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Our objective in this talk is to give an intuitive account of abstract interpre-
tation theory [1,2,3,4,5] and to present and discuss its main applications [6].

Abstract interpretation theory formalizes the conservative approximation of
the semantics of hardware and software computer systems. The semantics pro-
vides a formal model describing all possible behaviors of a computer system
in interaction with any possible environment. By approximation we mean the
observation of the semantics at some level of abstraction, ignoring irrelevant de-
tails. Conservative means that the approximation can never lead to an erroneous
conclusion.

Abstract interpretation theory provides thinking tools since the idea of ab-
straction by conservative approximation is central to reasoning (in particular on
computer systems) andmechanical tools since the idea of an effective computable
approximation leads to a systematic and constructive formal design methodol-
ogy of automatic semantics-based program manipulation algorithms and tools
(e.g. [7]).

Semantics have been studied in the framework of abstract interpretation
[8,9] and compared according to their relative precision. A number of semantics
including among others small-step, big-step, termination and nontermination se-
mantics, Plotkin’s natural, Smyth’s demoniac, Hoare’s angelic relational and cor-
responding denotational semantics, Dijkstra’s weakest precondition and weakest
liberal precondition predicate transformers and Hoare’s partial and total ax-
iomatic semantics have all been derived by successive abstractions starting from
an operational maximal trace semantics of a transition system. This results in a
hierarchy of semantics providing a complete account of the structure and relative
precision of most well-known semantics of programming languages [10].

Program transformation (such as online and offline partial evaluation,
program monitoring (e.g. for security policy enforcement or scheduling), etc.) is
an abstract interpretation [11] where the program syntactic transformation is
ann effective approximation of a corresponding undecidable transformation of the
program semantics. The correctness of this program transformation is expressed
as an observational equivalence of the subject and transformed semantics at
some level of abstraction.
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Typing that is formal type systems and type inference algorithms, is an
approximation of the denotational semantics of higher-order functional programs
[12]. The abstraction is powerful enough to show statically that “typable cannot
go wrong” in that the denotational semantics of these programs cannot raise at
run-time those errors excluded by typing. This point of view leads to a hier-
archy of type systems, which is part of the lattice of abstract interpretation of
the untyped lambda-calculus. The hierarchy includes classical Milner/Mycroft
and Damas/Milner polymorphic type schemes, Church/Curry monotypes and
Hindley principal typing algorithm as well as new à la Church/Curry polytype
systems.

Model-checking classical linear-time and branching -time state based
algorithms are sound and complete abstract interpretations of the trace-based
semantics of transition systems [13]. Surprisingly, for the x

µ? -calculus, a novel gen-
eral temporal specification language featuring a natural and rich time-symmetric
trace-based semantics, model-checking turned out to be incomplete, even for fi-
nite systems [13]. Moreover, any model-checking for the x

µ? -calculus abstracting
away from sets of traces will be necessarily incomplete [14].

Static program analysis is the first and most prevalent application
of abstract interpretation [1,3,4,5]. By effective approximation of the fixpoint
semantics of programs through abstraction [4,5] and convergence acceleration
[4,15], a program analyzer will produce maybe incomplete but always sound
information about the run-time behavior of programs. Abstract interpretation
provides a general theory behind all programs analyzers, which only differ in
their choice of considered programming languages (e.g. imperative [16,17], par-
allel [18,19], functional [20], logic [21], etc), program properties (among many
others, run-time errors [16,22], precision [23], security [24,25], fair liveness [26],
probabilistic termination [27], etc) and their abstractions. Finally, we will dis-
cuss the various possible designs of program analyzers, from general-purpose to
application-specific ones.
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