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Abstract—Every one can daily experiment that programs
are bugged. Software bugs can have severe if not catas
trophic consequences in computer-based safety critical ap
plications. This impels the development of formal methods,
whether manual, computer-assisted or automatic, for verify
ing that a program satisfies a specification. Among the auto
matic formal methods, program static analysis can be used
to check for the absence of run-time errors. In this case the
specification is provided by the semantics of the program
ming language in which the program is written. Abstract in
terpretation provides a formal theory for approximating this
semantics, which leads to completely automated tools where
run-time bugs can be statically and safely classified as un
reachable, certain, impossible or potential. We discuss the
extension of these techniques to abstract testing where speci
fications are provided by the programmers. Abstract testing
is compared to program debugging and model-checking.

Keywords— Abstract interpretation, Model-checking, De
bugging, Abstraction, Testing, Abstract testing.

I. Introduction

Software debugging represents a large proportion of the
software development and maintenance cost (from 25% up
to 70% for safety critical software). Beyond classical debug
ging methods, code review, simulation, etc., new formal
methods have been investigated during this past decade
such as:

deductive methods : to prove that a program semantics sat
isfies a user-provided specification (using automatic theo
rem provers or interactive proof checkers);
model-checking : to check that a (finite) model of the pro
gram satisfies a user-provided specification (using exhaus
tive or symbolic state exploration techniques);
static analysis : to verify that no program execution can
lead to run-time errors as specified by the programming
language semantics (by computation of an abstract inter
pretation of the semantics of the program).

We investigate abstract testing, an extension of program
static analysis aiming at verifying user-provided specifica
tions by abstract interpretation of the program semantics.
The technique is a natural extension of program debugging
using program properties instead of values. We compare
abstract testing to program debugging and model checking.

II. An informal introduction to abstract

testing

Abstract testing is the verification that the abstract se
mantics of a program satisfies an abstract specification.
The origin is the abstract interpretation based static check
ing of safety properties [1], [2] such as array bound checking
and the absence of run-time errors which was extended to
liveness properties such as termination [3], [4].

Consider for example, the factorial program (the random
assignment ? is equivalent to the reading of an input value
or the passing of an unknown but initialized parameter
value):

# ITlra.analysis ();;
Reachability/ancestry analysis for initial/final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

The automatic analysis of this factorial program [5], [6]
leads to the result below. Each program point has been
numbered and a corresponding local invariant (given be
tween parentheses) provides the possible values of the vari
ables when reaching that program point. The value , typed
_O_ , denotes the uninitialized value. Otherwise an inter
val of possible values is given for integer variables (with
+∞ (respectively −∞) typed +oo (resp. -oo) denoting the
greatest (resp. smallest) machine representable integer).
The result of the automatic analysis is the following:

0: { n:_O_; f:_O_ }
n := ?;

1:!: { n:[0,+oo]; f:_O_ }
f := 1;

2: { n:[0,+oo]; f:[1,+oo] }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[1,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[1,+oo] }
n := (n - 1)

5: { n:[0,1073741822]; f:[1,+oo] }
od {(n = 0)}

6: { n:[0,0]; f:[1,+oo] }

The analysis automatically discovers the condition n ≥ 0
which should be checked at program point 1 (as indicated
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by :!:), since otherwise a runtime error or nontermination
is inevitable. Then the computed invariants will always
hold. For example the final value of n is 0 whereas f ≥
1. The analysis is performed for the specific value +∞ =
1073741823 whence n ∈ [0, 1073741822] at program point 5
since otherwise there would have been an overflow so that
execution would have stopped after that runtime error.

III. A formalization of abstract testing

Let 〈S, t, I, F, E〉 be a transition system with set of
states S , transition relation t ⊆ (S × S) , initial states
I ⊆ S , erroneous states E ⊆ S , and final states F ⊆ S.
The transition system is assumed to be generated by a
small step operational semantics [7].
Example 1 In the factorial example of Sec. II , the states
are triples 〈p, n, f〉 where p ∈ {0, . . . , 6} is a program point,
n, f ∈ Z ∪ {} are the respective values of variables n and
f. The initial states are I = {〈0, , 〉}. The final states are
F = {〈6, n, f〉 | n, f ∈ Z ∪ {}}. The erroneous states are
E = {〈p, n, f〉 | n ∈ [−∞, +∞] ∨ f ∈ [−∞, +∞]} , that is
the value of the integer variables is out of bounds. Writing
s

t−→ s′ for 〈s, s′〉 ∈ t , we have:

〈0, n, f〉 t−→ 〈1, z, f〉, z ∈ Z

〈1, n, f〉 t−→ 〈2, n, 1〉
〈2, n, f〉 t−→ 〈3, n, f〉 if n ∈ Z \ {0}
〈2, 0, f〉 t−→ 〈6, 0, f〉
〈3, n, f〉 t−→ 〈4, n, f.n〉
〈4, n, f〉 t−→ 〈5, n− 1, f〉
〈5, n, f〉 t−→ 〈2, n, f〉

A program execution is a finite or infinite sequence
σ0 . . . σi . . . of states σi ∈ S. Execution starts with an
initial state σ0 ∈ I. Any state σi is related to its succes
sor state σi+1 as specified by the transition relation t so
that 〈σi, σi+1〉 ∈ t. The sequence is finite σ0 . . . σi . . . σn

if and only if the last state is erroneous σn ∈ E (because
of an anomaly during execution) or final σn ∈ F (because
of normal termination). All other states have a successor
in which case execution goes on normally, may be for ever
(formally ∀s ∈ S \ (E ∪ F ) : ∃s′ ∈ S : 〈s, s′〉 ∈ t).

Let t−1 be the inverse of relation t. Let t� be the reflex
ive transitive closure of the binary relation t. Let post[t] X
be the post-image of X by t , that is the set of states
which are reachable from a state of X by a transition t:
post[t] X def= {s′ ∈ S | ∃s ∈ X : 〈s, s′〉 ∈ t} [2], [4]. Inversely,
let pre[t] X def= post[t−1] X be the pre-image of X by t that
is the set of states from which there exists a possible tran
sition t to a state of X : pre[t] X = {s ∈ S | ∃s′ ∈ X : 〈s,
s′〉 ∈ t}. The specifications considered in [3] are of the
form:

post[t�] I =⇒ (¬E) ∧ pre[t�] F .

Informally such a specification states that the descendants
of the initial states are never erroneous and can potentially
lead to final states.

By choosing different user specified invariant assertions
Iv for (¬E) and intermittent assertions It for F , these
forms of specification were slightly extended by [8] under
the name “abstract debugging” to:

post[t�] I =⇒ Iv ∧ pre[t�] It .

If the states 〈p, m〉 ∈ S consist of a program point p ∈ P
and a memory state m ∈ M then the user can specify
local invariant assertions Ivp attached to program points
p ∈ Pv ⊆ P and local intermittent assertions Itp attached
to program points p ∈ Pt so that

Iv = {〈p, m〉 | p ∈ Pv =⇒ Ivp(m)}
and It = {〈p, m〉 | p ∈ Pt ∧ Itp(m)} .

Otherwise stated, the descendants of the initial states al
ways satisfy all local invariant assertions (which always
holds) and can potentially lead to states satisfying some lo
cal intermittent assertion (which will sometime hold). For
example, a specification that the above factorial program
should always terminate normally states that any execu
tion should always reach program point 6 hence would
consist in choosing:

Ivp(n, f) = n, f ∈ [−∞, +∞], p = 1, . . . , 6;
Itp(n, f) = false, p = 1, . . . , 5;
It6(n, f) = true .

The termination requirement can be very simply specified
as comments in the program text:

0: n := ?;
1: f := 1;
2: while ((n < 0) | (0 < n)) do

3: f := (f * n);
4: n := (n - 1)

5: od;
6: sometime true;;

or by using an external temporal specification such as
✸ at 6 (we use the temporal operators ✷P (read always
P ) to denote the set of sequences of states such that all
states satisfy P , ✸P (read sometime P ) to denote the set
of sequences containing at least one state satisfying P and
the predicate at p holds in all states which control point is
p).

A program static analyzer can therefore be used for ab
stract testing which is similar to testing/debugging, with
some essential differences such as the consideration of an
abstract semantics instead of a concrete one, the ability to
consider several (reversed) executions at a time (as speci
fied by user initial and final state specifications), the use of
forward and backward reasonings, the formal specification
of what has to be tested, etc.

IV. Model-checking of temporal specifications

At first sight, abstract testing is model-checking [9], [10]
of the temporal formula:

✷(
∧

p∈Pv

atp =⇒ Ivp) ∧✸(
∨

p∈Pt

atp ∧Itp)
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for a small-step operational semantics 〈S, t, I〉 of the pro
gram, or more precisely, abstract model-checking [11], [12]
since abstract interpretation is involved.

Indeed model-checking and abstract testing are formal
verification techniques which enjoy remarkable common ad
vantages, the most important ones being that they are
both fully automatic and both involve reasonings that are
close to tracing program execution whence are easily un
derstandable by programmers. However abstract testing
is quite different both from program debugging and (ab
stract) model-checking for the technical reasons explained
in the following sections.

V. Scope of application

A. Scope of abstract testing

The abstract interpreters are developed for programming
languages that is infinitely many programs, with modu
lar and infinitary recursive control and data structures
which are difficult to abstract and are most often ignored
in model-checking (with peculiar exceptions involving com
plete abstractions, such as e.g. [13]).

In order to apply abstract testing to a great variety
of programming languages, abstract interpreter generators
have been developed (see e.g. [14]).

The (generated) abstract interpreters are generic [14],
[15], [16], [17] , that is parameterized by an abstract domain
specifying the considered approximated properties.

The advantage is that the user can choose the approxi
mation of the semantics of the program which is considered
for the abstract testing of the program among a selection
of predesigned reusable choices. There is no need for the
user to manually design the abstract interpreter. A conse
quence of this generality is that there is no easy fine tuning
of the abstract interpreter for a particular specification and
a particular program (abstract compilation, see e.g. [18] ,
improving mainly the performance rather than the preci
sion of the analyses).

B. Scope of (abstract) model checking

(Abstract) “model checking is a technique for verifying
finite-state concurrent systems such as sequential circuit
design and communication protocols" [19]. Indeed many
model checking publications refer to the case study of a
particular concurrent system which is often debugged and
sometimes verified by using an existing model checker on
an abstract model of the concurrent system. The partic
ular, often implicit, abstraction which is used to design
the model can be specifically developed for the considered
concurrent system, see e.g. [20], [21], [22]. However these
abstractions developed for a specific program and a spe
cific specification of that program are not reusable hence
extremely expansive to design.

In a sense this approach should always succeed since
tuning the abstraction for a particular specification of a
particular transition system is always complete (see [23]).
However, the proper abstraction may be quite difficult to
find in practice [24], [25] and may require a lot of efforts

from the user sometimes amounting to a full manual proof.

VI. Abstract semantics

The only abstractions considered in abstract model
checking [26] are state based abstractions ℘(S) �→ ℘(S�) of
the form α(X) = {α(s) | s ∈ X} for a given state abstrac
tion α ∈ S �→ S� , see [27 , sec. 14, p. 23]. This restriction
follows from the requirement in abstract model-checking to
model-check the abstract semantics which, in order to be
able to reuse existing model-checkers, must have the form
of a transition system on (abstract) states.

Contrary to a common believe not all abstractions are of
that form. So some abstract semantics (using e.g. the inter
val abstraction [1], [2] or the polyhedral abstraction [28])
are beyond the scope of abstract model checking. Some
model checking publications use these abstractions or sim
ilar ones which are not state based, e.g. [29], [30], [31],
[32], [33], [34]. But then they use abstract interpretation
based techniques such as fixpoint approximation, widen
ing/narrowing, etc. to check safety (mainly reachability)
properties as considered in Secs. II and III.

VII. The need for infinite abstract domains

Infinite abstract domains are definitely needed in pro
gram analysis for precision (and sometimes efficiency or
ease of programming of the program analyzer). The argu
ment given in [23] uses reachability analysis with the at
tribute-independent interval domain [1], [2] for the family
of programs of the form:

x := 0;
while (x < n) do

x := (x + 1)
od;;

where n is a given integer constant. For example, for n =
100, we get:

0: { x:_O_ }
x := 0;

1: { x:[0,100] }
while (x < 100) do

2: { x:[0,99] }
x := (x + 1)

3: { x:[1,100] }
od {((100 < x) | (x = 100))}

4: { x:[100,100] }

It is easy to prove that for any n > 0 , the analyzer will
discover:

0: { x:_O_ }
x := 0;

1: { x:[0,n] }
while (x < n) do

2: { x:[0,n - 1] }
x := (x + 1)

3: { x:[1,n] }
od {((n < x) | (x = n))}

4: { x:[n,n] }

The argument is then as follows:
1. for any given n it is possible to find an abstract domain
(here { , [0, n] , [0, n−1] , [1, n] , [n, n]}) and to redesign a cor
responding program analyzer (and its correctness proof) so
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that the above result can be computed by this specific ana
lyzer for the specific abstract domain corresponding to this
particular n.
More generally, once a reachability proof has been done
(e.g. by hand!), the abstract finite domain is the set of pred
icates involved in this proof and the abstract interpreter is
nothing but the finite encoding of Floyd-Naur-Hoare verifi
cation conditions restricted to this peculiar finite domain.
In general it is impossible to discover this best-fit abstract
domain by simple inspection of the program text 1.
2. Any single program analyzer being able to analyze the
entire infinite family of programs must use an abstract
domain containing the ⊆-strictly increasing chain [1, n] ,
n > 0 , hence an infinite abstract domain, as well as a
widening, to cope with:

0: { x:_O_ }
x := 0;

1: { x:[0,+oo] }
while (0 < 1) do
2: { x:[0,+oo] }

x := (x + 1)
3: { x:[1,+oo] }

od {((1 < 0) | (0 = 1))}
4: { x:_|_ }

The per-example redesign of the program analyzer
has been proposed in model-checking, including with a
proof-check of its correctness [24], [25], [37], [38] , but is
hardly conceivable for program analysis (but maybe for
large very popular programs on which a huge human in
vestment is conceivable, such as MS Word [39]). Note
that this is different from using abstract interpretation or
model-checking to help a prover/proof checker to infer in
variants [40], [41], [37] or to guide the automatic prover in
its proof search [42].

VIII. Precise checking in the presence of

approximations

More importantly, the algorithms involved in abstract
testing are more precise than model-checking ones in the
presence of approximations. These approximations, such
as widenings [1], [2] , can be simply ignored in model-
checking of finite-state transition systems.

A. Fixpoint approximation check

A first illustration of the enhanced precision of program
testing algorithms consists in considering a fixpoint approx
imation check lfp

�
F � I where 〈L, �, ⊥, �, �, �〉 is a

complete lattice, F ∈ L mon�−−−→ L is monotonic and lfp
�

F
is the �-least fixpoint of F .

For example an invariance check (such as array bound
checking) ✷ I consists in verifying that lfp

�
F � I where

lfp
�

F characterizes the set of descendants of the entry
states and I is the invariant to be checked (asserting
for example that array indexes are within the declared

1Just as the invariants in Floyd-Naur-Hoare proof method are not
trivial to discover. From a practical point of view, compare the em
piric approach of [35] based on heuristics for discovering invariants
from the program test which leads to worse results than [1] , as shown
in [36].

bounds). In this example, L is 〈℘(S), ⊆, ∅, S, ⊆, ⊇〉 ,
F = λX · E ∪ post[t] X so that lfp

�
F = post[t�] E.

In (abstract) model-checking, one computes iteratively
lfp

�
F and then checks that lfp

�
F � I (or uses a strictly

equivalent check, see [43 , p. 73] and Sec. X below).
In abstract testing, one computes iteratively an up

per-approximation J of lfp
�

λ X · I � F (X) with accel
eration of the convergence of the iterates by widen
ing/narrowing [4], [1], [2]. The convergence criterion is:

(I � F (J)) � J . (1)

Then the invariance check has the form:

F (J) � I . (2)

This is sound, by the following theorem:
Theorem 1 If 〈L, �, ⊥, �, �, �〉 is a complete lattice,
F ∈ L mon�−−−→ L is monotonic and I, J ∈ L , then:

(I � F (J)) � J ∧ F (J) � I =⇒ lfp
�

F � I

Proof: We have F (J) = F (J) � F (J) � I � F (J)
[by (2)] � J [by (1)] proving F (J) � J by transitivity
whence lfp

�
F � J by Tarski’s fixpoint theorem [44], [45].

By definition of fixpoints and monotony, it follows that
lfp

�
F = F (lfp

�
F ) � F (J) � I [by (2)]. By transitivity,

we conclude lfp
�

F � I as required.
The reason why abstract testing uses more involved com

putations is that in the context of infinite state systems,
and for a given abstraction, the approximation of the more
complex expression is in general more precise than the ab
straction of the trivial expression. Consider for example
interval analysis [1], [2] of the simple loop accessing se
quentially an array A[1] , …, A[100]:

# IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
i := 0;
while (i <> 100) do

i := (i + 1);
skip % array access %

od;;

The result of the analysis [6] is too approximate to stati
cally check that the index i is within the array bounds 1
and 100 :

0: { i:_O_ }
i := 0;

1: { i:[0,+oo] }
while ((i < 100) | (100 < i)) do

2: { i:[0,+oo] }
i := (i + 1);

3: { i:[1,+oo] }
skip

4: { i:[1,+oo] }
od {(i = 100)}

5: { i:[100,100] }

However by explicit conjunction with the array access in
variant 0 < i ≤ 100 (the evaluation of the runtime check
always B has the effect of blocking the program execution
when the assertion B does not hold):
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# IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
i:=0;
while i <> 100 do

i := i + 1;
always (0 < i) & (i <= 100)

od;;

the static analysis now proves that the array out of bound
error is impossible:

0: { i:_O_ }
i := 0;

1: { i:[0,100] }
while ((i < 100) | (100 < i)) do
2: { i:[0,99] }

i := (i + 1);
3: { i:[1,100] }

always ((0 < i) & ((i < 100) | (i = 100)))
4: { i:[1,100] }

od {(i = 100)}
5: { i:[100,100] }

Experimentally, acceleration of the convergence may even
lead to a faster convergence of the more precise analysis.

B. Fixpoint meet approximation

A second illustration of the difference between
model-checking and abstract testing algorithms is the up
per-approximation of the descendants of the initial states
which are ancestors of the final states. A model-checking
algorithm (such as [46]) computes a conjunction of forward
and backward fixpoints. The forward analysis of the facto
rial program:

# IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

yields:
0: { n:_O_; f:_O_ }

n := ?;
1: { n:[-oo,+oo]; f:_O_ }

f := 1;
2: { n:[-oo,+oo]; f:[-oo,+oo] }

while ((n < 0) | (0 < n)) do
3: { n:[-oo,+oo]; f:[-oo,+oo] }

f := (f * n);
4: { n:[-oo,+oo]; f:[-oo,+oo] }

n := (n - 1)
5: { n:[-oo,1073741822]; f:[-oo,+oo] }

od {(n = 0)}
6: { n:[0,0]; f:[-oo,+oo] }

The backward analysis of the factorial program:
# IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

yields:
0: { n:[-oo,+oo]?; f:[-oo,+oo]? }
n := ?;

1: { n:[0,+oo]; f:[-oo,+oo]? }
f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[-oo,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo]? }
n := (n - 1)

5: { n:[0,+oo]; f:[-oo,+oo]? }
od {(n = 0)}

6: { n:[-oo,+oo]?; f:[-oo,+oo]? }

The intersection is therefore:
0: { n:_O_; f:_O_ }
n := ?;

1: { n:[-oo,+oo]; f:_O_ }
f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[-oo,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo] }
n := (n - 1)

5: { n:[0,1073741822]; f:[-oo,+oo] }
od {(n = 0)}

6: { n:[0,0]; f:[-oo,+oo] }

Abstract testing iterates an alternation between forward
and backward fixpoints [3], [36]. For the factorial program:

# ITlra.analysis ();;
Reachability/ancestry analysis for initial/final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

the analysis is more precise (since it can now derive that f
is positive):

0: { n:_O_; f:_O_ }
n := ?;

1:!: { n:[0,+oo]; f:_O_ }
f := 1;

2: { n:[0,+oo]; f:[1,+oo] }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[1,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[1,+oo] }
n := (n - 1)

5: { n:[0,1073741822]; f:[1,+oo] }
od {(n = 0)}

6: { n:[0,0]; f:[1,+oo] }

Assume that we must approximate lfp
�

F � lfp
�

B from
above using an abstraction defined by the Galois connec
tion 〈L, �〉 −−−→←−−−α

γ
〈L�, ��〉 that is by definition ∀x ∈ L :

∀y ∈ L� : α(x) �� y ⇐⇒ x � γ(y). The intuition
is that, in the concrete world L , any element x ∈ L can
be approximated by any x′ such that x � x′. In the ab
stract world L� , x can be approximated by any y such that
x � γ(y). The best or more precise such abstract approxi
mation is y = α(x). It is an abstract approximation since
x � γ ◦ α(x). It is the more precise since for any other
abstract approximation y , x � γ(y) =⇒ γ ◦ α(x) � γ(y).
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Now F and B can be approximated by their abstract inter
pretations F � � α ◦ F ◦ γ of F and B� � α ◦ B ◦ γ of B.

A better approximation than lfp
��

F � �� lfp
��

B� was sug
gested in [3]. It is calculated as the limit of the alternating
fixpoint computation:

Ẋ0 = lfp
��

F � or lfp
��

B� (3)

Ẋ2n+1 = lfp
��

λX · (Ẋ2n �� B�(X)), n ∈ N (4)

Ẋ2n+2 = lfp
��

λX · (Ẋ2n+1 �� F �(X)), n ∈ N (5)

For soundness, we assume:

lfp
�

F � lfp
�

B = lfp
�

λ X · (lfp
�

F � B(X)) (6)

= lfp
�

λ X · (lfp
�

B � F (X)) (7)

= lfp
�

λ X · (lfp
�

F � lfp
�

B � B(X)) (8)

= lfp
�

λ X · (lfp
�

F � lfp
�

B � F (X)) (9)

so that there is no improvement when applying the alter
nating fixpoint computation to F and B (such as the exact
collecting semantics). However, when considering approxi
mations F � of F and B� of B , not all information can be
collected in one pass. So the idea is to propagate the ini
tial assertion forward so as to get a final assertion. This
final assertion is then propagated backward to get stronger
necessary conditions to be satisfied by the initial states for
possible termination. This restricts the possible reachable
states as indicated by the next forward pass. Going on this
way, the available information on the descendant states of
the initial states which are ascendant states of the final
states can be improved on each successive pass, until con
vergence. A specific instance of this computation scheme
was used independently by [47] to infer types in flowchart
programs.

Let us recall the following classical results in abstract
interpretation [2], [48]:
Theorem 2 (Fixpoint abstraction) If 〈L, �, ⊥, �, !,
�〉 and 〈L�,��,⊥�,��, !�, ��〉 are complete lattices, 〈L,�〉
−−−→←−−−α

γ
〈L�, ��〉 is a Galois connection, and F ∈ L mon�−−−→ L ,

then α(lfp
�

F ) � lfp
��

α ◦ F ◦ γ. ✷

Proof: In a Galois connection, α and γ are monotonic,
so by Tarski’s fixpoint theorem [44] , the least fixpoints ex

ist. So let P �
def= lfp

��

α ◦ F ◦ γ. We have α ◦ F ◦ γ(P �)
= P � whence F ◦ γ(P �) � γ(P �) by definition of Galois
connections. It follows that γ(P �) is a postfixpoint of F

whence lfp
�

F � γ(P �) by Tarski’s fixpoint theorem or

equivalently α(lfp
�

F ) �� P � = lfp
��

α ◦ F ◦ γ.
Theorem 3 (Fixpoint approximation) If 〈L�, ��, ⊥�,
��, !�, ��〉 is a complete lattice, F � , F̄ � ∈ L� mon�−−−→ L� ,

and F � �� F̄ � pointwise, then lfp
��

F � �� lfp
��

F̄ �. ✷

Proof: We have F �(lfp
��

F̄ �) �� F̄ �(lfp
��

F̄ �) =

lfp
��

F̄ � whence lfp
��

F � �� lfp
��

F̄ � since lfp
��

F � =��{X | F �(X) �� X} by Tarski’s fixpoint theorem [44].

The correctness of the alternating fixpoint computation fol
lows from the following:
Theorem 4 (Alternating fixpoint approximation) If
〈L, �, ⊥, �, !, �〉 and 〈L�, ��, ⊥�, ��, !�, ��〉 are com
plete lattices, 〈L, �〉 −−−→←−−−α

γ
〈L�, ��〉 is a Galois connection,

F ∈ L mon�−−−→ L and B ∈ L mon�−−−→ L satisfy the hypothe
ses (8) and (9), F � ∈ L� mon�−−−→ L� , B� ∈ L� mon�−−−→ L� ,
α ◦ F ◦ γ �� F � , α ◦ B ◦ γ �� B� and the se
quence 〈Ẋn, n ∈ N〉 is defined by (3), (4) and (5) then
∀k ∈ N : α(lfp

⊆
F ∩ lfp

⊆
B) �� Ẋk+1 �� Ẋk. ✷

Proof: Observe that by the fixpoint property,
Ẋ2n+1 = Ẋ2n �� B�(Ẋ2n+1) and Ẋ2n+2 = Ẋ2n+1 ��

F �(Ẋ2n+2) , hence Ẋ2n �� Ẋ2n+1 �� Ẋ2n+2 since �� is
the greatest lower bound for �� so that Ẋk , k ∈ N is a
decreasing chain.

We have α(lfp
�

F � lfp
�

B) �� α(lfp
�

F ) since α is mono

tone and α(lfp
�

F )�� lfp
��

F � by 3 , thus proving the propo
sition for k = 0.

Let us observe that α ◦ F ◦ γ �� F � implies F ◦ γ � γ ◦

F � by definition of Galois connections so that in particular
for an argument of the form α(X) , F ◦ γ ◦ α � γ ◦ F � ◦

α. In a Galois connection, γ ◦ α is extensive so that by
monotony and transitivity F � γ ◦ F � ◦ α.

Assume now by induction hypothesis that α(lfp
�

F �
lfp

�
B) �� Ẋ2n , or equivalently, by definition of Ga

lois connections, that lfp
�

F � lfp
�

B � γ(Ẋ2n). Since
F � γ ◦ F � ◦ α , it follows that λ X · lfp

�
F �

lfp
�

B � F (X) � λX · γ(Ẋ2n) � γ ◦ F � ◦ α(X) =
λ X · γ(Ẋ2n � F � ◦ α(X)) since, in a Galois connection,
γ is a complete meet morphism. Now by hypothesis (8),
we have lfp

�
F � lfp

�
B = lfpλX · (lfp

�
F � lfp

�
B � F (X))

�� lfpλ X · γ(Ẋ2n � F � ◦ α(X)) by Th. 3. Let G be
λ X · Ẋ2n � F �(X). In a Galois connection, α ◦ γ
is reductive so that by monotony G ◦ α ◦ γ �� G
and α ◦ γ ◦ G ◦ α ◦ γ �� G ◦ α ◦ γ , whence,
by transitivity, α ◦ γ ◦ G ◦ α ◦ γ �� G. By
Th. 2 , we have α(lfpγ ◦ G ◦ α) �� lfpα ◦ γ ◦ G ◦ α ◦ γ ��

lfpG by Th. 3. Hence, lfpλ X · γ(Ẋ2n � F � ◦ α(X)) �
γ(lfpλ X · Ẋ2n � F �(X)) so that by transitivity we con
clude that α(lfp

�
F � lfp

�
B) �� Ẋ2n+1.

The proof that α(lfp
�

F � lfp
�

B) �� Ẋ2n+2 is similar,
using hypothesis (8) and by exchanging the rôles of F and
B.
It is interesting to note that the computed sequence (3),
(4) and (5) is optimal (see [45]).

If the abstract lattice does not satisfy the descending
chain condition then [3] also suggests to use a narrowing
operator

�
[1], [2] to enforce convergence of the downward

iteration Ẋk, k ∈ N. The same way a widening/narrowing
approach can be used to enforce convergence of the iterates
for λ X · Ẋ2n � F �(X) and λ X · Ẋ2n+1 � B�(X).

C. Local iterations

A third illustration of the difference between model-
checking and abstract testing algorithms in the context of
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approximation is the local iterations [49] to handle tests,
backward assignments, etc. Below is an example of pro
gram static analysis, without local iterations:

# IT.analysis ();;
Forward analysis from initial states;
0: { x:_O_; y:_O_; z:_O_ }

x := 0;
1: { x:[0,0]; y:_O_; z:_O_ }

y := ?;
2: { x:[0,0]; y:[-oo,+oo]; z:_O_ }

z := ?;
3: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

if (((x = y) & (y = z)) & ((z + 1) = x)) then
4: { x:[0,0]; y:[0,0]; z:[-1,-1] }

skip
5: { x:[0,0]; y:[0,0]; z:[-1,-1] }

else
6: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

skip
7: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

fi
8: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

The precision of the same program with the same abstract
domain is greatly enhanced with local iterations:

# IT’.analysis ();;
Forward reductive analysis from initial states;
0: { x:_O_; y:_O_; z:_O_ }

x := 0;
1: { x:[0,0]; y:_O_; z:_O_ }

y := ?;
2: { x:[0,0]; y:[-oo,+oo]; z:_O_ }

z := ?;
3: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

if (((x = y) & (y = z)) & ((z + 1) = x)) then
4: { x:_|_; y:_|_; z:_|_ }

skip
5: { x:_|_; y:_|_; z:_|_ }

else
6: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

skip
7: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

fi
8: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

When applied to tests without side-effects, the idea of
the local iterations is to iterate the abstract evaluation of
the test. From { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo]
} , the abstract interpretation of the test (x = y) yields
y:[0,0] , the test (y = z) provides no information on y
and z while ((z + 1) = x) yields z:[-1,-1]. Iterating
once more, the tests (x = y) and ((z + 1) = x) provide
no new information while (y = z) is false and so is the con
junction (((x = y) & (y = z)) & ((z + 1) = x)). It
follows that program point 4 is not reachable which is de
noted by assigning the bottom value ⊥ (typed _|_) to vari
ables.

D. Fixpoint meet approximation check

The abstract testing strategy to check post[t�] I =⇒
Iv ∧ pre[t�] It and more generally lfp

�
F � I � lfp

�
B com

bines the results of Sec. VIII-A and Sec. VIII-B.

IX. Counter-examples to erroneous designs

Another important element of comparison between
model-checking and abstract testing concerns the conclu
sions that can be drawn in case of failure of the automatic

verification process. The model checking algorithms usu
ally provide a counter-example [50]. This is not always
possible with abstract testing (e.g. for non-termination)
since the necessary over-approximation leads to the con
sideration of inexisting program executions which should
not be proposed as counter-examples. This is the price to
pay for undecidability.

However, abstract testing can provide necessary condi
tions for the specification to be (un-)satisfied. These auto
matically calculated conditions can serve as a guideline to
discover the errors. They can also be checked at run-time
to start the debugging mode before the error actually hap
pens. For example the analysis of the following factorial
program with a termination requirement:

# IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

leads to the necessary pre-condition textttn ≥ 0:
0: { n:[-oo,+oo]?; f:[-oo,+oo]? }
n := ?;

1: { n:[0,+oo]; f:[-oo,+oo]? }
f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[-oo,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo]? }
n := (n - 1)

5: { n:[0,+oo]; f:[-oo,+oo]? }
od {(n = 0)}

6: { n:[-oo,+oo]?; f:[-oo,+oo]? }

Indeed when this condition is not satisfied, i.e. when ini
tially n < 0 , the program execution may not terminate or
may terminate with a run-time error (arithmetic overflow
in the above example). The following static analysis with
this erroneous initial condition n < 0:

# IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
initial n < 0;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

shows that the program execution never terminates prop
erly so that the only remaining possible case is an incor
rect termination with a run-time error (⊥ , typed _|_ , is
the false invariant hence denotes unreachability in forward
analysis and impossibility to reach the goal in backward
analysis):

0: { n:_|_; f:_|_ }
initial (n < 0);

1: { n:[-oo,-1]; f:_O_ }
f := 1;

2: { n:[-oo,-1]; f:[-oo,1] }
while ((n < 0) | (0 < n)) do
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3: { n:[-oo,-1]; f:[-oo,1] }
f := (f * n);

4: { n:[-oo,-1]; f:[-oo,0] }
n := (n - 1)

5: { n:[-oo,-2]; f:[-oo,0] }
od {(n = 0)}

6: { n:_|_; f:_|_ }

Otherwise stated, infinitely many counter-examples are si
multaneously provided by this counter-analysis.

X. Contrapositive reasoning

For the last element of comparison between abstract test
ing and model-checking, observe that in model-checking,
using a set of states or its complement is equivalent as
far as the precision of the result is concerned (but may
be not its efficiency). For example, as observed in [43 ,

p. 73] , the Galois connection 〈℘(S), ⊆〉 −−−−−−→←−−−−−−
post[r]

p̃re[r]
〈℘(S),

⊆〉 (where r ⊆ S × S and p̃re[r] X def= {s | ∀s′ : 〈s,
s′〉 ∈ r =⇒ s′ ∈ X}) implies that the invariance specifica
tion check post[t�] E ⊆ I is equivalent to p̃re[t�]¬I ⊆ ¬E
(or pre[t�]¬I ⊆ ¬E for total deterministic transition sys
tems [4]). Otherwise stated a forward positive proof is
equivalent to a backward contrapositive proof, as observed
in [51]. So the difference between the abstract testing algo
rithm of [2], [48], [4] and the model-checking algorithm of
[52], [53], [10] is that abstract testing checks post[t�] E ⊆ I
while model-checking verifies p̃re[t�]¬I ⊆ ¬E , which is
equivalent for finite transition systems as considered in
[52], [53], [10].

However, when considering infinite state systems the
negation may be approximate in the abstract domain. For
example the complement of an interval as considered in [1],
[2] is not an interval in general. So the backward contra
positive checking may not yield the same conclusion as the
forward positive checking. For example when looking for
a pre-condition of an out of bounds error for the following
program:

# IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
i:=0;
while i <> 100 do

i := i + 1;
if (0 < i) & (i <= 100) then
skip % array access %

else
final (i <= 0) | (100 < i) % out of bounds error %

fi
od;;

the predicate (i <= 0) | (100 < i) cannot be precisely
approximated with intervals, so the analysis is inconclu
sive:

0: { i:[-oo,+oo]? }
i := 0;

1: { i:[-oo,1073741822] }
while ((i < 100) | (100 < i)) do
2: { i:[-oo,1073741822] }

i := (i + 1);
3: { i:[-oo,+oo] }

if ((0 < i) & ((i < 100) | (i = 100))) then
4: { i:[-oo,1073741822] }

skip
5: { i:[-oo,1073741822] }

else {(((i < 0) | (0 = i)) | (100 < i))}
6: { i:[-oo,+oo] }

final (((i < 0) | (i = 0)) | (100 < i))
7: { i:[-oo,1073741822] }

fi
8: { i:[-oo,1073741822] }

od {(i = 100)}
9: { i:_|_ }

However both the forward positive and backward contra
positive checking may be conclusive. This is the case if we
check for the lower bound only:

# IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
i:=0;
while i <> 100 do
i := i + 1;
if (0 < i) then

skip % array access %
else

final (i <= 0) % out of lower bound error %
fi

od;;

This is shown below since the initial invariant is false so
the out of lower bound error is unreachable:

0: { i:_|_ }
i := 0;

1: { i:[-oo,-1] }
while ((i < 100) | (100 < i)) do

2: { i:[-oo,-1] }
i := (i + 1);

3: { i:[-oo,0] }
if (0 < i) then
4: { i:[-oo,-1] }

skip
5: { i:[-oo,-1] }

else {((i < 0) | (0 = i))}
6: { i:[-oo,0] }

final ((i < 0) | (i = 0))
7: { i:[-oo,-1] }

fi
8: { i:[-oo,-1] }

od {(i = 100)}
9: { i:_|_ }

Similarly for the upper bound:
0: { i:_|_ }
i := 0;

1: { i:[101,1073741822] }
while ((i < 100) | (100 < i)) do

2: { i:[100,1073741822] }
i := (i + 1);

3: { i:[101,+oo] }
if ((i < 100) | (i = 100)) then
4: { i:[101,1073741822] }

skip
5: { i:[101,1073741822] }

else {(100 < i)}
6: { i:[101,+oo] }

final (100 < i)
7: { i:[101,1073741822] }

fi
8: { i:[101,1073741822] }

od {(i = 100)}
9: { i:_|_ }

Both analyzes could be done simultaneously by considering
both intervals and their dual, or more generally finite dis
junctions of intervals. More generally, completeness may
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always be achieved by enriching the abstract domain [54].
To start with, the abstract domain might be enriched with
complements [55] , but this might not be sufficient and in
deed the abstract domain might have to be enriched for
each primitive operation [56] , thus leading to an abstract
algebra which might be quite difficult to implement if not
totally inefficient.

XI. Conclusion

As an alternative to program debugging, formal meth
ods have been developed to prove that a semantics or a
model of the program satisfies a given specification. Be
cause of theoretical and practical limitations, these formal
methods have had more successes for finding bugs than
for actual correctness proofs of full programs. For com
plex programs, the basic idea of complete program verifi
cation underlying the deductive and model checking meth
ods must be abandoned in favor of debugging. In the
context of debugging, we have shown that abstract inter
pretation based program static analysis can be extended
to program testing. Abstract interpretation methods of
fer techniques which, in the presence of approximation,
can be viable and powerful alternatives to both the ex
haustive search of model-checking and the partial explo
ration methods of classical debugging. The main advan
tage is that no tuning of the abstract is needed since the
program model is provided by approximation of its se
mantics chosen among a predefined set of wide-spectrum
approximations hence avoiding the need to be designed
by the user which ultimately amounts to a full proof.
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