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Abstract. Computer aided formal methods have been very successful
for the verification or at least enhanced debugging of hardware. The cost
of correction of a hardware bug is huge enough to justify high investments
in alternatives to testing such as correctness verification. This is not the
case for software for which bugs are a quite common situation which
can be easily handled through online updates. However in the area of
embedded software, errors are hardly tolerable. Such embedded software
is often safety-critical, so that a software failure might create a safety
hazard in the equipment and put human life in danger. Thus embedded
software verification is a research area of growing importance. Present
day software verification technology can certainly be useful but is yet
too limited to cope with the formidable challenge of complete software
verification. We highlight some of the problems to be solved and envision
possible abstract interpretation based static analysis solutions.

1 Introduction

Since the origin of computer science, software in general, whence embedded soft
ware in particular, expands continuously to consume available processor cycles
and memory. The exponential complexity growth in VLSI with decreasing or
constant costs is therefore accompanied, maybe with a delay of few months
or years, by a corresponding proportional growth in software. So an operating
system running a large number of applications which crashes on present day
computers every 24 hours will crash every 30 minutes within a decade, probably
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because of software and not hardware faults. If the present software bug rate is
preserved or slightly decreased only, but the size of software is multiplied by a
factor of ten, then the computer system might even be expected to crash every
three minutes. Embedded software is presently simpler than operating systems
but complexity is also growing rapidly in this area. Similar failure rates leads
to software crashes every few hours, which is hardly acceptable for safety crit
ical systems, even fault tolerant ones [1]. It follows that verification techniques
whether formal or informal must scale up in similar proportions, indeed at a
much higher rate since the software verification cost is well-known not to be
linear in the software size. We highlight some of the problems to be solved and
envision possible abstract interpretation based static analysis solutions.

2 Formal methods

Formal methods such as theorem proving based deductive methods [76], model
checking [19] and program static analysis by abstract interpretation [26] have
all had success stories.

The embedded software for the driverless Meteor line 14 metro in Paris
was formally designed with the B-method [3]. The 115 000 lines specification
written in B compiles into a 87 000 lines ADA program. The correctness proof,
using interactive theorem proving, required to handle manually 27 800 proof
obligations. For that purpose, 1400 rules had to be added to the prover and
proved correct, 900 of which automatically. Since the metro is running, no error
was ever claimed to be found in the embedded software nor in its B specification.
Indeed all errors, if any, could only be found at the interfaces, the specification
of which might not have been satisfied by the central control software (not
developped in B and itself potentially subject to errors). One may wonder why,
after such a successful experience, theorem proving based formal methods are not
standard for the design of safety critical embedded software. If the circulating
figures of 600 person/years are not exagerated this might be because of the
human cost of the software development process.

The Ariane 5 flight 501 failure was due to the inertial reference system send
ing incorrect data following a software exception. This overflow exception was
caused by an unprotected data conversion from a too large 64-bit floating point
to a 16-bit signed integer value. Not all such conversions were protected because
a maximum workload target of 80% had been set for the inertial reference sys
tem computer. Ironically, the exception was lifted in a part of the software which
serves no purpose after the Ariane 5 launcher lifts off (but was previously re
quired for Ariane 4). An erroneous reasoning based upon physical limitations
and large margins of safety lead to the decision to leave variables unprotected.
Unfortunately, the overflow was caused by an unexpected high value because the
early part of the trajectory of Ariane 5 differs from that of Ariane 4 and re
sults in considerably higher horizontal velocity values. The exception caused the
inertial reference system processor to shut down which finally proved fatal [68].
The origin of the error was caught (afterwards) by an abstract interpretation
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based [29 ,30 ,32] static analysis of the program [65]. Unfortunately, automatic
static analysis relies on approximation, so not all software errors will ever be
caught statically in this way. There always exists an approximation to prove a
given specification of a given computer system semantics/model but discovering
this abstraction is logically equivalent to a formal correctness proof [27]. So one
either has to manually design the abstraction (often in the hidden form of a
model) or to consider general-purpose reusable abstractions which will always
be too abstract to proof some peculiar functional specification.

The most industrialized of the formal methods is certainly model checking
[16 ,74]. After the famous FDIV design fault in the Pentium processor, most
hardware design companies now have model checkers [6 ,13]. Present-day hard
ware model checkers can verify circuit designs of a few hundreds of registers
(with abstraction of their surrounding environment). Model checking proceeds
by exhaustive enumeration of the state space and is therefore subject to state
space explosion: although the checking algorithm may be linear in the size of the
specification formula and that of the state space, the state space size often grows
exponentially with the size of the description of the model (usually given in the
form of a program in some computer language). Despite various symbolic rep
resentation techniques using BDDs [12] and their numerous variants, symmetry
reduction [17], modular decomposition [62], breadth-first checking with the SAT
procedure [9] etc. model checking still has to scale up for hardware, not speak
ing of software. Difficulties also come out of the temporal logic used for the
specification which is often beyond human understanding capabilities [64 ,69].
Most of the success of model checking is not so much in the formal verification
of refined functional specifications (always subjects to errors in the design of
the model and/or specification) but in the finding of bugs not found by other
informal methods (such as testing or simulation). Such partial model checking
techniques only explore part of the state space (testing or simulation do follow
exactly the same principle) thus avoiding the exploration (see e.g. the random
pruning of the search space in [56]). Debugging is done at the price of sound
ness, which is considered abusive by some, practical by others and sometimes is
misunderstood.

Despite all these successes, debugging, simulation and run-time tests (using
redundant computations to detect faulty numerical computations or to check
at run-time that the path traversed is legal) are still the essential computer
aided methods in embedded software validation and verification. So the present
success of formal methods (mainly in hardware design) is still problematic to
scale up for software.

3 Challenges in Embedded Software Verification

3.1 Software Models

Programming Language Semantics Standard models in software are called
semantics [2]. They formalize program execution in abstract mathematical terms.
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Obviously a programming language semantics can serve as a basis for the analy
sis and verification of software written in this language. In practice, there are
nevertheless many difficulties. Even if (informal) standards do exist (see e.g.
ANSI C [59]), most compilers do not strictly implement these specifications.
Moreover the standards are continuously revised [58]. An example of change
in [60] is “An array subscript is out of range, even if an object is apparently
accessible with the given subscript (as in the lvalue expression a[1][7] given
the declaration int a[4][5]) (6.3.6).” Obviously the (probably erroneous) be
havior of programs may be completely modified by such an update of their
semantics! Programming environments also include many large libraries which
semantics is often only very informally specified. Consequently the semantics of
a programming language is often that specified by a compiler on a given ma
chine for specific libraries, which is hardly understandable. In the best case, the
consequence of this situation is that program verification tools try to conform
to standards and therefore do not fully conform to practice. Nevertheless formal
tools based upon programming (or specification) language semantics (or an ab
stract interpretation of this semantics) have the obvious advantage of providing
automatically a model of the program to be verified.

Problem Driven Abstractions for Model Checking In model-checking,
the model is assumed to be given and the verification is relative to that model
[20]. The model should preserve only selected characteristics of a real-world ar
tifact, while suppressing others so as to abstract away from the too complex
real-world system or program. This abstraction is done informally (or uses ab
stract interpretation of an already existing more refined model). The requirement
to design a model to enable program verification leads to three different descrip
tions of the real-world system or program: – 1 – in a programming language
for the implementation; – 2 – in a verification language for the model and – 3
– in a logic language for the specification of the properties of the model which
have to be checked [55]. So the specification is valid for the implementation only
if the model is faithful, which is seldom checked (but could be using abstract
interpretation to prove the model to be an abstraction of the implementation
semantics). Abstraction is sometimes considered in model checking [21], but this
is often between a concrete model and a more abstract model thus requiring at
least a fourth level in the abstract description of the implementation. Often the
concrete model is already assumed to be finite (although too large to be auto
matically checked) so that the abstraction and concretization functions are now
computable. In this context refinement is computable [18], which is not the case
in general for the semantics of usual programming languages [49].

Abstraction More generally the concrete model is not finite, at least if the
most concrete model is considered to be the semantics of the implementation
and this implementation is described by programs written in a realistic program
ming language. The question is then whether the abstract model should be finite
or infinite. For the verification of a given infinite concrete model, a finite model
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will always be adequate [27]. This leads to the idea of automatizing the design of
the abstract model from the concrete one, using deductive methods to prove its
soundness (e.g. [78]) The difficulty is then that the discovering of the abstraction
is logically equivalent to the discovery of an inductive argument (e.g. an invari
ant) and that the proof that the abstraction is sound is logically equivalent to
an inductive proof (e.g. through invariance verification conditions) [27]. Other
wise stated the correctness of the concrete model can always be established by
checking a finite abstract model, but the discovery and proof of soundness of the
required abstraction is logically equivalent to a direct correctness proof of this
concrete model [27]. It is hoped that this will globally simplify the proof (because
abstractions like partitioning will decompose the global proof into many local
ones [24]). Unfortunately, the soundness proof of the global/local abstractions
(which is undecidable) is much more difficult than checking the abstract model
(which is finite). The whole difficulty is now in the choice (and soundness proof,
if any) of the abstraction so that the benefit is not always clear. Moreover, the
whole abstraction/checking process has to be redone after each modification of
the program. This is certainly a difficulty for embedded software which often
evolves slowly over a long period of times (sometimes up to 20 years). It is there
fore necessary to anticipate how the model will be maintained and modified
along with the program.

Standard Abstractions for Program Analysis For model checkers, the ini
tial abstraction out of the embedded software is provided in the form of an often
finite model for a given program. In static program analysis, the model of the
program to be verified and its abstraction are provided by the analyzer and
proved correct for a given programming language. So the user does not have to
extract a verification model from his program but only to choose among prede
fined abstractions. Since analyzers must work for infinitely many programs, it
is shown in [36] that no finite abstraction will be as powerful as infinite abstract
domains with widening/narrowing [29 ,30] for Turing equivalent programming
languages. A broader class of general-purpose abstractions, implemented in the
form of libraries, is needed. The elimination of false alarms through the auto
matic choice of the appropriate abstract domain is still opened.

Widening/Narrowing and Their Duals Infinite abstract domains not sat
isfying chain conditions do require the use of widening/narrowing techniques
[29 ,30] in order to accelerate the convergence of fixpoint computations into ap
proximations from above or to choose among alternatives in absence of a best
approximation. Dual notions do exist for approximations from below [23]. Widen
ing/narrowing techniques are also used in model checking although the link with
these well-known techniques is not always recognized (e.g. compare the widening
for BDDs of [66] to that of [71]).

The widening/narrowing technique is a dynamic approximation technique
(during fixpoint computation) whereas abstraction is a static one (before fixpoint
computation, at the time the model/abstract semantics is designed) [30]. All
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abstractions can be expressed as widenings [34] so abstraction is required only
to ensure the existence of an efficient computer-representation of the properties
in static analysis and of an initial model in model checking. Otherwise, one
can always represent properties as terms although this is not quite adequate in
practice since powerful widenings are based on the semantics and the geometry
of the fixpoint computation. Widenings based on thresholds (for example the
widening to a finite domain [53] in static analysis or the limitation of reachability
at a certain depth in model-checking [9]) are equivalent to static abstraction
so are not very expressive [34]. Dynamic widenings could be better exploited
in model checking to cope with the state space explosion problem, the same
model being explored several times at different levels of abstractions determined
dynamically by widenings.

3.2 Specifications

The specification language in model checking is typically a temporal logic [16]
or a fixpoint calculus [63]. In program analysis, the specification is either pro
vided automatically (e.g. a standard example is absence of run-time errors
[32 ,24]) or provided by the user for abstract testing [11 ,24 ,39]. In both cases, the
forward/backward and least/greatest fixpoints based static analysis/checking
methods are not so different. Since the design of a model for a program is an
abstraction in the sense of abstract interpretation, we can establish the following
comparison:

Specification

Program-dependent Language dependent

Abstraction
Program-dependent Model checking —

Language dependent Abstract testing Static Analysis

Obviously, one can also think of Static Checking where a program-dependent
model is designed to check for language dependent properties for which standard
abstractions may be a problem (such as threads must eventually enter/exit
critical sections, the condition in monitors will eventually be verified for condition
variables, etc.).

3.3 Control Structures

The flat modelling of control structures by transition systems initially considered
in program analysis [32] and model-checking [16 ,74] is valid for some program
ming languages (like Prolog [35]) but this remains an exception (e.g. for func
tional languages [38]). In this context the finiteness hypothesis on data structures
is not enough to ensure the finiteness of the program semantics. An example is
the restriction of program variables to booleans in which case it is possible to
simulate a Turing machine in Pascal [25] but not in C thus enabling finite model
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checking [5]. Control analysis may also require a precise data flow analysis e.g.
to trace pointers to functions or handlers (see Sec. 3.5).

Even with simple control structures, control abstractions (which consist in
isolating a control-flow skeleton which is void of any knowledge about data [56]),
in particular of the veracity of tests and of run-time errors, is very rough and
usable only for safety properties. An example of erroneous reasoning based on
this abstraction is live variable in dataflow analysis [79] which is a liveness
property for the control-flow model but not for the original program so that the
analysis determines potentially live variables only (whence dead variables for
sure). So deductive methods or model checking methods for proving liveness of
the model while ignoring the program control flow (even partially e.g. by ignoring
a single test) perform abstractions from above which are valid for safety but not
liveness properties. For such upper abstraction models, most of the power of
temporal logics over traditional program analysis methods is simply ruled out.
Obviously, the dual notion of abstraction from below can also be used [22] (or
both can be mixed [57]) but such lower approximation models are hardly usable
to prove more than one property at a time so that different models are needed
for proving different liveness properties of the same given program (alternative
approaches are discussed in Sec. 3.8).

Although this might be still unfrequent, embedded software will certainly
evolve towards multithreaded programming which requires both a high level
of expertise together with precise analysis tools to cope with the usual accom
panying control flow problems such as untrapped exceptions, race conditions,
deadlocks, priority inversion, nonreentrant software, etc.

3.4 Numerical Properties

Integer Properties The first abstractions into non-relational infinite domains
[29 ,30] where designed to handle properties of integers. Non-relational numerical
abstraction were rapidly followed by relational ones [41]. Such relational domains
do scale up for static analysis provided the number of values which can be
related is limited either statically at abstraction time [72] or dynamically using
widenings [37].

Relational numerical abstract domains with widening have been extensively
used in model checking of infinite state spaces to handle safety properties using
exactly classical static analysis techniques [51].

For liveness properties, the techniques used in static analysis (inference of
variant functions) and in model checking of finite systems (fixpoint approxima
tion from below) are quite different (see Sec. 3.8 below). This is because in the
context of infinite state spaces the only dual widenings which are known are
based upon variant functions or on the finite prefix/suffix/intermediate explo
ration of a finite subset of the execution traces (which is nothing but debugging).
More work is needing on that subject to cope with liveness properties of embed
ded software involving integer computations.
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Floating Point Properties Most present embedded software now involve float
ing point computations (e.g. to control a trajectory) which used to be performed
with fixed precision. A consequence is the uncontrolled loss of precision of the
floating-point operations. Transcendental numbers (like π and e) cannot be rep
resented exactly in a computer, since machines only use finite implementations
of numbers (floating-point numbers instead of mathematical real numbers); they
are truncated to a given number of decimals. Moreover the usual algebraic laws
(associativity for instance) are no longer true when manipulating floating-point
numbers. This leads to bugs such as run-time errors (here for instance, un
caught numerical exceptions), but also more subtle ones about the relevance
of the numerical calculations that are made which in some cases can be com
pletely non-significant. Let us just take an example reported in [50] showing
the importance of the loss of precision. On the 25th of February 1991, during
the Gulf war, a Patriot anti-missile missed a Scud in Dharan which in turn
crashed onto an American barracks, killing 28 soldiers. The official enquiry re
port (GAO/IMTEC-92-26) attributed this to a fairly simple “numerical bug”.
An internal clock that delivers a tick every tenth of a second controlled the mis
sile. Internal time was converted in seconds by multiplying the number of ticks
by 1

10 in a 24 bits register. But 1
10 = 0.00011001100110011001100 · · · in binary

format, i.e. is not represented in an exact manner in memory. This produced a
truncating error of about 0.000000095 (decimal), which made the internal com
puted time drift with respect to ground systems. The battery was in operation
for about 100 hours which made the drift of about 0.34 seconds. A Scud flies
at about 1676m/s, so the clock error corresponded to a localization error of
about 500 meters. The proximity sensors supposed to trigger the explosion of
the anti-missile could not find the Scud and therefore the Scud fell and hit the
ground, exploding onto the barracks.

Sophisticated semantics and history based abstractions are needed to stati
cally analyze the origin (not only the consequences) of this loss of precision in
numerical programs [50]. Note that this is completely different from the boolean
verification of circuits in floating-point unit by model checking [15].

3.5 Data Structures

In model checking program data structures are most often simply ignored. How
ever the analysis of message-passing transition systems (e.g. for communication
protocols) must take message-passing queues and operations into account (often
not their content), see e.g. [10]. The abstraction process, which is an abstract
interpretation, often remains quite informal or on purely syntactic bases [56],
which is not adequate for liveness properties (as noted in previous Sec. 3.3).

Embedded software is often written in C or ADA and uses data structures
which cannot be completely ignored when verifying their correctness. An exam
ple is the encoding of control into booleans (e.g. when compiling synchronous
programs to C) or enumerated types. Type casts may also have to be taken into
account. A more complex example is the use of pointers, in the simplest case
to pass parameters to procedures (e.g. pointers to buffers, queues, etc.) which



Verification of Embedded Software: Problems and Perspectives 9

may yield to aliases. Any analysis or correctness proof not taking aliases into
account would be incorrect. Such pointer alias analysis attempts to determine
when two pointer expressions refer to the same storage location and is useful to
detect potential side-effects through assignment and parameter passing (see an
overview in [77]). Such memory allocated data structures are used to memorize
information which must be traced in some way or another in the correctness
analysis or proof. It is then necessary to study the shape of the data structures
and the absence of errors in their manipulation (see e.g. [43]). A classical ex
ample of error is buffer overflow (which has been often used by attackers of
operating systems). Using precise domains, it is possible to check the absence
of overflows with a very low rate of false alarms [42]. Standard abstractions for
data structures remain to be developped, e.g. for standard libraries.

3.6 Modularity

Modularity has been studied both in model checking and static analysis. Whereas
the modules are often designed manually in model checking [62], they often fol
low the modular structure of the software in program static analysis. Four basic
methods for compositional separate modular static analysis of programs by ab
stract interpretation are known [28]: – 1 – Simplification-based separate analysis
(where the equations/constraints to be solved for a module are simply simplified
while the fixpoint computation is delayed until the context of use of the module
is known); – 2 – Worst-case separate analysis (which consists in considering
that absolutely no information is known on the interfaces of the module as in
the detection of all potential interactions between the agents of a part of a mo
bile system interacting with an unknown context [46]) ; – 3 – Separate analysis
with (user-provided) interfaces (where the properties of the external objects ref
erenced in the program part are defined by the user so that the analysis of the
module can rely on that information while any use of the module must guarantee
its veracity); and – 4 – Symbolic relational separate analysis (where the analysis
of the module relates symbolically the local information within the module to
named external objects through a relational domain as in the pointer analysis
of [31 , Sec. 4.2.2]). There is also a fifth category which is essentially obtained by
iterative composition of the above separate local analyses and global analysis
methods [28]. For example, very large software based on a library of elementary
functions could be analyzed efficiently by a very precise separate (thus possibly
parallel) analysis of the basic functions later reused, maybe at a lower degree of
precision, for the whole program analysis [28].

3.7 Timing

Embedded software (in particular when design according to the model of syn
chronous languages such as Lustre [14] or Signal [8]), must be shown to satisfy
timing constraints (typically execution of all simultaneous “instantaneous” ac
tions must take less than a given upper bound, typically of few milliseconds).
Modelling such timing constraints is difficult if not impossible when bounds
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are tight so that characteristics of modern computers such as pipelines and
cache hierarchies must be taken into account. These are numerous extensions of
model-checking to handle time (such as timed automata e.g. [4]) but it would be
very difficult to manually design appropriate models at the required fine grain
level. Indeed in program analysis, the timing semantics can hardly be designed
at the programming language source level (for which automatic concrete com
plexity analysis is certainly useful [47] but insufficient since constants factors do
matter [7]!). In practice it is indispensable to consider the program semantics at
the assembler level, that is for a given compiler and for a given processor with
some hypotheses on the frequency of physical interrupts [81]. The model being
automatically generated for the program, one can be confident in its correctness
which is established at the assembler language level using a timed model of the
considered processor (which is a difficult task). To handle loops [70], one must
have an upper-bound on the number of iterations, i.e. handle termination.

3.8 Termination and Unbounded Liveness Properties

Although embedded software must usually be proved not terminate except maybe
through an operator imperative interaction (which is an easily checked property
through reachability), parts of the software (such as elementary loops in basic
functions) must be proved to effectively terminate. This is liveness proof which
is often much more difficult than safety proofs.

This is not so much the case for finite models, even with fairness hypotheses
[20], since in that case the model itself is a safety property (since no loop can
go through infinitely many different states) so that any liveness property of the
model can be proved by proving a stronger safety property of the model.

However infinite models (e.g. traces generated by an infinite transition sys
tem) are usually not safety properties so that proofs much resort to variant
functions [48] which are much harder to discover than invariants (since they
are abstractions of traces not of sets of states [33]). The models considered in
model-checking (such as timed automata [4]) are often too restricted to serve as
a basis for a general approach.

The results obtained in program analysis, in particular in the context of
partial evaluation [67] or for the termination of imperative [61] or functional
[73] or logic/constraint [80] languages seems promising. However fairness and
schedulers still have to be considered e.g. for infinite state distributed programs
in a local network.

3.9 Distribution and Mobility

The evolution of critical real-time embedded software for avionics, communica
tion, defense, automotive, utilities, space or medical industry is from central
ized control to distributed control on a (e.g. Ethernet-based) local area network
(LAN). For example, modern automotive, aeronautic and train transportation
computer systems certainly contain or will soon contain several dozen of comput
ers communicating on a LAN. This radically changes the programming models
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which are presently used, in particular from shared-memory to message-based
systems. In this context one must reason on sets of traces (such as UML se
quence diagram [54]) and not on sequences of sets of states (as is implicit in
most temporal specifications [40]) for which present day set-based abstractions
may be inadequate [75]. Experience in this analysis of network protocols [52] is
certainly useful but regularity will certainly not be the rule.

Embedded software on LANs will certainly be fully integrated within wide-ar-
ea networks (such as Internet) before the end of the present decade. For example
to meet the constraints resulting from continuous air traffic growth, the future air
navigation systems will certainly replace the existing air traffic control systems
by effective traffic management that relies on flight path negotiations between
the ground and the aircraft to reduce pilot and controller workload which implies
network communications e.g. through communication satellites. A characteris
tic of network software is mobility, at least to replace online components by
new ones but also as a communication mean, which implies continuous changes
in the communication topology. The proof of non-trivial properties of mobile
systems of processes definitely involves unbounded recursive structures which
are hard to analyze using uniform models where all instances of processes are
merged independently of their instances. Relational abstractions with counting
are necessary to obtain precise results [45 ,44].

3.10 User Interfaces

Tools based on formal methods may require a profound understanding of the
methods (e.g. all tools are incomplete so that the user will eventually come
with questions that the formal tool cannot fully answer in which case the user
will want to understand why no definite positive/negative answer is produced,
which even for simple formal systems as simple as type systems is sometime very
hard). Interfaces of formal software tools with non-specialists of formal methods,
in particular to interpret the output in case of uncertainty and to interact with
the tool, is also to be considered.

4 Conclusion

Formal verification is certainly essential to design safety critical embedded sys
tems. Embedded software validation must evolve from debugging to verifica
tion, still a long way to go. The increasing complexity of such software systems
evolves with the new capacities of hardware and networking capabilities. This
continuously increased complexity makes the verification of embedded software
a formidable challenge for the next decade.

The success will certainly depends on which models/semantics and specifi
cations of embedded software are considered:

– Hand-made models are a guarantee of success (since finite models allowing
for a formal proof of a given program always exist [27]). However hand-made
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models are also extremely costly to design (but maybe for relatively small
parts of the program) and maintain (in order to follow program evolutions).
Methods for proving the soundness of such hand-made models are still to
be developped and could strongly rely on abstract interpretation.

– Application specific models constructed by automatic abstraction require
a model of reference and a theorem prover based soundness proof. This is
logically equivalent to direct formal proofs [27] and so are also likely to be
extremely costly (again but for small parts of the program).

– Since abstraction is inevitable and costly, an interesting alternative is to de
sign reusable abstractions for programming languages with respect to pre
defined specifications (as in static program analysis) or user-defined specifi
cations (as in abstract testing [39]). This is the whole purpose of program
semantics abstraction as formalized by abstract interpretation [26] which
will certainly be an important formal method leading to the systematic de
sign of useful automatic tools supporting the design of embedded software.
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