m— A), ken,
s'es.
[F(po, ao) A Vjem.I(pj, a;) A Vje(m~0).[3 en. tp;-1.p;) A
(€aj—1, I, pjs @) v Claj-1, L, pjs a))) A ti(Pm-1,5) A
L(Pm—1, Gm—1, k, )] = [p ¢ 0<S, n, 1, £3]) (21)
A formula better understood with the help of the following schema:

B dacCmide 0 ¢

B T S e et

ap a; 4 ‘ a;-y a4y

o Pi P2 ‘ Piov | G |Dp Bm-y i s
B e S e B e T R
E L

Next 0¢S,n,t,eX(4,F,I,C, C)(R) =
(VpeT(0{S,n,t,&e)), me w.(Dom(p) =m Am>1) =
(Vae((m— 1) - A), ken.
[F(po,ao) A Yje(m—1).I(p;,a) AVje((m—1)~0).[Aen.
t(pj-1, pj)
A (€(aj-1, 1, pjs aj) v C(aj-1, I, p;, a;))]

A tk(pm-Za pm-l)] (22}
= R(Pm-h Am—2, k: pm—l)))
TR U el ) . ¢
L S S S O r P emmmm e =
4, a, da; 2 a; gl
e
Py P1 P2 ‘ Pi-1 | b L{f Pm-2 g Pm-1
SRR T RO e e

E

Proof. Soundness (19) = (10).

Assume (19), p e ¢S, n, t, &) and Vi e Dom(p). =1 ¥(po, p;).- Let Inv(d) be
[Joae(d — d),ae(d = A).F(po,ao) A Vjed.l(pja;) A Vje(d ~0).(3en.
t(pj-1, P A (€(aj-1. L pj, aj) v Claj-1, I, pj, a;))) A Vjed.Iio(%;, po,
Py a;) AVje(d~0).o; < o;—1]. We have Inv(Dom(p)). This is because
E(po) holds by (20) hence F(pg, ag) A I10(d0, Po, Po, ag) is true by (19).
Assume Inv(m — 1) by induction hypothesis and m € Dom(p). We have
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t(Pm—1. pm) for some k e n, hence by (22), R(pm-1, dm—-1, k; Dm) hence
by (19) either there are w«,, < ¢, —, a,, € A such that C(a,,— i, k, p, Gr) OT
O = 0y—; and there is a, € A such that €(a,—i, k, pm d») and in
both cases Iio(®ms Pos Pms Gm). Again (19) and —1%¥(po, pn) 1mply
I(pm, a) hence Inv(m).

If Dom(p)ew then Inv(m) and (19) imply 3Jken, s en.
[t pm-1,5) A L(Ppm-1> Gm-1, k, s') which according to (21) is in contradic-
tion with p e 8¢S, n, t, &).

If Dom(p) = w then Inv(w) and the infinite sequence of ordinals a;
cannot be strictly decreasing so that there are finitely many places y; € o,
iem, me w where a; is strictly decreased and C holds. Everywhere else
(19) implies that ¢ holds, in contradiction with the dynamic cutset
condition (17). C|

Proof. Weak semantic completeness (10) = (19).

Assume (10) and define A=2*(S), F=AIAsa).la=s}, I=
A(s,a). [Vie Dom(p). 7 %¥(ap,a)] and C=¢€=AMNak s,d).[d=
as’]. We observe that Vde((w 4 1)~0), pe((0{S,nte))n
(d—S8)), ae(d—A).([F(po,ao) nVjed.I(pj,a) nVje(d~0).[Fle
n.t(pj-1,p) A (€(a;-1,Lpj,a;) v Cla;-1,Lp;,a))]1] = (p = a)).Itfollows
that D-cutset 6{S, n, t, (4, F, I, C, ) because ¥ is inevitable by (10).
The same way (20) follows from the choice E = As.[s e I'(0(S,n,t,&>)], (21)
follows from L=A(s, a, k, §).[a¢f(S, n, t, ¢)] and (22) from
R = As,a, k,s").[as' e T(0{S,n, t,&))]. Then (19) is satisfied by 6 = 2 and
Tio=AMes,8,a).[(a=0 A¥(s,s) v(e=1Aael(0{Sn,te))

A dme(w~0).Dom(a) =m A ag =3 A Au-1 =5 A [Yiem.(®(ay, a;)

A 71 ¥(ao, a)])]. O

13 Conclusion

We have considered the problem of proving inevitability pro-
perties of programs, the behavior of which is specified by a set of sequences
of states.

When this set of traces is closed, it can be generated by a transition
relation on the program states so that inevitability properties can be
proved using any one of the numerous equivalent, sound and complete
variants of Floyd's basic ‘invariant assertions and well-ordered set’
method.
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When this set of traces is not closed (e.g. fair parallelism) we have
considered two sound approaches:

1

2

3

7

8

9

The transformational approach consists in using Floyd’s
method for a transition relation on program states and auxiliary
variables that exactly generates this set of traces. Although the
derived method is complete, it may have the severe practical
defect that the auxiliary transition relation may not be comput-
able (so that e.g. this auxiliary transition relation may not be
representable by a program derived from the original one which is
proved correct).

The dynamic cutset approach consists in a generalization of the
use of loop cutpoints in Floyd’s method, in that the choice of
cutpoints (where some termination function has to be decreased)
may depend upon histories of computations (cumulated into
auxiliary variables). This approach is weakly complete since a
cutset always exists for a given inevitability property but no cutset
may be valid for all of them. The problem of characterizing the
classes of program behaviors for which a dynamic cutset can be
found that is valid for all inevitability properties is interesting and
left open.
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