
Abstract Interpretation: Theory and Practice

Patrick Cousot

École normale supérieure
Département d’informatique,

45 rue d’Ulm
75230 Paris cedex 05, France
Patrick.Cousot@ens.fr

http://www.di.ens.fr/~cousot/

Our objective in this talk is to give an intuitive account of abstract interpre-
tation theory [1,2,3,4,5] and to present and discuss its main applications [6].

Abstract interpretation theory formalizes the conservative approximation of
the semantics of hardware and software computer systems. The semantics pro-
vides a formal model describing all possible behaviors of a computer system
in interaction with any possible environment. By approximation we mean the
observation of the semantics at some level of abstraction, ignoring irrelevant de-
tails. Conservative means that the approximation can never lead to an erroneous
conclusion.

Abstract interpretation theory provides thinking tools since the idea of ab-
straction by conservative approximation is central to reasoning (in particular on
computer systems) andmechanical tools since the idea of an effective computable
approximation leads to a systematic and constructive formal design methodol-
ogy of automatic semantics-based program manipulation algorithms and tools
(e.g. [7]).

Semantics have been studied in the framework of abstract interpretation
[8,9] and compared according to their relative precision. A number of semantics
including among others small-step, big-step, termination and nontermination se-
mantics, Plotkin’s natural, Smyth’s demoniac, Hoare’s angelic relational and cor-
responding denotational semantics, Dijkstra’s weakest precondition and weakest
liberal precondition predicate transformers and Hoare’s partial and total ax-
iomatic semantics have all been derived by successive abstractions starting from
an operational maximal trace semantics of a transition system. This results in a
hierarchy of semantics providing a complete account of the structure and relative
precision of most well-known semantics of programming languages [10].

Program transformation (such as online and offline partial evaluation,
program monitoring (e.g. for security policy enforcement or scheduling), etc.) is
an abstract interpretation [11] where the program syntactic transformation is
ann effective approximation of a corresponding undecidable transformation of the
program semantics. The correctness of this program transformation is expressed
as an observational equivalence of the subject and transformed semantics at
some level of abstraction.

D. Bos̆nac̆ki and S. Leue (Eds.): SPIN 2002, LNCS 2318, pp. 2–5, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot/
http://www.di.ens.fr/~cousot/


Abstract Interpretation: Theory and Practice 3

Typing that is formal type systems and type inference algorithms, is an
approximation of the denotational semantics of higher-order functional programs
[12]. The abstraction is powerful enough to show statically that “typable cannot
go wrong” in that the denotational semantics of these programs cannot raise at
run-time those errors excluded by typing. This point of view leads to a hier-
archy of type systems, which is part of the lattice of abstract interpretation of
the untyped lambda-calculus. The hierarchy includes classical Milner/Mycroft
and Damas/Milner polymorphic type schemes, Church/Curry monotypes and
Hindley principal typing algorithm as well as new à la Church/Curry polytype
systems.

Model-checking classical linear-time and branching -time state based
algorithms are sound and complete abstract interpretations of the trace-based
semantics of transition systems [13]. Surprisingly, for the x

µ? -calculus, a novel gen-
eral temporal specification language featuring a natural and rich time-symmetric
trace-based semantics, model-checking turned out to be incomplete, even for fi-
nite systems [13]. Moreover, any model-checking for the x

µ? -calculus abstracting
away from sets of traces will be necessarily incomplete [14].

Static program analysis is the first and most prevalent application
of abstract interpretation [1,3,4,5]. By effective approximation of the fixpoint
semantics of programs through abstraction [4,5] and convergence acceleration
[4,15], a program analyzer will produce maybe incomplete but always sound
information about the run-time behavior of programs. Abstract interpretation
provides a general theory behind all programs analyzers, which only differ in
their choice of considered programming languages (e.g. imperative [16,17], par-
allel [18,19], functional [20], logic [21], etc), program properties (among many
others, run-time errors [16,22], precision [23], security [24,25], fair liveness [26],
probabilistic termination [27], etc) and their abstractions. Finally, we will dis-
cuss the various possible designs of program analyzers, from general-purpose to
application-specific ones.

References

1. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble,
Grenoble, FR (1978)

2. Cousot, P.: Semantic foundations of program analysis. In Muchnick, S., Jones,
N., eds.: Program Flow Analysis: Theory and Applications. Prentice-Hall (1981)
303–342

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
Los Angeles, CA, ACM Press (1977) 238–252

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL, San Antonio, TX, ACM Press (1979) 269–282
5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic and Comp.

2 (1992) 511–547



4 Patrick Cousot

6. Cousot, P.: Abstract interpretation based formal methods and future challenges,
invited paper. In Wilhelm, R., ed.: « Informatics — 10 Years Back, 10 Years
Ahead ». Volume 2000 of LNCS. Springer-Verlag (2000) 138–156

7. Cousot, P.: The calculational design of a generic abstract interpreter. In Broy, M.,
Steinbrüggen, R., eds.: Calculational System Design. Volume 173. NATO Science
Series, Series F: Computer and Systems Sciences. IOS Press (1999) 421–505

8. Cousot, P.: Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. ENTCS 6 (1997)
http://www.elsevier.nl/locate/entcs/volume6.html , 25 pages.

9. Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpreta-
tion. In: 19th POPL, Albuquerque, NM, ACM Press (1992) 83–94

10. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoret. Comput. Sci. (2002) To appear (Preliminary
version in [8]).

11. Cousot, P., Cousot, R.: Systematic design of program tansformation frameworks.
In: 29th POPL, Portland, OR, ACM Press (2002) 178–190

12. Cousot, P.: Types as abstract interpretations, invited paper. In: 24th POPL, Paris,
FR, ACM Press (1997) 316–331

13. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: 27th POPL, Boston,
MA, ACM Press (2000) 12–25

14. Ranzato, F.: On the completeness of model checking. In Sands, D., ed.: Proc.
10th ESOP ’2001. Genova, IT, 2–6 Apr. 2001, LNCS 2028, Springer-Verlag (2001)
137–154

15. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation, invited paper. In Bruynooghe, M., Wirsing,
M., eds.: Proc. 4th Int. Symp. PLILP ’92. Leuven, BE, 26–28 Aug. 1992, LNCS
631, Springer-Verlag (1992) 269–295

16. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proc. 2nd Int. Symp. on Programming, Dunod (1976) 106–130

17. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In Neuhold, E., ed.: IFIP Conf. on Formal Description of Programming
Concepts, St-Andrews, N.B., CA, North-Holland (1977) 237–277

18. Cousot, P., Cousot, R.: Semantic analysis of communicating sequential processes.
In de Bakker, J., van Leeuwen, J., eds.: 7th ICALP. LNCS 85, Springer-Verlag
(1980) 119–133

19. Cousot, P., Cousot, R.: Invariance proof methods and analysis techniques for
parallel programs. In Biermann, A., Guiho, G., Kodratoff, Y., eds.: Automatic
Program Construction Techniques. Macmillan (1984) 243–271

20. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages), invited paper. In: Proc. 1994 ICCL, Toulouse,
FR, IEEE Comp. Soc. Press (1994) 95–112

21. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Logic Programming 13 (1992) 103–179 (The editor of J. Logic Programming
has mistakenly published the unreadable galley proof. For a correct version of this
paper, see http://www.di.ens.fr/~cousot .).

22. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In Danvy, ., Filinski, A., eds.: Proc. 2nd Symp. PADO ’2001. Århus, DK, 21–23
May 2001, LNCS 2053, Springer-Verlag (2001) 155–172

http://www.elsevier.nl/locate/entcs/volume6.html
http://www.di.ens.fr/~cousot


Abstract Interpretation: Theory and Practice 5

23. Goubault, É., Martel, M., Putot, S.: Asserting the precision of floating-point
computations: a simple abstract interrpeter. In Le Métayer, D., ed.: Proc. 11th

ESOP ’2002. Grenoble, FR, LNCS ???? Springer-Verlag (2002) ???–???
24. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:

14th IEEE Computer security Foundations Workshop (CSFW-14), Cape Breton,
CA, IEEE Comp. Soc. Press (2001) 82–96

25. Feret, J.: Abstract interpretation-based static analysis of mobile ambients. In
Cousot, P., ed.: Proc. 8th Int. Symp. SAS ’01. Paris, FR, LNCS 2126, Springer-
Verlag (2001) 413–431

26. Mauborgne, L.: Tree schemata and fair termination. In Palsberg, J., ed.: Proc. 7th

Int. Symp. SAS ’2000. Santa Barbara, CA, US, LNCS 1824. Springer-Verlag (29
June – 1 Jul. 2000) 302–321

27. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In Cousot, P., ed.: Proc. 8th Int. Symp. SAS ’01. Paris, FR, LNCS 2126, Springer-
Verlag (2001) 111–127

In Proceedings of the Ninth International SPIN Workshop on Model Checking Soft-
ware, D. Bos̆nac̆ki and S. Leue (Eds.), Grenoble, France, April 11—12, 2002. Lecture
Notes in Computer Science 2318, c© Springer, Berlin, 2002, pp. 2–5.


