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Abstract. We presentin extenso the calculation-based development of a generic com-
positional reachability static analyzer for a simple imperative programming language
by abstract interpretation of its formal rule-based/structured small-step operational

semantics.
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1. Introduction

The 1998 Marktoberdorf international summer schoolGaiculational System Desigmas

been “focusing on techniques and the scientific basis for calculation-based development of
software and hardware systems as a foundation for advanced methods and tools for software
and system engineering. This includes topics of specification, description, methodology,
refinement, verification, and implementation.”. Accordingly, the goal of our course was to
explain both

* the calculation-based development of an abstract interpréberthe automatic static
analysis of a simple imperative language, and

* the principles of application of abstract interpretation to the partial verification of pro-
grams byabstract checking

For short in these course notes, we concentrate only on the calculational design of a
simplified but compositional version of the static analyzer. Despite the fact that the considered
imperative language is quite simple and the corresponding analysis problem is supposed
to be classical and satisfactorily solved for a long tirfg fhe proposed analyzer is both
compositional and much more precise (e.g. for boolean expressions) than the solutions, often
naive, proposed in the literature. Consequently the results presented is these notes, although
quite elementary, go much beyond a mere introductory survey and are of universal use.

A static analyzer takes as input a program written in a given programming language (or a
family thereof) and statically, automatically and in finite ttheeitputs an approximate descrip-
tion of all its possible runtime behaviors considered in all possible execution environments
(e.g. for all possible input data). The approximation is sound or conservative in that not a
single case is forgotten but it may not be precise since the problem of determining the strongest
program properties (including e.g. termination) is undecidable.

This automatically determined information can then be compared to a specification either
for program transformation, validation, or for error detectioiThis comparison can also be
inconclusive when the automatic analysis is too imprecise. The specification can be provided
by the formal semantics of the language which formally defines which errors are detected at
runtime or can be defined by the programmer for interactive abstract checking. The purpose
of the static analysis is to detect the presence or absence of runtime errors at compile-time,
without executing the program. Because the abstract checking is exhaustive, it can detect
rare faults which are difficult to come upon by hand. Because the static determination of
non-trivial dynamic properties is undecidable, the analysis may also be inconclusive for some
tests. By experience, this represents usually from 5 to 20% of the cases which shows that
static analysis can considerably reduces the validation task (whether it is done by hand or
semi-automatically). See’[] for a recent and successful experience for industrial critical
code.

The main idea of abstract interpretatién$, 13] is that any question about a program can
be answered using some approximation of its semantics. This approximation idea applies to
the semantics themselved fvhich describe program execution at an abstraction level which
is often very far from the hardware level but is nevertheless precise enough to conclude e.g.
on termination (but not e.g. on exact execution times). The specification of a correct static
analyzer and its proof can be understood as an approximation of a semantics, a process which is
formalized by the abstract interpretation theory. In the context of the Marktoberdorf summer

1from a few seconds for small programs to a few hours for very large programs;
2As shown in the course, the situation is not so simple since the analysis and verification do interact.
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school, these course notes put the emphasis on viewing abstract interpretation as a formal
method for the calculational design of static analyzers for programming languages equipped
with a formally defined semantics.

2. Definitions

A poset(L, C)isasel with a partial ordefE (thatis a reflexive, antisymmetric and transitive
binary relation onL) [20]. A directed complete partial ordefdcpo) (L, C, L) is a poset
(L, C) such that increasing chaing C x1 C ... of elements oL have a least upper bound
(lub, join) |_| X . A complete partial ordeXcpo) (L, L, C, u)isadcpo(L, C, u) with an
i>0
infimum L = ug. A complete latticgL, =, L, T, u, rnyis aposetfL, C) such that any
subsetX C L has aluhbuX. Itfollows thatl = L@ is the infimum,T = UL is the supremum
and any subset has a greatest lower bound (glb, meét: L{x e L | Vy € X : X C y}.
AmapF € L — L of L into L is monotoniqwritten ¥ € L —> L) if and only if

VX,yeL: XCy — F(X)C F(y).

If # € L /—> L is a monotonic map of into L andm = ¥ (m) then pri F denotes the
C-least fixpoint off” which isC-greater than or equal ton (if it exists). It is characterized

by
Flfp.F) = lfp_F,
m C prnf F,
MEX)A(F(X)=X) — pri}‘gx.
Ifp~ F = Ifp_ F is the least fixpoint off . The greatest fixpoint (gfp) is defined dually,
replacingC by its inversed, the infimum_L by the supremunT, the lubu by the greatest
lower bound (glb)T, etc.

In order to generalize the Kleene/Knaster/Tarski fixpoint theorem, the transfinite iteration
sequence is defined a® (s the class of ordinals)

FOm) = m,
F*m) 2 F(F%m)) for successor ordinals, 1)
Frm) = |_|375(m) for limit ordinals .

S<A

This increasing sequende’, § € O is ultimately stationary at rank € O and converges to
Fe= pri F . This directly leads to an iterative algorithm which is finitely convergent when
L satisfies the ascending chain condition (A€.C)

Thecomplement-P of a subseP C SofasetSis{s e S|s ¢ P}. Theleft-restriction
P71t ofarelationt onSto P C Sis{(s, s') €t | s € P}. Thecompositiorof relations is
tor = {(s,8") |3 €S: (s 5)etA(s, s’ er}. Theiteratesof the relationt are
defined inductively by

3 L satisfies the ACC if and only if any strictly ascending cheji x1 C - - - of elements oL is necessarily
finite.



t" = ¢ forn <0,
t0 £ 15 = {(s, s)|se S} (thatisidentity on the se$),
and t"1 2 toth = thot, forn > 0.

Thereflexive transitive closure® of the relatiort is

= Ut = YUlU| = Yaer1sutor) @ = lip ar-lsUtor.
n>0 n>0 \i<n n>0
3. Values

3.1 Machine integers

We consider a simple but realistic programming language such that the basic values are
bounded machine integers. They should satisfy

max_int > 9, greatest machine integer;
min_int = —max_int —1, smallest machine integer; (2)
zeZ, mathematical integers;

icl = [min_int , max_int ], bounded machine integers.
3.2 Errors

We assume that the programming language semantics keeps track of uninitialized variables
(e.g. by means of a reserved value) and of arithmetic errors (overflow, division by zero,
e.g. by means of exceptions). We use the following notations

Q, initialization error;
Qa, arithmetic error;
ecE = (Q,Qa), errors;

A

v e lg TUE, machine values. (3)

4. Properties of Values

Avalue property is understood as the set of values which have this property. The concrete prop-
erties of values are therefore elements of the powesgkt). For exampldl, max_int ] €

g (Ig) is the property “is a positive machine integer” whi{n +1 € I | n € Z} is the
property “is an odd machine integer{p (Ia), <, 9, g, U, N, —) is a complete boolean
lattice. Elements of the powersgt(l,) are understood as predicates or properties of values
with subset inclusioi as logical implicationy is false I, is true,U is the disjunction) is

the conjunction aneh is the negation.



5. Abstract Properties of Values
5.1 Galois connection based abstraction

For program analysis, we can only use a machine encddfta subset of all possible value
properties.L is the set of abstract properties. Any abstract propprty L is the machine
encoding of some value properiyp) € g (Ig) specified by the concretization function
y €L pda).

For any particular program to be analyzed, this set can be chosen as a finite set (since there
always exists a complete abstraction into a finite abstract domain to prove a specific property
of a specific system/program, as shown by the completeness proof givef])inHlowever,
when considering all programs of a programming language thi& setist be infinite (as
shown by the incompleteness argumentlaf]). This does not mean that and its meaning
y must be the same for all programs in the language (seelSetfor a counter-example).

But thenL[[P]andy [P] must be defined for all progrant in the language, not only for

a few given ones. This is a fundamental difference vaitistract model checkinghere a
user-defined problem specific abstraction is considered for each particular system (program)
to analyze.

We assume thatL, =, 1, T, u, n)is a complete lattice so that the partial ordering
also called approximation ordering is understood as abstract logical implication, the infimum
L encodes false, the supremumencodes true, the lub is the abstract disjunction and
the glbm is the abstract conjunction. The fact that the approximation ordeFirgould
encode logical implication on abstract properties is formalized by the assumption that the
concretization function is monotone, that is, by definition

PEQ = vy Sv@. 4)

In general, an arbitrary concrete value propé&tty e (1) has no abstract equivalentlin
However it can be overapproximated by gmy L such thatP C y (p). Overapproximation
means that the abstract propeptyor its meaning (p)) is weaker than the overapproximated
concrete property.

Observe thah{y (p) | P € y(p)} is a better overapproximation of the concrete property
P than any othep € L such thatP C y(p). The situation where for all concrete properties
P € g (Ig) this best approximatiom{y(p) | P € y(p)} has a corresponding encoding
in the abstract domaih corresponds to Galois connectioris]. This encoding of the best
approximation is provided by the abstraction functios g (Ig) — L such that

PCQ — aP)Ca(Q) (xpreservesimplication), (5)
VP e p(g): P C y(x(P)) (a(P) overapproximate®), (6)
Vpea(y(p)Cp (y introduces no loss of information). (7)

Observe that ifp € L overapproximate® € p(Ip), thatisP C y(p) thena(P) C

a(y(p))) C pby (5) and (7) so thate(P) is more precise thap since when considering
meaningsy («(P)) C y(q). It follows thata(P) is the best overapproximation &fin L.
The conjunction of propertiegl) to (7) is equivalent to

VPep(o),peLl:a(P)Ep < PCy(p. (8)
The above characteristic proper8) pf Galois connections is denoted
Y
(pa), ) == (L, ©). 9)
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TOP

INI

ERR NEG ZERO POS

T~

BOT

Figure 1. The lattice of initialization and simple signs

Definitions and proofs relative to Galois connections can be found in pages 103-14] of |
which were distributed to the summer school students as a preliminary introduction to abstract
interpretation. Recall that in a Galois connectwipreserves existing joing; preserves
existing meets and one adjoint uniquely determine the other. We have

a(P) = nfp| P < y(p}. (10)
y(p) = U{P|a(P) < p}.

It follows thata (P) is the abstract encoding of the concrete propetty(P)) =y (n{p | P C
y(p)h) =n{y(p) | P € y(p)} which is the best overapproximation of the concrete property
P by abstract propertieg € L (from above, whence such thBtC y (p)).

5.2 Componentwise abstraction of sets of pairs
The nonrelational/componentwise abstraction of properties of pairs of values (that is sets of

pairs) consists in forgetting about the possible relationships between members of these pairs
by componentwise application of the Galois connect®n Formally

«@®(P) = (a({vy|Tvz: (v1, v2) € P, a({vz | Jv1: (v1, v2) € P}), (11)
y2((p1, P2) = {(v1, v2) | v1 € y(P1) A vz € y(P2)) (12)

so that
(p(Ilg x Ig), C) <— (L x L, C?) (13)

o

with the componentwise ordering
(P P2) E%(0n ) = PLICA1AP2EC.

5.3 Initialization and simple sign abstraction

We now consider an application where abstract properties record initialization and sign only.
The latticeL is defined by Hasse diagram of Filg. The meaning of these abstract properties
is the following

y(BOD = {Qal, y(NI) = TU{Qal,

y(NEQ = [min_int ,—1]U{Qal, y(ERR = {(Qi,Qal, (14)
y(ZERQ = {0, Qal, y(Top = Ig,

y(POS = [1, max_int JU{Qa}.
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In order to later illustrate consecutive losses of information, we have chosen not to include the
abstract valueSEGZ NZERCandPOSzsuch that (NEGZ £ [min_int , 0] U {Qa}, ¥ (NZERO
= [min_int , —1]U[1, max_int 1U {Qa} andy (POS2 = [0, max_int ]U {Qa}.

Observe that if we had definedERR = {Q2; } theny would not be monotone so th&)(
would not hold. Another abstract value would be needed to discriminate the initialization and
arithmetic errors (see Fi§).

Another possible definition of would have beenld) but with y (BOT) = ¢. Theny
would notpreserve meets (since e)gNEG1PO9 =y (BOT) =@ # {Qa} = ¥y (NEQ My (POS).
It would then follow that(«, ) is not a Galois connection since best approximations may
not exist. For exampl&Ra} would be upper approximable by the minine®R NEG ZEROOr
POS none of which being more precise than the others in all contexts.

Another completely different choice ¢fwould be

y(BOT) = 0, yONI) = 1,
y(NEQ = [min_int ,—1], y(ERR = {Qi,Qal.
y(ZERO = ({0}, y(mop = Iq.
y(POS = [1, max_int |},

With such a definition o for a program analysis taking arithmetic overflows into account, the
usual rule of signeos+ Pos= poswould nothold since the sums of large positive machine
integers may yield an arithmetic err@g such that2g ¢ y (POS. The correct version of the
rule of sign would be0s+ POS= TOP, which is too imprecise.

Using (L0) and the notatiorfc; ? v1 | C2 ? v2... | Ch ? vp ¢ vpy1) tO denotev, when
conditionc; holds elsev, when conditiorc,; holds and so on for, or elsev,.1 when none
of the conditions, ..., ¢, hold, we get the initialization and simple sign abstraction, as
follows (P € p (Ig))

P C {Qa} ?BOT

P C[min_int ,—-11U{R3a} ? NEG

P C {0, Qa} ? ZERO

P C[1 max_int JU{Qa} ?POS (15)
| P CTU{RQa}?INI

| P C{Qj,Qa} ?ERR

¢TOP .

a(P) = (
|
|
|

The adjoined functions and y satisfy conditions4) to (7) which are equivalent to the
characteristic property8j of Galois connectiondj.

5.4 |Initialization and interval abstraction

The traditional lattice for interval analysi§,[9] is defined by the Hasse diagram of Fi.
(where—oo and+oo are either lower and upper bounds of integers or, as considered here,
shorthands fomax_int andmin_int ). The corresponding meaning is

0,
(xella<x<bh}.

y (BOT)
y([a, b))

In order to take initialization and arithmetic errors into account, we can use the lattice with
Hasse diagram and concretization function given in Big.Combining interval and error

A
A

8



['OO,+OO]

Figure 2: The latticé of intervals

ERR .
Yy(NER = I
AER IER y(ER) = TU{Q)
Y(AER = TU{Qa}
NER y(ERR = TU{Qa, Qi)

Figure 3: The latticee of errors

information, we get

with the following meaning
y(e i) = y@nyl.
5.5 Algebra of abstract properties of values

The abstract algebra, which consists of abstract values (representing properties of concrete val-
ues) and abstract operations (corresponding to abstract property transformers) can be encoded
in program modules as follows (the programming language is Objective CAML)

module type Abstract Lattice_Algebra_signature =
sig
type lat (* abstract properties *)
val bot D unit -> lat (* infimum *)

9



val isbotempty : unit -> bool (* bottom is emptyset? *)

val initerr ;unit -> lat (* uninitialization *)
val top D unit -> lat (* supremum *)
val join clat -> lat -> lat (* least upper bound *)
val meet :lat -> lat -> lat  (* greatest lower bound  *)
val leq : lat -> lat -> bool (* approximation ordering *)
val eq : lat -> lat -> bool (* equality *)
val in_errors : lat -> bool (* included in errors? *)
val print : lat -> unit
end;;

(isbotempty () isy (L) = @ while (in_errors v) impliesy (v) € {Qa, 2; }.

6. Environments
6.1 Concrete environments

As usual, we use environmenido record the valug (X) of program variableX € V.
peR =2 Vi»1Ig, environments.

Since environments are functions, we can use the functional assignment/substitution notation
definedas{ € D — E)
fld<—elx) = fx), ifx#d;
fl[d < eld) = e; (16)
fldy < e dy < €;..;0h < el = (fldi < e)[dy < e ...; 0y < enl.

6.2 Properties of concrete environments

Properties of environments are understood as sets of environments that is elerge(®$ of
where C is logical implication. Such properties of environments are usually stated using
predicates in some prescribed syntactic form. Environment properties are therefore their
interpretations. For example the predica¥e= Y” is interpreted agp € Vi~ Ig | p(X) =

o (Y)} and we prefer the second form.

6.3 Nonrelational abstraction of environment properties

In order to approximate environment properties, we ignore relationships between the possible
values of variables

(o (V> Ig), S) == (V> p(a), )

by defining

ar(R) = AXeV{p(X)|p e R},
() = {p|¥XeV:pXerX)}

and the pointwise ordering which is denoted with the dot notation

r<r’ = wXeV:r(X)Cr'(x).

10



Forexample ifR = {(X—~ LY+ 1], [ X+ 2, Y — 2]} thenay (R)is[X — {1,2}; Y >
{1, 2}] so that the equality informatiotX = Y) is lost. Since all possible relationships
between variables are lost in the nonrelational abstraction, such nonrelational analyzes often
lack precision, but are rather efficient.

Now the Galois connectiord)

Y
can be used to approximate the codomain

Vs pg), &) <= (Vi L, &)

Q¢

as follows
rcr’ 2 wXeV:rX Cr/(x),
a(R) = aoR,
ver) = yor,

sothat(V i~ L, C, 1, T, u, r1) is a complete lattice for the pointwise orderifg
We can now use the fact that the composition of Galois connections

Y12 Y23

is a Galois connection
Y120Y23

(L1, Eq) ——— (L3, E3) .
3200021

The composition of the nonrelational and codomain abstractions is

(V> Ig), ©) <5 (Vi L, ) (17)
where
&(R) = acox(R)
= MXeVea({p(X) | p € R}, (18)
) = 9o ye(r)
= (p|IVXeV:pX) ey X)) . (19)

If L has an infimumL such thaty (1) = @, we observe thatif € V — L hasp(X) = L
theny(r) = @. It follows that the abstract environments with some bottom component all
represent the same concrete informatigih (The abstract lattice can then be reduced to
eliminate equivalent abstract environments (i.e. which have the same meadning)][ We
have

(Vs Ig, &) = (V> L, ©) (20)

where

Vis L 2 [peVis L|VXeV:pX) # LlU{AXe V-1}.

11



Numbers

deDigit == 0 | 1 | ... | 9 (digits,
n e Nat ::= Digit | Nat Digit numbers in decimal notation.
Variables
XeV variables/identifiers.
Arithmetic expressions
AecAexp == n numbers,
X variables,
? random machine integer,
+A | —A unary operators,

Arx Ay | A/ A

|
|
|
| A1+ A2 | Ai— A> Dbinary operators,
|
|  ApmodAy.

Figure 4: Abstract syntax of arithmetic expressions

6.4 Algebra of abstract environments

In the static analyzer, the complete lattice of environments is encoded by a module parame-

terized by the module encoding the complete latticef abstract properties of values. It is
therefore a functor with a formal parameter (along with the expected signaturé ¥arich
returns the actual structure itself. The static analyzegersericin that by changing the ac-

tual parameter one obtains different static analyzers corresponding to different abstractions of

properties of values.

module type Abstract Env_Algebra_signature =
functor (L: Abstract Lattice_Algebra_signature) ->

sig
open Abstract_Syntax
type env (* complete lattice of abstract environments  *)
type element = env
val bot : unit -> env (* infimum *)
val is_bot : env -> bool (* check for infimum *)
val initerr : unit -> env (* uninitialization *)
val top unit -> env (* supremum *)
val join :env -> (env -> env) (* least upper bound )
val meet cenv -> (env -> env) (* greatest lower bound %)
val leq :env -> (env -> bool) (* approximation ordering *)
val eq > env -> (env -> bool) (* equality *)
val print > env  -> unit
(* substitution *)
val get : env -> variable -> L.lat * r(X) *)
val set :env -> variable -> L.lat -> env (* r[X <- V] *)

end;;

12



7. Semantics of Arithmetic Expressions
7.1 Abstract syntax of arithmetic expressions

The abstract syntax of arithmetic expressions is given in&ighe random machine integer
value ? can be used e.g. to handle inputs of integer variable values.

7.2 Machine arithmetics
We respectively writa € I for the machine natural number amc N for the mathematical

natural number corresponding to the language numkeNat in decimal notatiord € Digit,
n € Nat)

d = d;
nd £ Qa, if 10n+d > max_int ;
nd = 10n+d, if 10n+d < max_int

We respectively writes € I, — I for the machine arithmetic operation aacc Z +— Z

for the mathematical arithmetic operation corresponding to the language unary arithmetic
operatorsu € {+, —}. Errors are propagated or raised when the result of the mathematical
operation is not machine-representable, so that we leagd, i € I):

uQe = Q
ui = ui, if uiel (21)
ui = Qa, if uié&l.

We respectively writdh € I x I +— I for the machine arithmetic operation ahde

7. x 7.+ 7 for the mathematical arithmetic operation corresponding to the language binary
arithmetic operators € {+, —, %, /, mod}. Evaluation of operands, whence error propagation
is left to right. The division and modulo operations are defined for non-negative first argument
and positive second argument. We hadMe (s the set of positive naturals, e E, v € g,
I,i1,i2 € 1)

Qbv = Qg

ibQ = Qo

i1bip = i1bip, if be{+ — *x}Ai1bizel; (22)
i1bip = i1biz, if be{/,modAire INNAize NNt Air1bizel;
i1bi; = Qa, if i1biogIv(be{/,modA(1¢€INNVi»gINN")).

7.3 Operational semantics of arithmetic expressions

The big-step operational semanti¢s] (renamed natural semantics b¥4]) of arithmetic
expressions involves judgements- A = v meaning that in environmept, the arithmetic
expressiorA may evaluate to € I. Itis defined in Fig5.

4Observe that ifm and M are the strings of digits respectively representing the absolute value of
min_int andmax_int thenm> max_int so thatp - M= Qg whencep - M = Qg. However
pkE(- M) -1 = min_int

13



pENnE N, decimal numbers; (23)

p =X pX), variables; (24)
iel
;., random; (25)
pE?= 1
pHFABYV

FuAB UL unary arithmetic operatiorfs; (26)
P uv

pHFAIB VL, pFHF A B 12

,  binary arithmetic operations . 27)
pHEAIb A= vibu

Figure 5: Operational semantics of arithmetic expressions

7.4 Forward collecting semantics of arithmetic expressions

Theforward/bottom-up collecting semantiotan arithmetic expression defines the possible
values that the arithmetic expression can evaluate to in a given set of environments

Faexp € Aexp p(R) A o (Ig),

FaexJAJR = {v|3peR:pk A= v}, (28)
The forward collecting semantics Fad¥d R specifies the strongest postcondition that values
of the arithmetic expressioA do satisfy when this expression is evaluated in an environment

satisfying the preconditioR. The forward collecting semantics can therefore be understood
as a predicate transformeiZ]. In particular it is a complete join morphism (denoted with

ﬂ), that is @ is an arbitrary set)

Faex;ﬂA]](U Rk) = U(FanFﬁA]] Rq) .

kes kes
which implies monotony (whed = {1, 2} andR; € Ry) and@-strictness (whel = ()
FaexdA]9 = 0.
7.5 Backward collecting semantics of arithmetic expressions
Thebackward/top-down collecting semantiBaexd A](R) P of an arithmetic expressioA
defines the subset of possible environmdgsich that the arithmetic expression may evaluate,

without producing a runtime error, to a value belonging to giverPset

Baexp € Aexps o (R) 5 o (o) =5 o (R),
BaexdAJ(RP = {peR|T ePNl:pr-Ai}. (29)
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8. Abstract Interpretation of Arithmetic Expressions
8.1 Lifting Galois connections at higher-order

In order to approximate monotonic predicate transformers knowing an abstré)todivélue
properties andi0) of environment properties, we use the following functional abstractidn [

(@) = aodoy, (30)
v (@) = yogod
so that
(V> Ig) — o), <) y<:> (Vi L) — L, ©) . (31)

o

The intuition is that for any abstract preconditipne L, or its concrete equivalegt(p) €
» (V > lg), the abstract predicate transformeshould provide an overestimagg p) of
the postconditiord (y (p)) defined by the concrete predicate transfordheiThis soundness
requirement can be formalized as follows:

VpelL:y(p(p) 2d(y(p) (soundnessrequiremegnt

< Vpel:®y(p)<ylp(p) (def. inversed of C§

< Vpel:a(®y(p)) Ce(p) (def. Galois connection

— aodoyLy (def.C§

= ad(P)Cy (def.a§. (32)

Choosingg = o' (®) is therefore the best of the possible sound choices since it always
provides the strongest abstract postcondition, whence, by monotony, the strongest concrete
one.

Observe thatd (as defined by the collecting semantics) andre (in general) not com-
putable so that” (®) was not proposed by B] as an implementation of the abstract predicate
transformer but instead as a formal specification. In practice, this specification must be refined
into an algorithm effectively computing the abstract predicate transfopmdrhis point is
sometimes misunderstoo#].

Moreover [L3] does not require the abstract predicate transformter be chosen as the
best possible choiag (®). Clearly 32) shows that any overestimate is sound (although less
precise but hopefully more efficiently computable). This is also sometimes misunderstood
[28].

8.2 Generic forward/top-down abstract interpretation of arithmetic expressions
We now design the generic forward/top-down nonrelational abstract semantics of arithmetic
expressions

mon

Faexp € Aexp— (V+—— L)+— L, when y(Ll) # @;

mon

Faexp € Aexp—> (Vi— L)—S L, when y(L)=0

by calculus. This consists consists, for any possible approximaéi)asf ¢alue properties, in
approximating environment properties by the nonrelational abstra@@raqd in applying

15



the functional abstractior8() to the forward collecting semantic&g). We get an overap-
proximation such that

Faexp[A] I o (FaexdA]) . (33)

Starting from the formal specificatian (Faexg A]), we derive an algorithm FaeXjA] sat-
isfying (33) by calculus

a (Faexdg A])

(def. B0) of a”§
a o FaexA] o y

(def. of composition §
Area(Faexd Al (y (1))

(def. 28) of Faex{A]§
Area{uIpeym)ipb A ).

If r is the infimumAY- L where the infimumL of L is such that/ (L) = @, theny(r) = ¢
whence:

o (FaexgA])(rY- L)

(def. (19) of y§
a(9)

( Galois connection9) so thatx(¥) = L §
1.

Whenr # LY. L ory (L) # @, we have

o (Faexdg A])r

(Area(fv|[3pey):p= A= vhr
(def. lambda expressign

a(fvdpeym):p- A= v}

and we proceed by induction on the arithmetic expression

1 — WhenA = n € Nat is a number, we have

a (Faexdn])r
afv|Ipeym):pbns v}
(def. 23) of p - n = vf

a({n})
(by definingn = a({n})§

n

(by defining Faexfin]r = n§
Faexp[n]r .

N

— WhenA = X € Vis a variable, we have

o (FaexgX])r
afv|Ipey):pkX= v}
(def. 24) of p = X = v
a(fpX) | p ey}

(def. (19) of y§
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a(y (r(x)))

( Galois connection9) so thatu o y is reductivg
r(X)

(by defining FaexiX]r = r(X)§
Faexp[X]r .

— WhenA = ? is random, we have

a (Faexd?]r
afv|Ipeym):pk?= 0}
(def. 25) of p - 2= v§
o (I)
(by defining ? J a(D)§
>
(by defining Faexd?]r = 7§
Faexp[?]r .

— WhenA = u A’ is a unary operation, we have

o (Faexdu A'J)r
av|Ipey):pFulN =)

(def. @) of p U A 5 v
auv|3peym):pk A v))

(y o« is extensive®), « is monotoneX)
auvlveyoa{v [Ipey):pk A v

{induction hypothesis3Qd), y (4) and« (5) are monotong
a({uv | v e y(Faexp[A]r)})

( by definingu” such thau™(p) Ja({uv | v e y(p)})§
u”(Faexp[A']r)

(by defining Faexifu A'Jr = u” (Faexp[A’]r)S§
Faexp[u AJr .

— WhenA = A; b Az is a binary operation, we have

OlD(Fan[ﬂA]_ b Az]])r
a{v|dpey):pkH Arb Ao = v})
(def. @7) of p = A1 b Ap = v
a{vibv2|Ipey):p-AB viApE Axs v2})
(@ monotone%)§
a(fvrbva|dprey):prF AL viATp2 e p(r) i p2 - Ax = v2))
{y o« is extensive), o is monotoneX)§
a{uibv2lvieyoca({v|Ipey):pk Al V) A
veyoca({v|Ipeyr):pt Az vh})
{induction hypothesis3Qd), y (4) and« (5) are monotong
a({vib vz | v1 € y(Faexp[Au]r) A vz € y (Faexp[Az]r)})
{by definingb” such thab™(p1, p2) J a({vib vz | v1 € y(p1) Av2 € y(P2)})§
b”(Faexp[A1]r, Faexp[Az]r)
(by defining Faexif A1 b Az]r = b” (Faexp[A1]r, Faexp[As]r)§
Fanﬁ[[A]_ b Az]]l’ .
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Faexp[AJGY-1) 2 1 it y()=0  (34)
Faexp[n]r = n
Faexp[X[r = r(X)
Faexp[?r = 7
Faexp[u AJr = u’(Faexp[A]r)

[l

Faexp[A1 b Ax]r b"(Faexp[A1]r, Faexp[Ax]r)

parameterized by the following forward abstract operations

a{uv v ey} (35)
a({vibva|viey(p) Av2ey(p2)})) (36)

n" = a({n}) u'(p)

3
7 3 a) b"(p1, p2) 3

Figure 6. Forward abstract interpretation of arithmetic expressions

In conclusion, we have designed the forward abstract interpretation Fafeapthmetic
expressions in such a way that it satisfies the soundness requirégdfieas Summarized in
Fig. 6.

By structural induction on the arithmetic expressidrthe abstract semantics Fagify]
of A is monotonic (respectively continuous) if the abstract operatiorendb” are mono-
tonic (resp. continuous), since the composition of monotonic (resp. continuous) functions is
monotonic (resp. continuous).

8.3 Generic forward/top-down static analyzer of arithmetic expressions

The operations on abstract value properties which are used for the forward abstract interpreta-
tion of arithmetic expressions of Fi§must be provided with the module implementing each
particular algebra of abstract properties.

module type Abstract Lattice Algebra_signature =
sig
(* complete lattice of abstract properties of values *)
type lat (* abstract properties *)

(* forward abstract interpretation of arithmetic expressions *)
val f_INT . string -> lat

val f RANDOM : unit -> lat

val f UMINUS : lat -> lat

val f UPLUS : lat -> lat

val f PLUS : lat -> lat -> lat

val f MINUS : lat -> lat -> lat

val f TIMES : lat -> lat -> lat

val f DIV clat -> lat -> lat
val f MOD s lat -> lat -> lat
end;;

In functional programming, the translation from Fgto a program is immediate as follows

module type Faexp_signature =

18



functor (L: Abstract_Lattice_Algebra_signature) ->

functor (E: Abstract_Env_Algebra_signature) ->

sig
open Abstract_Syntax
(* generic forward abstract interpretation of arithmetic operations *)
val faexp : aexp -> E(L).env -> L.lat

end;;

module Faexp_implementation =

functor (L: Abstract Lattice Algebra_signature) ->

functor (E: Abstract Env_Algebra signature) ->

struct
open Abstract_Syntax
(* generic abstract environments *)
module E'=E(L)
(* generic forward abstract interpretation of arithmetic operations *)
let rec faexp’ a r =

match a with

(INT i) -> (L.F_INT i)

(VAR V) -> (E'.get r v)

RANDOM -> (L.f_ RANDOM ()
(UMINUS al) -=> (L.f_UMINUS (faexp’ al r))
(UPLUS al) -> (L.f_UPLUS (faexp’ al r))

(MINUS (al, a2)) -> (L.f_MINUS (faexp’ al r) (faexp’ a2 r))
(TIMES (al, a2)) -> (Lf_TIMES (faexp’ al r) (faexp’ a2 r))
(DIV (a1, a2)) -> (L.f_DIV (faexp’ al r) (faexp’ a2 r))
(MOD (a1, a2)) -> (L.f MOD (faexp’ al r) (faexp’ a2 r))
let faexp a r =
if (E.is_bot r) & (L.isbotempty ()) then (L.bot ()) else faexp’ a r
end;;

I
I
I
I
I
| (PLUS (al, a2)) -> (L.f_PLUS (faexp’ al r) (faexp’ a2 r))
I
I
I
I

module Faexp = (Faexp_implementation:Faexp_signature);;

Speed and low memory consumption are definitely required for analyzing very large programs.
This may require a much more efficient implementation where the abstract interpijager [
replaced by an abstract compiler producing code for each arithmetic expression to be analyzed
using may be register allocation algorithms and why not common subexpressions elimination
(see e.g. Ch. 9.10 of]) to minimize the number of intermediate abstract environments to be
allocated and deallocated.

8.4 Initialization and simple sign abstract forward arithmetic operations

Considering the initialization and simple sign abstraction of S&;the calculational design
of the forward abstract operations proceeds as follows

a({n})
= {(15) and case analysjs
NEG if ne[min_int ,—1]

ZERO if n=0

POS if n e[l max_int ]

BOT if n<min_int or n> max_int
A >
=n
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a(l)

= (159

INI
=7,

We design-"(p) = a({—v | v € y(p)}) by case analysis

— (BOT)

— (PO

— (ERR

a({—v|veyBODN)
a({=v|ve{Qal})
a({2a})

BOT

a({—v|vey(Pos)
a({—=v|vell max_int JU{Ra}})
a([—max_int , —=1]U {Qa})
NEG

a({—v|vey(ERR}
a({—v|ve{Q,Qlh
O{({Q| ’ Qa})

ERR

(def. 35) of —§
(def. (14) of y§
(def. 21) of —§
(def. (15) of «§
(def. (35) of —"§
(def. (14) of y§
(def. 21) of — and @)§
(def. (15) of «§
(def. (35) of —"§
(def. (14) of y§
(def. 21) of —§
(def. (15) of «§

The calculational design for the other cases-6fand that of+ is similar and we get

P H BOT‘ NEG‘ ZERO‘ POS‘ INI ‘ ERR‘ TOP‘

+ (p) [ BOT| NEG| ZERO| POS]| INI | ERR

TOP

—"(p) || BOT| POS| ZERO| NEG| INI | ERR

TOP

The calculational design of the abstract binary operators is also similar and will not be fully
detailed. For division, we get

/"(p, Q) || BOT| NEG| ZERO| POS | INI | ERR| TOP
BOT || BOT| BOT| BOT | BOT | BOT| BOT| BOT
NEG || BOT| BOT| BOT | BOT | BOT| BOT| BOT
ZERO| BOT| BOT| BOT | ZERO| POS| ERR| TOP

p| POS || BOT|BOT| BOT | INI [INI |[ERR|TOP
INI || BOT|BOT| BOT | INI |INI |ERR|TOP
ERR || ERR| ERR| ERR | ERR | ERR| ERR| ERR
TOP || ERR| ERR| ERR | TOP | TOP| ERR| TOP

Let us consider a few typical cases. First division by a negative number always leads to an
arithmetic error

/" (POS NEQ

a({vy/v2 | v1 € y(PO9 A v2 € y(NEG))
a(fvr/v2 | v1 € [1, max_int JU{Qa} A

v € [min_int , =1]U {23}

a({S2a})
BOT

(def. (36) of /§
(def. (14) of y§

(def. 22) of /§
(def. (15) of «'§

No abstract property exactly represents non-negative numbers which yields imprecise results
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/(POSPOS = «a({vi/v2]v1€y(PO9 A vz € y(POS}) (def. 36) of /°§

= a(fvy/v2] vy €[l max_int 1U{Qa} A (def. (14) of y§
 wvpe[l, max_int JU{RaD})

= «([0, max_int 1U{Ra}) (def. 22) of /§

= INI (def. (15) of «'§

Because of left to right evaluation, left errors are propagated first

/(BOTERR = «a({v1/v2]|v1€ y(BOD Av2 € y(ERR}) (def. 36) of /°§
= a(fvr/v2|v1€{Qa}Av2€{Qj,Qa}) (def. (14) of y§
= a({Qa}) {def. 22) of /§
= BOT (def. (15) of «§

/(ERRBOT = a(fvi/vz2|v1€ y(ERR A vz € y(BOD)) (def. 36) of /°§
= a({ve/v2|v1€{Qj,Qa} Av2 € {Qa}) (def. (14) of y §
= o({Qi . Qa)) {def. 22) of /§
= ERR (def. (15) of «§

/(TORBOD = a({vi/v2]|v1€y(TOP A vz € y(BOD}) (def. 36) of /°§
= a({v1/ vz | v1 € [min_int , max_int JU (def. (14) of y/§

{Qj,Qa} Av2 € {Qa})
= o({Qi . Qa)) {def. 22) of /§
= ERR (def. (15) of «

The other forward abstract binary arithmetic operators for initialization and simple sign anal-
ysis are as follows

q

+(p. q) BOT | NEG| zERO| POS| INI | ERR] TOP —“(p.q) BOT | NEG| zERO| POS| INI | ERR] TOP
BoT || BoT | BOT| BOT | BOT| BOT | BOT | BOT BoT || BoT | BOT| BOT | BOT| BOT | BOT | BOT
NEG || BOT | NEG| NEG | INI | INI | ERR| TOP NEG || BOT | INI NEG | NEG| INI | ERR | TOP
ZERO || BOT | NEG | zERO| POS| INI | ERR | TOP ZERO || BOT | POS | zERO| NEG| INI | ERR | TOP
p | Pos || BoT| N pos | pos| INl | ERR| TOP p | pos || BoT| Pos| Pos [ Int | INI | ERR| TOP
INI BOT | INI INI INl | INl | ERR| TOP INI BOT | INI INI INl | INl | ERR| TOP
ERR || ERR| ERR| ERR | ERR| ERR | ERR| ERR ERR || ERR| ERR| ERR | ERR| ERR | ERR| ERR
ToP || ERR| TOP | TOP | TOP | TOP | ERR| TOP ToP || ERR| TOP | TOP | TOP | TOP | ERR| TOP

. q q
* (p,q) || BOT| NEG | zERO| POs | INI | ERR]| TOP mod” (P, q) BOT | NEG| zERO| POs | INI | ERR] TOP
BOT || BoT| BOT | BOT | BOT | BOT | BOT| BOT BOT || BoT | BOT| BOT | BOT | BOT | BOT| BOT
NEG || BOT| POS | zERO| NEG | INI ERR | TOP NEG || BOT | BOT| BOT | BOT | BOT | BOT | BOT
ZERO || BOT | zERO| ZERO | ZERO| zZERO| ERR| TOP ZERO || BOT | BOT | BOT | ZERO| ZERO | ERR| TOP
p | pos || BoT| NEG | zERO| POS | INI ERR | TOP p | Pos || BoT| BOT| BOT | INI INI ERR | TOP
INI BOT | INI | ZERO| INI INI ERR | TOP INI BOT | BOT | BOT | INI INI ERR | TOP
ERR || ERR| ERR | ERR | ERR | ERR | ERR| ERR ERR || ERR| ERR| ERR | ERR | ERR | ERR | ERR
Top || ERR| TOP | TOP | TOP | TOP | ERR| TOP ToP || ERR| ERR| ERR | TOP | TOP | ERR| TOP

8.5 Generic backward/bottom-up abstract interpretation of arithmetic expressions

We now design the backward/bottom-up abstract semantics of arithmetic expressions

mon mon

Baexp € Aexp— (V—~ L)— L+— (V= L).

For any possible approximatiof)(of value properties, we approximate environment proper-
ties by the nonrelational abstractict0f and apply the following functional abstraction

<

mon mon pad y mon mon o
(PR)r— plo) — p[R), ) == (V> L) r— L— (VL) E)

<

o
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where

PEW = VRep(R):VP ep(y) : P(RP C W(R)P,

gLy = eV L:Vpel:ompCy)p,

a'(@) = AreVis Leape Lea(Ry )y (p)), (37)
y'(9) = ARep®)LP € p (o) y(@@R)a(P)) .

The objective is to get an overapproximation of the backward collecting semazfijcsuch
that

Baexp[A] 2 o (BaexdA]) . (38)
We derive Baex{ A] by calculus, as follows

o (Baexd A])
(def. @7) of a”§
A eV Leap e L-aBaexdA](y(r)y(p))
(def. (29) of Baexd A]§
AMeVis Leapeleapeyr)|Tiey(pnl:pkAil).

If r is the infimumAY- L. where the infimumL of L is such that/ (L) = ¢, theny(r) = ¢
whence

a (Baexd AD(AY- L)p
(def. (19) of y§
a(9)
(def. (18) of &§
AY- L.

Givenanyr e Vi L,r #AY- Lory(Ll) # @andp € L, we proceed by structural induction
on the arithmetic expressioh

1 — WhenA = n € Nat is a number, we have

o (Baexdn](r)p
a{fpeym) |diey(pnl:pEnii})
(def. @3) of p - n =i §
a({fp ey Iney(p NI}
(def. conditionak...?... ¢ .. )
S (eyPNI?a(yr)) ¢a®?)
C (& o y is reductive {) and def. {8) of &§
(mney(p)NI?r éAY-1)
(by definingn’(p) = (n € y(p) N1)§
(n"(p) 2r &AY-1)
= (by defining Baexgn](r)p = (n“(p) 21 &AY-1)§
Baexp[n](r)p .
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2 — WhenA = X € Vis a variable, we have

o (BaexdX])(r)p
a(fpeym)|diey(pnl: pk-X=i}
(def. R4 of p =X i §
a({peym) | pX ey nl}
{[y o « is extensive) anda is monotoneX)§
a({pey@) | pX) eyP Nycad}
= (def. (19) of y§
a({p [VY#X:p(Y) e yr (V) A pX) €y (X)) Ny(p)Nyocald})
= (y is a complete meet morphism
a({p [VY#X:p(Y) e y(r()) A p(X) e y(r(X) N prad)})
= (def. (16) of environment assignmet
al{p | VY # X @ p(Y) € y([X < rQX)npradI(V) A p(X) € y([X <«
r)npna]X)})
= (def. 19 of y§
a{plpeyrX<—rX)nprnad}
= ( set notatioly
ay X <—rX)npnad))
C (& o y is reductive ) §
rNX<«rX)npna()]
C (def. (36) of 7§
rMX<rX)ynpn?]
= ( by defining BaexgX](r)p 2 X < r(X)n pr?1§
Baexp[X](r)p .

I

3 — WhenA = ? is random, we have

o’ (Baexd?)(r)p
afpeym)|diey(pnl:pk?=10})
(def. 25 of p 2= §
a(fpey@)y(pnlza}
(def. conditionak...?...¢ .. )
C(r(pNI=02a@) ¢a(yr))
C (def. (18) of & andda o y reductive ()
(y(P)NI=@21Y-Lir)
= (negatiory
(y(p)NI#P2r ErY- L)
= (bydefining 2(p) = (y(p) N1 # 0)§
(7(p) ?2r ¢AY-1)
= {by defining Baexf7] = (7(p) 21 ¢ AY- 1)§
Baexp[?](r)p .

4 — WhenA = u A’ is a unary operation, we have

o (Baexdu ADH(r)p
a{peym)|Fiey(pnl:pFul =i}
(def. @) of pFUA i
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I

-

-

Ir

Ir

I

I

I

a({pey)|Ti':p-A=i"Aui’"ey(p NI}
(set theory
afpeyr) | efv]|Ip ey):pP A B :pEANBi Aui’ ey(p Nl
{y o «a extensive §) ande monotone 20), (5)§
afpeym) | ey@@u|3p eyr): P FA B ) :pkF A i Aui e
y(p) NI} _
((33) implying Faexp[AJr Ja({v |3 € y() : p' F A = v}),
y anda monotone 20), (5)§
a({fpeyr) |3 eyFaexp[Ar):pF A =i Aui’ € y(p) NI})
(def. 21) of u (such thaui’ e Tonlyifi’ € I)§
a({peyr) |3 eyFaexp[AJH)NI:p- A =i’ Aui’ey(p) NI}
(set theory
a{peypr) |3 eli e y(Faexp[Ar) |ui ey(pNINI:pk- A =i}
{y o a extensive §) ande monotone 20), (5)§
a({p ey 3" e y(adi € y(Faexp[A]r) |ui e y(p NI NT: p - A i’}
(definingu” such thau™(q, p) 2 a({i € y(qQ) |ui € y(p) NI},
y anda monotone 20), (5)§
a({p ey) |3’ ey (Faexp[A]r,p) NL:p - A =i'})
{induction hypothesis3®) implying Baexp[A'](r)p Ja({p € y(r) | 3’ € y(p)NI:
pEABIS
Baexp[A](r)(u"(Faexp[Ar, p))
(defining Baexp[u A'](r)p = Baexp[A](r)u"(Faexp[A]r, p))§
Baexp[u A'J(r)p .

— WhenA = A1 b Az is a binary operation, we have

Olq(Ban[iA]_b Az]])(r)p
a{peym) |diey(pnl:p-Arb A= i})
(def. @) of p = A1b Ao = i §
a{pey)|Tiiz:pFAiiApE A iz AlLbizey(p) NI}
(set theory
a(fpeyr)|dinefv|Ipeyl): p'F Al v}:
disefv|Ip ey): p - A= v):
pEAIBILIAPE A i Alrbhizey(p NI}
{y o «a extensive §) ande monotone 20), (5)§
a({fpey@) |Fireya{u|Ip ey):p - A= v})):
Jizey@{v|Ip ey): p' = A v})):
pEAIBIIAPpE A i Alrbhizey(p NI}
((33) implying Faexp[Air Za({v|3p' € y(r): p FH= v}, =1,2,
y anda monotone 20), (5)§
a({p € y(r) |31 eyFaexp[Adr) : iz € y(Faexp[Az]r) :
pFAIEI1ApE A i2AILbix e y(p) NI}
(def. 22) of b (such thai;biz e Tonlyifis, iz € T)§
a({p € yr)|Ji1eyFaexp[Ar)NT: iz € y(Faexp[Az]r)NT:
pHAIEI1ApE A iaAiLthizey(p NI}
(set theory
a({p € p(r) | Air. i) € ((iy. i5) € y(Faexp[Ad]r) x y (Faexp[Az]r) |
itbisey(pnNnIxD:pkAr=itApk Assia))
ly? o a? extensive {3), (6) anda monotone 20), (5)§
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a({pey)| I, i) € Vz(az({(i/l, i5) € y(Faexp[Ai]r) x y(Faexp[Az]r) |
irbibey(PNINNUxD:pkAl=itApk Ay ig))
C (definingb” such that
b'(qr. G2, P) 2% &®({(i1, i5) € ¥2((qu. G2)) [ifbi5 € y(p) NI},
y? anda monotone 20), (5)§
a({p € y(r) | i1, i2) € y2(b (Faexp[Ad]r, Faexp[Az]r, p) N (I x I) :
pAIEI1ApE Arsiz))
= {let notatiory
let (p1, p2) = b (Faexp[Aa]r, Faexp[A2]r, p) in
a({p ey i) € v2Upr, pHNAxD:p-AritApF Axis o))
= {def. (12) of y? and& monotone 20), (5)§
let (p1, p2) = b'(Faexp[Aa]r, Faexp[A2]r, p) in
a(fprey)|IreymnNl: p1 - Al i) N
{p2ey@)|Tizeyp2nNl: p2t= Az iz))
= (& complete join morphism
let (p1, p2) = b (Faexp[Aa]r, Faexp[A2]r, p) in
a({prey@) [FreypNl: p1 - AL i1}
_ na({pz € y() [Jizeyp2Nl: p2 b Ax = ia))
C {induction hypothesis3g) implying
Baexp[AJ(Mp 2 a(fpey) [T ey(pnNl:pk A=i')§
let (p1, p2) = b’ (Faexp[Aa]r, Faexp[A2]r, p) in
Baexp[As](r) p. 11 Baexp[Az](r) p2
= (defining Baexp[A1 b Ax](r)p =
let (p1, p2) = b (Faexp[As]r, Faexp[Az]r, p) in
Baexp[Aq] (r) p1 1 Baexp[Az](r) p2§
Baexp[A1b A2](r)p .

In conclusion, we have designed the backward abstract interpretation ‘Be#eithmetic
expressions in such a way that it satisfies the soundness requirédfieas summarized in
Fig. 7.

For all p € L and by induction orA, the operatonr-Baexp[A]J(r)ponV — L is
C-reductive and monotonic.

8.6 Generic backward/bottom-up static analyzer of arithmetic expressions

A rapid prototyping of Fig7 with signature

module type Baexp_signature =

functor (L: Abstract_Lattice Algebra_signature) ->

functor (E: Abstract Env_Algebra_signature) ->

functor (Faexp: Faexp_signature) ->

sig
open Abstract_Syntax
(* generic backward abstract interpretation of arithmetic operations *)
val baexp : aexp -> E (L).env -> Llat -> E (L).env

end;;

is given by the following implementation
module Baexp_implementation =

functor (L: Abstract_Lattice Algebra_signature) ->
functor (E: Abstract Env_Algebra_signature) ->
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Baexp[AJ(AY- L)p = AY-L if y(L)=¥¢ (39)
Baexp[n](r)p = (n'(p) 2r ¢AY-L1)
Baexp[X[()p = r[X<rXnpn?] (40)
Baexp[?](r)p = (?'(p) 2r &AY-L)

Baexpu AJ(r)p = Baexp[A](r)(u’(Faexp[AT]r, p))

Baexp[A1b A2](r)p let (p1, p2) = b (Faexp[As]r, Faexp[Az]r, p) in

Baexp[A1](r)py 1 Baexp[Ax](r) p2

parameterized by the following backward abstract operatioris on

n(p) = (ney(p)n (41)

7(P) = (y(p)NI1#0) (42)

u(q,p) 2 afiey@luiecy(pnl) (43)
2

b 02, ) 2% &®({(i1, i2) € ¥2((t, @) li1biz e y(P) NI} (44)

Figure 7: Backward abstract interpretation of arithmetic expressions

functor (Faexp: Faexp_signature) ->
struct
open Abstract_Syntax
(* generic abstract environments *)
module E' = E (L)
(* generic forward abstract interpretation of arithmetic operations *)
module Faexp’ = Faexp(L)(E)
(* generic backward abstract interpretation of arithmetic operations *)
let rec baexp’ a r p =
match a with
| (INT i) -=> if (L.b_INT i p) then r else (E’.bot ())
| (VAR v) ->
(E'.set r v (L.meet (L.meet (E'.get r v) p) (L.f_RANDOM ())))
| RANDOM -> if (L.b_RANDOM p) then r else (E'.bot ())
| (UMINUS al) -> (baexp’ al r (L.b_UMINUS (Faexp'.faexp al r) p))
| (UPLUS al) -> (baexp’ al r (L.b_UPLUS (Faexp'.faexp al r) p))
| (PLUS (al, a2)) ->
let (pl,p2) = (L.b_PLUS (Faexp'.faexp al r) (Faexp'.faexp a2 r) p)
in (E.meet (baexp’ al r pl) (baexp’ a2 r p2))
| (MINUS (al, a2)) ->
let (p1,p2) = (L.b_MINUS (Faexp'.faexp al r) (Faexp'.faexp a2 r) p)
in (E.meet (baexp’ al r pl) (baexp’ a2 r p2))
| (TIMES (al, a2)) ->
let (p1,p2) = (L.b_TIMES (Faexp'.faexp al r) (Faexp'.faexp a2 r) p)
in (E.meet (baexp’ al r pl) (baexp’ a2 r p2))
| (DIV (a1, a2)) ->
let (p1,p2) = (L.b_DIV (Faexp'.faexp al r) (Faexp'.faexp a2 r) p)
in (E.meet (baexp’ al r pl) (baexp’ a2 r p2))
| (MOD (al, a2)) ->
let (p1,p2) = (L.b_MOD (Faexp'.faexp al r) (Faexp'.faexp a2 r) p)
in (E.meet (baexp’ al r pl) (baexp’ a2 r p2))
let baexp ar p =
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if (E'.is_bot r) & (L.isbotempty ()) then (E’.bot ()) else baexp’ a r p
end;;

module Baexp = (Baexp_implementation:Baexp_signature);;

The operations on abstract value properties which are used for the backward abstract inter-
pretation of arithmetic expressions of Figmust be provided with the module implementing
each particular algebra of abstract properties, as follows

module type Abstract Lattice Algebra_signature =
sig
(* complete lattice of abstract properties of values *)
type lat (* abstract properties *)

(* forward abstract interpretation of arithmetic expressions *)

(* backward abstract interpretation of arithmetic expressions *)
val b_INT . string -> lat -> bool

val b RANDOM : lat -> bool

val b_UMINUS : lat -> lat -> lat

val b UPLUS : lat -> lat -> lat

val b_PLUS clat -> lat -> lat -> lat * lat

val b_MINUS : lat -> lat -> lat -> lat * lat

val b TIMES : lat -> lat -> lat -> lat * lat

val b_DIV clat -> lat -> lat -> lat * lat

val b_MOD »lat -> lat -> lat -> lat * lat
end;;

The next section is an example of calculational design of such abstract operations for the
initialization and simple sign analysis.

8.7 Initialization and simple sign abstract backward arithmetic operations

In the abstract interpretatiod @) of variables, we have
7 = INI

by definition (L5) of «. From the definition41) of n” and (L4) of y, we directly get by case
analysis

P
n"(p) BOT| NEG| ZERO| POS| INI | ERR| TOP
n € [min_int , —1] ff it ff ff it | ff it
n=0 & | w | f | @ | f |t
n € [1, max_int | ff ff ff tt it | ff it
n < min_int Vv n > max_int ff ff ff ffo| ff | ff ff

From the definition42) of 7" and (L4) of y, we directly get by case analysis
p | BOT| NEG| ZERO| POS| INI | ERR| TOP|
7o e ]t [t [f]a]
For the backward unary arithmetic operatiof8)( we have
p |BOT| NEG | zZERO | POS | INIl |ERR| TOP |

+7(q, p) || BOT| g NEG| g M ZERO| g mPOS| g mINI | BOT| g 1IN
—"(q, p) | BOT| g POS| g zERO| qINEG| g1 INI | BOT| g rTINI

Let us consider a few typical cases.
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1 — If p =BOTor p = ERRthen by (L4),
ui e y(pNIC{Qj,Ra}N[min_int ,max_int ]=0¢
is false so thati“(q, p) = «(¥) = BOT.

2 — If p=pPosthenby (4), —i € y(p)NI = [1, max_int ]if and only if{ by def. 1) of
—§i e [min_int 41, —1] so that—"(q, p) = a(y(q) N [min_int + 1, —1]) € a(y(q) N
¥ (NEQ) by (14). But y preserves meets whence this is equatte(q n NEQ) C N NEG
sincea o y is reductive 7).

3— If p=INI or p= TOPthen by (4), —i € y(p) NI = [min_int , max_int ] if
and only if{by def. 1) of —=§i € [min_int + 1, max_int ] so that—"(q, p) = a(y(Q) N
[min_int + 1, max_int ]) € a(y(qQ) Ny (NI )) by (14). Buty preserves meets whence this
is equal tox(y(qMINI )) C grINI sincewa o y is reductive 7).

For the backward binary arithmetic operatiodd)( we have

/ (01, G2, P) = mod'(Q1, J2, P) 2
(01 € {BOT, NEGERR V O € {BOT, NEG ZERQERR V p € {BOT, NEG ERR ? (BOT, BOT)
¢ (p = POS? smasli(qs M POS g2 M POS) ¢ (g1 MINI , g2 M POS))

smasli(x, y)) = (X =BOTV Y = BOT? (BOT, BOT & (X, V)) .

If b € {/, mod} andq; € {BOT, NEG ERR or (2 € {BOT, NEG ZERQ ERR theni; € y(q1) <
[min_int , —1]JU{Q;j, Qa}oriz € y(g2) < [min_int ,0JU{; , La}inwhichcaseibis &
I by (22). If follows thatb’(qy, gz, p) = «?(¥) = (BOT, BOT by (11) and (L5).

If p € {BOT, NEGERR theniibiz & y(p) NI C [min_int , —1] in contradiction with
(22) showing thai b i, is not negative. Agaib’(qi, g2, p) = «?(¥) = (BOT, BOT) by (11)
and (L5).

Otherwise to have, b iz € I, we must have; € [0, max_int ] andiz € [1, max_int ]
whence necessarily € y(INI ) andiz € y(PO9 so thate?(y2({(gqL M INI , g2 11 POS)) £2
(1M INI, GpMPOS = b™(g1, G, P). Moreover the quotient is strictly positive only if the
dividend is non zero.

With the same reasoning, for additien, we have

+'(01, 42, p) = (BOT, BOT) if o1 € {BOT,ERR V gz € {BOT ERR V
p € {BOT, ERR
+7(Q1, 02, p) = (OuMINI, Qpr1INI) if pe{INl,TOR .
Otherwise
02
+7(qu, 02, NEQ NEG | ZERO | POS | INI,TOP

NEG (NEG NEG | (NEG ZERO | (NEG POS | (NEG INI )

qi| ZzERO | (ZERQ NEG | (BOT, BOT) | (BOT, BOT) | (ZERQ NEG
{

{

POS (POS NEG | (BOT, BOT) | (BOT, BOT) | (POS NEG
INI , TOP || (INI , NEG | (NEG ZERO | (NEG POS | (INI , INI')

02
+7(01, 92, ZERQ NEG | ZERO | POS | INI,TOP
NEG (BOT, BOT) | (BOT, BOT) | (NEG POS | (NEG POS
(o}l ZERO | (BOT, BOT | (ZERQ ZERQ | (BOT, BOT) | (ZERQ ZERQ
POS (POS NEG | (BOT, BOT) | (BOT, BOT | (POS NEG
INI , TOP || (POS NEG | (ZERQ ZERQ | (NEG POS | (INI, INI')
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02
+7(01, g2, POS NEG | ZERO | POS | INI,TOP
NEG (BOT, BOT) | (BOT, BOT) | (NEG POS | (NEG POS
qu| ZERO [ (BOT, BOT) | (BOT, BOT) | (ZERQ POS | (ZERQ POS
POS (POS NEG | (POS ZERO | (POS POS | (POS INI')
INI , TOP || (POS NEG | (POS ZERO | (INI , POS | (INI , INI')

The backward ternary substraction operations defined as

let (ry,r2) = ="(q, — (02), p) in
(r, —(r2) .

_Q(QL QZ» p)

The handling of the backward ternary multiplication operatiors similar

Q2
* (01, g2, NEQ NEG | ZERO | POS | INI,TOP
NEG | (BOT, BOT) | (BOT, BOT | (NEG POS | (NEG PO9
qi| ZERO | (BOT, BOT | (BOT, BOT | (BOT, BOT) | (BOT, BOT)
POS | (POS NEG | (BOT, BOT | (BOT, BOT) | (POS NEG
INI , TOP | (POS NEG | (BOT, BOT) | (NEG POS | (INI , INI )
02
*"(Q1, 02, ZERQ NEG | ZERO | POS | INI ,TOP
NEG (BOT, BOT) | (NEG ZERQ | (BOT, BOT) | (NEG ZERQ
| ZzERO | (ZERQ NEG | (ZERQ ZERO | (ZERQ POS | (ZERQ INI )
POS (BOT, BOT) | (POS ZERQ | (BOT, BOT) | (POS ZERQ
INI , TOP || (ZERQ NEG | (INI , ZERQ | (ZERQ POS | (INI , INI )
g2
* (1, O, PO NEG | ZERO | POS | INI,TOP
NEG | (NEG NEG | (BOT, BOT) | (BOT, BOT) | (NEG NEG
qi| ZERO | (BOT, BOT | (BOT, BOT | (BOT, BOT) | (BOT, BOT)
POS | (BOT, BOT) | (BOT, BOT | (POS POS | (POS PO9
INI , TOP | (NEG NEG | (BOT, BOT) | (POS POS | (INI , INI')

9. Semantics of Boolean Expressions
9.1 Abstract syntax of boolean expressions

We assume that boolean expressions are normalized according to the abstract syntax of Fig.
8. The normalization is specified by the following recursive rewriting rules
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Arithmetic expressions
A1, A2 € Aexp .

Boolean expressions

B, By, B, € Bexp ::= true truth,
| false falsity,
| A1=Ay | A1 < Ay arithmetic comparison,
| B1& By conjunction,
| B1|Bo disjunction.

Figure 8: Abstract syntax of boolean expressions

T(true ) = true , T(=true ) = false
T(false ) = false , T(—false ) = true ,
T(AL<A) = A<A, T—(AL < A) = T(AL>= A,
TA<=A) = A<A)|A=A) TEA<=A~A) = T(A>A),
TA=A) = A=A, T(AL=A) = T(A <> Ay,
TAL<>A) = (AA<A)|(Pa<hA) THEA<>A) = A=A,
T(AL>A) = A <A T—(A > A) = T(A <= Ay,
TA>=A) = A=A)|A<A) TEA>=A) = A<A,
T(B1|By) = T(B)IT(By) T(=(B1|B)) = T(=(By)& T(=(By),
T(B1& By) = T(B)& T(By), T(—=(B1& Bp)) = T(=(By)|T(=(By),

T(=(=(B)) T(B).

9.2 Machine booleans

We letB be the logical boolean values aid¢, be the machine truth values (including errors
E ={Qj , Qa})

A

B =

A

We respectively write € I, x [ — Bg, for the machine arithmetic comparison operation and
ce 7Z x 7 +— B for the mathematical arithmetic comparison operation corresponding to the
language binary arithmetic comparison operatoes {<, <=, =, <>, >=, >}. Evaluation

of operands, whence error propagation is left to right. We leavég, v € I, 1,i1,12 € )

Qcv = Q.
icQ = Q. (45)
ilgiz é ilciz.

We respectively writer € B, — Bg for the machine boolean operation and B — B for

the mathematical boolean operation corresponding to the language unary operatots.
Errors are propagated, so that we hawe (E, b € B)

u €2

ub

Qe»
ub.

A
A
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pFtrue =t truth; 47
p - false = ff, falsity; (48)

pHFAIB VL, pHF A B 12
pHAIc Ao viC 2

arithmetic comparisons; (49)

pHFBBw

, unary boolean operations;
pFuUB=uUw

pEBie=wy, p- B wy
pHBibBy= wibws

,  binary boolean operations.

Figure 9: Operational semantics of boolean expressions

We respectively writdh € By x B — Bg for the machine boolean operation amde

B x B — B for the mathematical boolean operation corresponding to the language binary
boolean operators € {&, |}. Evaluation of operands, whence error propagation is left to
right. We haveé € E, w € Bg, b, by, by € B)

Qbw = Q.
bbQ. = Q. (46)
bibb, = bibis.

9.3 Operational semantics of boolean expressions

The big-step operational semantiés]of boolean expressions involves judgements B =
b meaning that in environment, the boolean expressidnmay evaluate td € Bg. If is
formally specified by the inference system of Fg.

9.4 Equivalence of boolean expressions

In general, the semantics of a boolean expresBias not the same as the semantics of its
transformed fornT (B). This is because the rewriting rulg A; > Az) = A> < Aj does not
respect left to right evaluation whence the error propagation order. For exampie = Q;

thenp H X > (1 /0) = @ whilepF (1 /0) < X Q5. However we will consider

that all boolean expressions have been normalizedRi.e- T (B)) because the respective
evaluations oB andT (B) either produce the same boolean values (in general there is more
than one possible value, because of random choice) or both expressions produce errors (which
may be different). We have

VbeB:pFBe=b < pHT(B)= Db,
FecE:pFB=e) «— @dcE:pHT(B)=¢€).

9.5 Collecting semantics of boolean expressions

Thecollecting semantic€bexd B] R of a boolean expressidhdefines the subset of possible
environments € R for which the boolean expression may evaluate to true (hence without
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producing a runtime error)

Bexp+— g (R) I o (R),

Cbexp €
CbexB]JR = {peR|p+B=tt}. (50)

10. Abstract Interpretation of Boolean Expressions
10.1 Generic abstract interpretation of boolean expressions

We now consider the calculational design of the generic nonrelational abstract semantics of
boolean expressions

Abexp € Bexp (Vi> L) 3 (Vi L).
For any possible approximatios)(of value properties, this consists in approximating environ-
ment properties by the nonrelational abstract®®) é&nd in applying the following functional
abstraction to the collecting semantiégl

(o (R) RN »[R), <€) % (V> L) ¥ (Vi L), B) (51)
where
PV = VRep@®) : ®(R) C ¥ (R),
Y = VreVis Lo Ty,
G(®) = aodoy, (52)
Plg) = yopod.
We must get an overapproximation such that
Abexpg[B] I a&(ChexdB]) . (53)
We derive AbexpB] as follows
& (CbexdB])

(def. BG2) of &§
A € Vi L-a(CbexdB]y(r))
(def. 60) of Cbexp,
AMreVis Lea({pey)| p-Bett)).

If r is the infimumaY- L and the infimumL of L is such that/ (L) = @ theny(r) = @. In
this case
@ (CbexdB] Y- 1)
(def. (19) of y§
a(9)
(def. (18) of &§
AYe 1l .
Otherwiser # AY- L ory (L) # ¢, we have

& (Cbexd B])r
= (def. lambda expressign
a{pey)|pk Be=tt},

and we proceed by induction on the boolean expresBion
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1 — WhenB =true is true, we have

& (Chexdtrue r
a({pey)|phktrue = tt)
{def. 47) of p - true =5 b§
a(y(r))
(& o y is reductive §1), (7)§

I

r
= (by defining Abexitrue Jr =r§
Abexp[true |r .

2 — WhenB = false is false, we have

a@(Cbexdfalse ])r
a({pey)]|ptfase = tt}
(def. @8) of p - false = Db
a ()
(def. (18) of &§
AYe L
= by defining Abexfifalse Jr = AY-_L§
Abexp[false r .

3 — WhenB = A; ¢ Az is an arithmetic comparison, we have

a@(Cbexd A1 c A]r
afpey|pt-Arc A= tt})
(def. @9) of p = A1 c Az = b
a(fpey)|Fv,velg:pFAlBvIAPpE Ao v2 AviC vp =1t))
(set theory angr o « is extensivef)§
a({pey@)|Fnney@{v|Ipey):pk Al v)):
Juey@({vldpey):pk A v))):
pHFAIBVIAPE Ao v AvrCup =1t}
(set theory and33)§
a({p € y(r) | v € y(Faexp[Aa]r) : Fvz € y (Faexp[Az]r) :
pHFAIB VIAPE Ao vp Avyc vp =1tt})
{let notatior}
let (p1, p2) = (Faexp[Aa]r, Faexp[Az]r) in
a({fpey) | Fvrey(p):Fv2ey(p):
pFAIBVIAPE A= 12 AV C Vo =1t})
= (def. @5 of ¢ implying vy, v2 ¢ E = {Qj , Qa}§
let (p1, p2) = (Faexp[Aq]r, Faexp[Az]r) in
a({pey)|Jirey(p)Nl:Jizey(pNIl:
pEAI=I1ApE A=Al cir =1t))

= (set theory
let (p1, p2) = (Faexp[As]r, Faexp[A2]r) in
a({fpey) |3z i2) e (i}, i5) [ifey(p)NIAi;ey(p) NIAijci;=1}:
pEAIBEI1APpE Ax = i2A))
ly? o a? extensive {3), (6) anda monotone 20), (5)§

I
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-

-

-

Ir

let (p1, p2) = (Faexp[As]r, Faexp[A2]r) in
a({p € y(r) | Az, i2) € y2@®{(i], i5) lige y(py NIAi, € y(p) NIA
ipcis=1t})):
pEAL=i1ApE A= iA))
(defining¢ such that:
&(p1, P2) 22 ®({(if, i5) ligey(pp NIAiLe y(p) NIATLCi)=1t}),
y2 anda monotone 20), (5)§
let (p1, p2) = (Faexp[Aa]r, Faexp[Az]r) in
a({p € y(r) | iz, i2) € y2E(pr. P2)) i p = AL LA p b Agisin})
(let notatior}
let (p1. p2) = C(Faexp[Ad]r, Faexp[Az]r) in
a({p € y(r) | i i2) € y2(p1. P2)): pE AL 1A Az o))
(set theory
let (p1, p2) = C(Faexp[Ai]r, Faexp[Az]r) in

a(fpey)|Jitey(p):pFAr=iN{pey)|Jizey(P:pk A= iz))

(& monotone 20), (5)§
let (p1, p2) = ¢(Faexp[A1]r, Faexp[Az]r) in
a({pey)|Titey(p):pk At i) N
a({pey)|Jizey(p):pk A iz))
(def. (29) of Baexp,
let (p1, p2) = C(Faexp[Ai]r, Faexp[Az]r) in
a(Baexg A (¥ )y (p1) 1 aBaexdA2](y(r)y (p2)
(def. 37) of «”§
let (p1, p2) = c(Faexp[Ai]r, Faexp[A2]r) in
o’ (Baexg Ad])(r)p1r 11 o (Baexd Az2])(r) p2
(def. (38) of Baexp andri monotong
let (p1, p2) = C(Faexp[A1]r, Faexp[Az]r) in
Baexp[Aa](r)p1 1 Baexp[Az](r)pz

(by defining AbexfA; ¢ AoJr = let (p1, p2) = &(Faexp[Ad]r, Faexp[Az]r) in§

Baexp[A1](r)p1 11 Baexp[Az](r)p2
Abexd[Al c Az]]r .

— WhenB = B1 & B3 is a conjunction, we have

&(CbexrﬂBl & Bz]])l’
a(fpeyM)|pFBiB wiApk Bos w2 Awy & wp =1t})
(def. @6) of & §
a(fpey)|p-BisttApk B =)
(set theory
a({peym)pEBi=tiN{pey)pt B=1})
(& monotone 20), (5)§
a(fpey) | pFBi=tth Nna(peyr)ok Ba=tt))
(def. 60) of Cbexp,
& (CbexdBi]y(r)) rn &(CbexdB2]y (r))
(def. 62) of &§
@ (CbexdBi])r m &(CbexdBz])r
{induction hypothesis53) andri monotong
Abexp[B1]r r Abexp]B]r
(by defining Abex{)B; & B,]r = Abexp[By]r 1 Abexp]B2]r §
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Abexp[BJAY-L = AY-L if y(L)=¥¢ (54)
Abexptrue Jr = r
Abexp[false Jr = AY-L

A

Abexp[A1 ¢ Agfr let (p1, p2) = c(Faexp[Ai]r, Faexp[Az]r) in
Baexp[Ad](r)p1 11 Baexp[Az](r)pz
Abexp[B1]r 1 Abexp[Bz]r

Abexp[B;]r 1 Abexp[B;]r

Abexpﬂ B1 & Bz]]l’
Abexp[B1 | Bz|r

[l> >

parameterized by the following abstract comparison operafipans {<, =} onL

S(p1, p2) 2% o?({(i1, i) line y(p)NIAize y(p) NI AiLCiz = 1))

Figure 10: Abstract interpretation of boolean expressions

Abexﬂ[Bl& Bz]]r .

5 — The caseB = B; | By of disjunction is similar.

In conclusion, we have designed the abstract interpretation Abexp of boolean expressions
in such a way that it satisfies the soundness requirerb@naé summarized in Fig.0.
By induction onB, the operator AbexjB] onV ~ L is C-reductive and monotonic.

10.2 Generic static analyzer of boolean expressions

The abstract comparison operations must be provided with the module implementing each
particular algebra of abstract properties, as follows

module type Abstract Lattice_Algebra_signature =
sig
(* complete lattice of abstract properties of values *)
type lat (* abstract properties *)

(* forward abstract interpretation of arithmetic expressions *)
(* backward abstract interpretation of arithmetic expressions *)

(* abstract interpretation of boolean expressions *)
val a EQ : lat -> lat -> lat * lat
val a LT : lat -> lat -> lat * lat

end;;

A functional implementation of FigLOis

module Abexp_implementation =

functor (L: Abstract_Lattice Algebra_signature) ->
functor (E: Abstract Env_Algebra_signature) ->
functor (Faexp: Faexp_signature) ->

functor (Baexp: Baexp_signature) ->

struct

open Abstract Syntax
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(* generic abstract environments )
module E’ = E (L)
(* generic forward abstract interpretation of arithmetic operations *)
module Faexp’ = Faexp(L)(E)
(* generic backward abstract interpretation of arithmetic operations *)
module Baexp’ = Baexp(L)(E)(Faexp)
(* generic abstract interpretation of boolean operations )
let rec abexp’ b r =
match b with
| TRUE >or
| FALSE -> (E.bot ()
| (EQ (a1, a2)) ->
let (p1,p2) = (L.a_EQ (Faexp'.faexp al r) (Faexp'.faexp a2 r))
in (E'.meet (Baexp'.baexp al r pl) (Baexp'.baexp a2 r p2))
| (LT (a1, a2)) ->
let (p1,p2) = (L.a_LT (Faexp'.faexp al r) (Faexp'.faexp a2 r))
in (E.meet (Baexp'.baexp al r pl) (Baexp'.baexp a2 r p2))
| (AND (b1, b2)) -> (E’.meet (abexp’ bl r) (abexp’ b2 r))
| (OR (b1, b2)) -> (E.join (abexp’ bl r) (abexp’ b2 r))
let abexp b r =
if (E'.is_bot r) & (L.isbotempty ()) then (E’.bot ()) else abexp’ b r
end;;

10.3 Generic abstract boolean equality

The calculational design of the abstract equality operatidioes not depend upon the specific
choice ofL

o?({{i1. i2) i1 € y(p) NIAIz € y(p2) NIATL =2 =1t})
(def. @5) of =§
«?({(i, 1) [ € y(p) Ny(p2) NI}
C2  ly oais extensive®) anda? is monotong
e?({(i, i) | € y(p) Ny (p2) Ny (@D)})
{y preserves meejfs
(i, i) [ € y(prm p2na(D)})
{def. (12) of y2§
zaz(yZ«pl npz e, pLrpzned))
C
la? o y?is reductive and let notatign
let p=prrp2ra)in(p, p)
C2  {def. 36) of 7§
letp=pinp2n?in(p, p)
= (by defining= = letp=pin p21 7 in (p, p)§

v

In conclusion
pL=p; = letp=pinp2n?in(p, p).
10.4 Initialization and simple sign abstract arithmetic comparison operations
The abstract strict comparison
2(pr p2) 2% oP({li, i2) lirey(ppNIAiz e y(p) NIAIL <ip=1t})) (55)
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for initialization and simple sign analysis is as follows

P2
<(p1, P2) BOTERR | NEG | ZERO | POS | INI,TOP
BOT, ERR|| (BOT, BOT) | (BOT, BOT) | (BOT, BOT) | (BOT, BOT) | (BOT, BOT)
NEG || (BOT, BOT) | (NEG NEG | (NEG ZERQ | (NEG POS | (NEG INI )
p1| ZERO || (BOT, BOT) | (BOT, BOT) | (BOT, BOT) | (ZERQ POS | (ZERQ POS
POS || (BOT, BOT) | (BOT, BOT) | (BOT, BOT) | (POS POS | (POS POS
INI , TOP|| (BOT, BOT) | (NEG NEG | (NEG ZERQ | (INI , POS | (INI, INI')

Let us consider a few typical cases.

— If pi € (BOTERR wherei = 1ori = 2 theny(p) < E = (i, Qa) so that
y(pi) NI = ¢ and we get:

@?({(i1, i2) i1 € y(pP)NIAI2 € y(P) NTAIL <ip=1t})
a? (%)

(def. (11) of «? and (L5) of «§
(BOT, BOT)

Ldef. B5) of

Z(BOT, BOT) ;

II>

— For(POS ZEROQ, we have

a®({(i1, i2) |i1e y(POI NI Air € y(ZERONI AL < ip=1t})
(def. (14) of y and @5) of <§

a?({(i1, 0) |i1 € [1, max_int JAi1 < O}
(set theory

o? (@)
(def. (11) of «? and (L5) of «§

(BOT, BOT)

Ldef. B5) of

<(POS ZERQ .

II>

— For(ToRr TOP, we have

a?({(i1, i2) |i1€ y(TOP NIAi2 e y(TOPNIAIL <ip=1t})
(def. (14) of y and @5) of <§

o?({(i1, i2) [i1€TAniz el AL <ia))
{def. (11) of &?§

(a(D), a())
ldef. (15) of o §

(INI , INI')

(def. B5) of <§

<(TORP, TOP .

I o 1

[l

11. Reductive lteration
11.1 Iterating monotone and reductive abstract operators

The idea of iterating a monotone and reductive abstract operator to get a more precise lower
closure abstract operator was used to define the “reduced produdt?]airid in the “local
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decreasing iterations” examples af] to handle backward assignments and conditionals (the
same idea was later exploited in logic program analysis under the name of “reexecfipn” [
More generally, the idea is that of reductive iterations.

Theorem 1 If (M, <) is poset,f € M — M is monotone and reductivéM, <) %
(L, ) is a Galois connection({L, C, ) is a dual dcpo,g € L — L is monotone and
reductive andx o f o y = g then the lower closure operata* = )Lx.gfpf g is a better
abstract interpretation off thang

aofoy C g" C g.
Proof For allx € L, g(x) C x, so that by monotony the sequerg¥x) £ X, g’ *t1(x) =
9(g’(x)) for all successor ordinals + 1 andg* = [ g’(x) for all limit ordinals 1 is a

S<A
well-defined decreasing chain in the dual dghg C, m) whence ultimately stationary. It
converges t@* wheree is the order ofy, which is the greatest fixpoiigt = gfpxE g of g which

isC-less tharx [17]. It follows thatg* S gfpxE g is the greatest lower closure operaioitess
thang [11]. In particularg* C g.
We havax o f oy (x) E g*(x) = g(x) C x = ¢g%(x). If w0 f o y(X) E g’(x) then

ao foy(x)

( f reductive (so thaf (f (y(x))) T f(y(x))) andae monotong
aofofoyx)

(y o« is extensivef anda are monotong
o o f oyoao f oy(X)

la o foy(x) E g’(x) by induction hypothesig;, f anda are monoton§g
aofo y(ga(X).)

(a o f oy C g hypothesi§
9(g° (%))
= def. g *+1(x)§

g L(x) .

M

M

M

M

If o foy(x)E g’(x)forall § < A andx is a limit ordinal then by definition of lubs and

g*, we havax o f o y(x) C [] g°(x) = g*. By transfinite inductiong o f o y(x) £ g€(x) =
S<A
g (x). O

11.2 Reductive iteration for boolean and arithmetic expressions

Reductive iteration has a direct application to the analysis of boolean expressions. The abstract
interpretation AbexpB] of boolean expressioridefined in Secl0.1can always be replaced

by its reductive iteration AbexXB]* which is sound%3) and always more precise. By Th.

we have

& (CbexdB]) = Abexp[B]* = Abexp[B].
The same way, for the backward analysis of arithmetic expressions 08 Sgwe have:

Vpe L :ar-a’(BaexdAD(r)p E (Ar-Baexp[A](r)p)" = air-Baexp[A](r)p.
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11.3 Generic implementation of reductive iteration

The implementation of reductive iteration is based upon a fixpoint computation over posets
(satisfying the ascending and descending chain conditions), as follows

module type Poset_signature =
sig
type element
val leq : element -> element -> bool
end;;

module type Fixpoint_signature =
functor (P:Poset_signature) ->
sig
val Ifp : (P.element -> P.element) -> P.element -> P.element
val gfp : (P.element -> P.element) -> P.element -> P.element
end;;

module Fixpoint_implementation =
functor (P:Poset_signature) ->

struct
(* iterative computation of the least fixpoint of f greater *)
(* than or equal to the prefixpoint x (f(x) >= Xx) )

let rec Ifp f x =
let X’ = (f x) in
if (P.leq x* x) then X’

else Ifp f x’
(* iterative computation of the greatest fixpoint of f less *)
(* than or equal to the postfixpoint x (f(x) <= Xx) *)

let rec gfp f x =
let X = (f x) in
if (P.leq x X’) then x
else gfp f ¥
end;;

module Fixpoint = (Fixpoint_implementation:Fixpoint_signature);;

For abstract domainks not satisfying the descending chain condition, a narrowing operator
[9] must be used to ensure convergence to an overapproximation. The implementation of
reductive iteration is then straightforward.

module Baexp_Reductive_lteration_implementation =
functor (Baexp: Baexp_signature) ->
functor (L: Abstract Lattice Algebra_signature) ->
functor (E: Abstract_Env_Algebra_signature) ->
functor (Faexp: Faexp_signature) ->
struct
(* generic abstract elementironments *)
module E' = E (L)
(* iterative fixpoint computation *)
module F = Fixpoint((E':Poset_signature with type element = E (L).env))
(* generic backward abstract interpretation of arithmetic operations *)
module Baexp’ = Baexp(L)(E)(Faexp)
(* generic reductive backward abstract int. of arithmetic operations *)
let baexp a r p =
let f x = Baexp'.baexp a x p in
F.ofp fr
end;;
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module Baexp_Reductive_lteration =
(Baexp_Reductive_lteration_implementation (Baexp):Baexp_signature);;

Either of theBaexp Or Baexp_Reductive_lteration modules can be used by (i.e. passed as
parameters to) the generic static analyzer. Here is an example of reachability analysis where
all variables are assumed to be uninitialized at the program entry point with the initialization
and simple sign abstraction. Abstract invariants automatically derived by the analysis are
written below in italic between round brackets.

without reductive iteration: with reductive iteration:
{ XERR, y:ERR, Z.ERR } { XERR; y:ERR; Z.ERR }
X =0y :=7?z:=7? X =0y :=7?2z:=7
{ X:ZERO; y:INI; z:INI } { XXZERO; y:INI; z:INI }
if  (x=y)&(y=2)&((z+1)=x)) then it ((x=y)&(y=2)&((z+1)=x)) then
{ X:ZERO; y:ZERO; z:NEG } { x:BOT; y:BOT; z:BOT }
skip skip
else else
{ X:ZERO; y:INI; z:INI } { X:ZERO; y:INI; z:INI }
skip skip
fi fi
{ X:ZERO; y:INI; z:INI } { X:ZERO; y:INI; z:INI }

Informally, without reductive iteration, frofx:ZERO; y:INI} and(x=y) we get{x:ZERO;
y:ZERO} . Besides, fronjy:INI; z:INI} and(y=z) we gain no information. Finally from
{x:ZERO; zINI}  and(z+1)=x) ,we get{x:ZERO; z:NEG} . By conjunction, we conclude
with the invariant{x:ZERO; y:ZERO; zINEG} . With reductive iteration, the analysis is re-
peated. So frony:ZERO; z.NEG} and(y=z) , we reduce t@OT.

12. Semantics of Imperative Programs

12.1 Abstract syntax of commands and programs
The abstract syntax of programs is given in Hid.
12.2 Program components

A program may be represented in abstract syntax as a finite ordered labelled tree, the leaves of
which are labelled with identity commands, assignment commands and boolean expressions
(which can themselves be represented by finite abstract syntax trees) and the internal nodes
of which are labelled with conditional, iteration and sequence labels. Each suBtfge

which uniquely identifies a component (subcommand or subsequénoka program, can

be designated by positions, that is a sequence of positive integers — in Dewey decimal
notation — , describing the path within the program abstract syntax tree from the outermost
program root symbol to the head of the component at that position (which is standard in rewrite
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Variables
XeV.
Arithmetic expressions
A € Aexp .
Boolean expressions
B € Bexp .
Commands
C e Com := skip identity,
| X:=A assignment,
| if Bthen S else $fi conditional,
| while Bdo Sod iteration.
List of commands
S5,$9eSeq = C command,
| C; S sequence.
Program
PeProg := S;; program.

Figure 11: Abstract syntax of commands and programs

systems?1]). These program components are defined as follows:

cmp[S;; ] = {LS;; Jo}uCmpP[9],

CmE[C1; ...; Ca] = {[C1: ...; Calz}ul JCmp'[Ci],
i=1
Cmp'[if Bthen Spelse Sfi | = {lif Bthen Selse Sfi |,}uCmp-i[S]u
Cmp"?[S],
Cmp’ [while Bdo S od] = {|lwhile Bdo S od],}UCmp~i[S],
Cmpi[x:= A] = {[X:= Alg},
Cmp'[skip | = {[skip ]} .

For example Cmfskip ; skip ;; ] = {lskip ; skip ;; Jo, Lskip Jo1, [Skip Jo2} So that
the two occurrences of the same commesikig within the progranskip ; skip ;; canbe
formally distinguished.

12.3 Program labelling
In practice the above positions are not quite easy to use for identifying program components.

We prefer labelg € Lab designating program point® (€ Prog)

atp, afterp € Cmp[P] — Lab,
inp € Cmp[P] + g(Lab) .

Program components labelling is defined as follows (for short we leave positions implicit,
writing C for | C |, and assuming that the rules for designating subcomponents of a component
are clear from Sed2.2
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VC € Cmp[P] : atp[C] # afterp[C] .
If C =skip € Cmp[P]orC =X:= Ae Cmp[P] then
inp[C] = {atp[C], afterp[C]} .
If S=Cy;...; C, € Cmp[P] wheren > 1 is a sequence of commands, then

atp[S] = atp[C4],
afterp[§] = afterp[Cy],
n

inp[S] = [ Jine[Cil,
i—1

Vi e [1,n[: afters[C] = atp[Cis1] = inp[Ci] Ninp[Cial,

Vi,jelln:(j#i—-1Aj#i+1) = (@(np[Ci]Ninp[Cj] =9) .

If C=if Bthen Selse S fi € Cmp[P] is a conditional command, then

inp[[C]] = {atp[[C]],afterp[[C]]}Uinp[[S]]Uinp[[Sf]],
{atp[C], afterp[C]} N (inp[S] VU INp[S]) = 9,
inp[[S]]ﬂinp[[Sf]] = 0.

If C =while B do Sod € Cmp[P] is an iteration command, then

inp[C] = {atp[C], afterp[C]} Uinp[T],
{atp[C], afterp [C]} Ninp[S] =¥ .

If P=S; € Cmp[P]isaprogram, then

atp[P] = atp[S], afterp[P] = aftep[S], inp[P] = inp[Y.

12.4 Program variables

The free variables
Var € (ProguComu SeqJAexpU Bexp — g (V)

are defined as usual fprograms(S € Seq)
Var[S;; | £ Var[9];
list of command¢C € Com, S € Seq)
var[C; §] = Var[C]uVar[]];
commandgX € V, A € Aexp,B € Bexp,S, S, S € Seq)

Var[skip | = 9,
Var[X := A] = {X}UVar]A],
Var[if Bthen Selse S fi | = Var[B]UVar[S] U Var[$],
Var[while Bdo Sod] = Var[B]UVar[9];

42

(56)

(57)

(58)

(59)

(60)



arithmetic expression® € Nat,X € V,u € {4+, —}, A1, Az € Aexp,b € {+, —, x, /, mod})

var[n] = 4, Varfu A;] = Var[Aq],
var[X] = {X}, Var[Aib Ax] = Var[Ay]UVar[A],
var[?7] = ¢

andboolean expression#\1, A2 € Aexp,r € {=, <}, By, B € Bexp,l € {&,]})

Var[true |
Var[false |

@, Var[[Alr Az]]
@, Var[[ B | Bz]]

Var[A1] U Var[Az],
Var[[ B]_]] U Var[[ Bz]] .

A A
A A

12.5 Program states

During execution of progran® € Prog, an environment € Env[P] € R maps program
variablesX € Var[P] to their valuep (X). We define

Env € Prog— p(R),

A

Env[P] = Var[P] i I .

States(¢, p) € =[P] record a program poirtt € inp[P] and an environmerd € Env[P]
assigning values to variables. The definition of states is

¥ € Prog— oV x R),
»[P] £ inp[P] x Env[P]. (61)

12.6 Small-step operational semantics of commands

The small-step operational semanti¢sl][of commands, sequences and prograinse
Comu SequU Prog within a progranP € Prog involves transition judgements

(€, p) =[Cl= (¢, p') .

Such judgements mean that if execution is at control poiatinp[C] in environmentp €
Env[P] then the next computation step within commandeads to program control point
¢' € inp[C]inthe new environment’ € Env]P]. The definitionof¢, p) =[Cl—= ¢/, p’)
is by structural induction o as shown in Figl2.

According to axiom schem&?38), program execution is blocked in error state at the assign-
mentX = A if the arithmetic expressioA evaluates to an error, i.e.- A= Q., ec E °.
The same way in conditional and iteration commands, execution is blocked when a boolean
expression is erroneous i.e. evaluates to B = Q., e € E . Note that in the definitiori74)
of the small-step operational semantics of sequences, the proper sequencing directly follows
from the labelling schemé&g) since aftep[Ci]| = atp[Ci+1]-

5 This option corresponds to an implementation where uninitialization is implemented using a special value
which is checked at runtime whenever a variable is used in arithmetic (or boolean) expressions.

6 Another possible semantics would be a nondeterministic choice of the chosen branch. This option corresponds
to an implementation where the initial variable can be any value.
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IdentityC = skip (atp[C] = ¢ and aftep[C] = ¢')

(€, p) =[skip [= (¢, p) . (62)
Assignmen€ = X := A (atp[C] = ¢ and aftep[C] = ¢')
PEAS el (63)

(€, p) =X = A= (t/, pX < i])

ConditionalC =if Bthen Selse & fi (atp[C] =¢and
afterp[C] = ¢')

pHFBett

(€, p) =Jif Bthen Selse & fi [= (atp[S]], p) ’ (64)
pET(—B) =t (65)
(€, p) =Jif Bthen Selse & fi [= (atp[S], p)
(L1, p1) HS= (L2, p2) (66)
(€1, p1) =Jif Bthen Selse & fi = (£2, p2) ~
(1, p1) =S = (L2, p2) 67)
(€1, p1) =Jif Bthen Selse & fi = ({2, p2)
(afterp[S], p) =Jif Bthen Selse S fi = (¢, p), (68)
(afterp[St], p) =if Bthen Selse S fi = (¢, p). (69)
IterationC = while B do Sod (atp[C] = ¢, afterp[C] = ¢’ and
b1, €2 € inp[[S]])
pET(—B) =t (70)
(¢, p) =while B do Sod}= (¢, p)
pFBet (71)
(€, p) =Jwhile Bdo Sod= (atp[9], p)
(01, p1) == SF= (€2, p2) 72)
(€1, p1) ==while B do Sodl=> (¢2, p2)
(afterp[S], p) =fwhile B do Sod]= (¢, p) . (73)
Sequenc€;; ...; Cy,n=>0(¢, ¢iy1 € inp[Ci] foralli € [1, n])
(¢i, pi) =Cil= (fi+1, pi+1) (74)
(G, pi) =IC1; ...; Cal= (lit1, pit1)
ProgramP =S;;
(¢, p) == p (75)

0, oy =S:; = W, o)

Figure 12: Small-step operational semantics of commands and programs
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12.7 Transition system of a program
The transition system of a prograth=S;; is

(=[P], [P])

wherex [P] is the set§1) of program states andC], C € Cmp[P] is the transition relation
for componentC of programP, defined by

T[C] = (L p). (€. p)) | (L. p) =CE= (€. p)} . (76)

Execution starts at the program entry point with all variables uninitialized
Entry[P] = {(atp[P], AX € Var[P]-; )} . (77)

Execution ends without error when control reaches the program exit point

A

Exit[P] = ({afterp[P]} x Env[P] .

When the evaluation of an arithmetic or boolean expression fails with a runtime error, the
program execution is blocked so that no further transition is possible.

A basic result on the program transition relation is that it is not possible to jump into or
out of program component&€(e Cmp[P]))

(L p), (€, p)yex[C] = (£} Cinp[C]. (78)

The proof, by structural induction d@, is trivial whence omitted.
12.8 Reflexive transitive closure of the program transition relation

The reflexive transitive closure of the transition relatiofC] of a program component
C e Cmp[P] is t*[C] = (z[C])*. =*[P] can be expressed compositionally (by struc-
tural induction the the componerntse Cmp[P] of programP). The computational design
follows.

1 — For the identityC = skip and the assignme@ = X := A

*[C]
= {def. of (t[C])* andz[C] so that ap[[C] # afterp[C] by (56) implies (z[C])? = ¥,
whence by recurrence [C])" = @ for all n > 2, 1s was defined as the identity on

the setS§
12[“3]] Ut[C].

2 — For the conditionaC = if Bthen S else S fi , we define

(({atp[C]. p). (at[S]. o)) | o+ B = tt),
((atp[C]. p). (@tp[S]. p)) | p F T(=B) = tt}.
{((afterp[S], p). (afterp[C]. p)) | p € EMVP]},
((afterp[S]. p), (afterp[C], p)) | p € ENV[P]} .

(~l
[ | [ | =
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It follows that by @4) to (69), we have
'L'[[C]] = Ttt[[C]] U T [[C]]
where

tBur[s]uT,
B ur[sJur’.

Tit [[C]]
T [[C]]

By the conditions§9) and (78) on labelling of the conditional commar@] we haver;[C] o
7% [C] = 7% [C] o w[C] = ¥ so that

A
A

*[C] = (w[C])* U (g [C]* . (79)

Intuitively the steps which are repeated in the conditional must all take place in one branch or
the other since it is impossible to jump from one branch into the other.
Assume by induction hypothesis that

(w[CD" = tBor[S]"?orturBor[§]"tu[S]"tortUL[S]". (80)

This holds for the basis = 1 sincer[S]™! = ¥ andz[S]° = 1z[pj is the identity. For
n> 1, we have

(ftt[[c]])n+l
= {def t"t1 =t ot
(‘L'tt[[C]])n o Tyt [[C]]
= (induction hypothesis
(Bor[S]" 2ot urBor[S]" U t[S]" ot UT[S]") o w[C]
= { o distributes over) (ando has priority overJ)§
tBo ‘L'[[S]]n_z otlo ‘L’tt[[C]] UrBo ‘L'[[S]]n_l o Ttt[[C]] U ‘L'[[S]]n_l otlo ‘L'tt[[C]] U
r[§]" o w[C]
= ( by the labelling schem&g), (78) and the def.§4) to (69) of the possible transitions
so thatr! o 74 [C] = @, etc
‘CB o ‘L'[[S]]n_l o ‘L'tt[[C]] U ‘L’[[S]]n o ‘L'tt[[C]]
= (def. of t4[C] ando distributes ovel §
‘CBo‘L'[[S]]n_lo‘EBU‘EBOT[[S]]n_loT[[S]] U‘EBOT[[S]]n_lo‘Ct UT[[S]]”OTBU
t[S]" e t[S] U T[S]" o Tt
= ( by the labelling schem&g), (78) and the def.§4) to (69) of the possible transitions
so thatr B o tB = ¢, rﬂ&]]” oTB, etc§
tBo ‘L'[[S]]n UrBo ‘L’[[S]]n_ ottU ‘L'[[S]]n+1 U ‘L'[[S]]n or!
(U is associative and commutative and d&b)(of (zx[C])"*+*§
(ftt[[c]])n+l )

By recurrence,§0) holds for alln > 1 so that
(e [CD”

(def.t*§
(ra[C]° U [ J@[CD"

n>1

{def.t? and B0)§
1sipp Y U(rB ot[§]" 2ot UtBor[S]" U [S]" ot UL [S]Y)

n>1
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= (o distributes over§

LypppUt o (U 1:[[3]]”2) ottur®Bo (U r[[S]]”l) U (U e[St |ertul J o[S]"

n>1 n>1 n>1 n>1
= {changing variablek = n — 2 andj =n—1,7[S] ' =0, 7[§]° = 1xpp @nd by
the labelling schemes), (78) and the def. §4) to (69) of the possible transitions,
tBott =g, etc

8o Ur[[S]]k) otturBo (U r[[S]]j) U (U r[[S]]j) ot U Ur[[S]]”
k>1 j=0 j=0 n>0
= {tB ot = ¢ and def. oft*§

o @[SDh ot UrPo ([SD* U [SD o Tt U [S]D*
= (o distributes ovet) (and* has priority over which has priority over)§

(gppUt?) o (r[SD* o (gppp U Th .
A similar result is easily established fori [C]))* whence by 79), we get
o*[if Bthen Selse Sfi | = (IypppUt®) o (r[SD* o AgppUthH U
(Lsgpp U B o (T[S o AgppUeh .

3 — The case of iteration is rather long to handle and can be skipped at first reading. By
analogy with the conditional, the big-step operational seman®i¢sdf iteration should be
intuitive. Formally, for the iteratio®© = while B do Sod, we define

os}

T {((atp[C], p), (atp[S]. p)) | p = B = tt},
{((atp[C]. p), (afterp[C], p)) | p = T(=B) = tt},

{({(afterp[S], p), (atp[C]. p)) | p € EnV[P]}.

It follows that by (70) to (73), we have

T

a0 W
([ (= I

T

7[C] = tBur[SjurRuU<B. (81)

We define the compositigD){_, t; of relationdy, . .. , ty (o is associative but not commutative
so that the index set must be totally ordered for the notation to be meaningful):

n A

Ot = 49, when n < 0,
i—1

0 A

Ot = 12[['3}]’ when n =0,
i—1

n A

Oti = tio...oty, when n> 0.
i—1

In order to compute*[C] = (J,-o7[C]" for the componenC = while B do Sod of
programP, we first compute tha-th powerr [C]" for n > 0. By recurrence [C]° = 1s(P]s

t[C]*=7[C]=7BuUr[juUrRUB. Forn> 1, we have
(z[C])?

= {def.t? =tot§
7[C] o 7[C]
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(def. @1) of z[C]§

Bur[gurRUtB)otBur[gJurRUB)

= { o distributes over) (ando has priority overJ)§
BorBur[gorBuUtRotBUtBorBuUtBor[JuUr[For[FuUrReor[TU
Bor[UtBorRUT[SorRUTRotRUTBotRUTBo B UT[S]01B U
tRorBu<B B

(7?0 c® =, by (71) and £6);

~

T OT =
T[S o B =@, by (72), (71), (78) and E0);
180 1B = ¢, by (70), (71) and 66);
tRot[S] =0, by (73), (72) and E0);
tBot[S] =9, by (70), (72), (78) and E0);
tBotR =9, by (7), (73) and 66);
tRo R =g, by (73), (60) and (79);
B0 1B =, by (72), (70), (60) and (78)
T[S o B = @, by (72), (70), (60) and (8);
8018 =g, by (70) and 66)§ )
tRotButBor[Jur[gPur[ForRuUrRorB.

| =

T W

The generalization after computing the first few iterates 1, ... , 4 leads to the following
induction hypothesia(> 1)

[CD" £ AUBL,UC,UDyUEyUF,UGy (82)
where

j
A2 OaBer[gery; (83)
j i=1
n=i§l(ki +2)

(This corresponds t@ loops iterations from and to the loop entryp&C] where thei-th
execution of the loop bod® exactly takek; > 1’ steps.A, =@, n < 1.)

B, = U ((é(rBor[[S]]k‘ orR))OrBof[[S]]e) 2 (84)
) i=1
n:(iEl(ki +2)+1+¢

(This corresponds t@ loops iterations from and to the loop entryp&C] where thei-th
execution of the loop bod§ exactly takek; > 1 steps followed by a successful conditiBn
and a partial execution of the loop bo8yor ¢ > 08 steps.Bg = ¢, B = 7B.)

C, = U ((é(rBor[[S]]ki orR)>orB> ; (85)
) i=1
nZ(iEl(ki +2))+1

(This corresponds tp loops iterations where theth execution of the loop bodghask; > 1
steps withinS until termination with conditiorB false.Co = @, C1 = 7B.)

Dh = U (r[[S]]fofRo (él(fBor[[S]]ki ofR)» : (86)

N=t+1+( % (ki +2)

" For short, the constrainks > 0,i = 1, ..., j are not explicitly inserted in the formula.
8 Again, the constraint > 0 is left implicit in the formula.
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(This corresponds to an observation of the execution starting in the middle of the loop body
Sfor ¢ steps followed by the jump back to the loop entry[&l], followed by j complete
loops iterations from and to the loop entryp&€] where the -th execution of the loop body
Sexactly takek; > 1 steps.Dg =@, D1 = tR))

Bt U (et (QeRoris o ) e orlsim) ¢ e)

i
n=( Zl(ki +2))+£+24+m
=

(This corresponds to an observation of the execution starting in the middle of the loop body
Sfor ¢ > 0 steps followed by the jump back to the loop entrg[&@]. Then there arg

loops iterations from and to the loop entryp&€] where the -th execution of the loop body
Sexactly takek; > 1 steps. Finally the conditioB holds and a partial execution of the loop
body Sfor m > 0 steps is performedEg = E; = @ andEy = tR o 7B))

i _
Fn = U (‘E[[S]]ZOTRO(O(tBor[[S]]kiO‘L'R))orB) ; (88)
) i=1
n=( 3 (ki +2)+£+2

(This case is similar t&, except that the execution of the loop terminates with condiBon
false. Fo = Fi =@ andF, = tR o rB)

Gn = (r[9)"; (89)

(This case corresponds to the observation of 1 steps within the loop bod$.).

We now proof 82) by recurrence on. Given a formulaf, € {An, ... , Fn} of the form

Fn= U T, ¢, m,...),wheren, £, m, ... are free variables of the conditi@and
C(n,g,m,...)

term7 , we writeF, | C'(n, £, m, ...) forthe formula U Tn,L,m,...).

C(n,Z,m,.. )AC'(n,£,m,...)

3.1 — For the basis observe that fior= 1, A; = ¢, B; = t8,C; = tB, D; = R, E; = ¢,
F1 = ¢ andG; = (t[9))* = ¢[9] so that

[Ch* = r[C]
= ‘L'BU‘E[[S]]U‘L'RUTB
= BiUGiuUDiUCy
AMUBIUCLUDIUE1UFUG].

3.2 — Forn = 2, observe that\, = ¢, B, = 1B o z[S], C2 = #, D2 = 7[] o £,
Ex=1tRo1B Fo=tRo B andG; = (z[9])? so that

@[C])? = tRorBUBor[FUr[SRUTr[SorRUTR.7B
= EoUBUGUDyUEUF
= AOUBUCUDUEUFRUG,.
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3.3 — For the induction step > 2, we have to consider the compositiohso t[C], ...,
Gn o t[C] in turn.

— Apo7[C]
{def. @1) of 7[C]§
Ano tBur[JutRUB)
(o distributes ovetJ, n > 2 soj > 1 whenceA, = 7’ o R, tRo 7[S] = ¢ and
tRo R = )
Ap o B U An o B
(def. 83) of Ay andz[S]° = 1y(p; S

U (J)(rBor[[S]]kiotR))otBor[[S]]O
i=1

4 =
N+1=( él(ki +2))+140
i=
j _
U ( U O(‘CBO‘E[[S]]kio‘ER)>o‘EB
i i=1
n1=( él(ki +2)+1
i=

(def. 84) of By1 with additional constraint = 0 and def. 85) of Cp11§
Bnt1 | € =0 U Cpy1.

— Bho7[C]

(def. 81) of T[C]§

Bho (tBur[JutRuUB)

(o distributes ovet, either? = 0 in By, in which caseB, = /0 8, 1B 0 1B = ¢,
tBotR =gandtBo1B = gore > 0in By, in which caseB, = " o 7[9],
‘E[[S]]o‘(Bzﬂand‘E[[S]]orBZQS

(Bn|£=0)0t[JU(B|L>0)oct[SJU (B |£>0)orR

(def. 84) of By}

Bry1 [ €=U Bpr [ £>1DU

U ((i(i)l(zBor[[S]]kiorR))ofBof[[sﬂff) o R

n=( él(ki +2))+1+L
i=

(o distributes ovel§
(Br1 | =1 U(Bpp1 € > DU
U ((_(])(rBor[[S]]ki orR))o(rBor[[S]]@orR)>
n+1=(él(ki+2))+2+£ =
(by lettingkj1 = ¢ > 1§

j+1
(Bny1 | £=1)U(Bnya | € > DU U (_Jél(fB o t[S]% o rR)>
n+1=:§ll(ki 2
(by letting j’ = j + 1 and def. 84) of An+1§
Bnt1 [ €=U (Bny1 | £ > 1)U Anta
(associativity ofJ§
(Bny1 | €>0)U A 7.

—Cho ‘L'[[C]]
= (def. ®1) of 7[C]§
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Cno(rBUt[[S]]UrRUrB) ) ) ) ) o
(o distributes ovet), C, = ' o tB andrBorB =1Bor[=1BotR=1Bo B =
0.

-_ DnoT[[C]]

{def. 1) of 7[C]
Dno (rBUt[JUtRUB)
(o distributes ovew, Dy, has the formr’ o tR andtR o z[S] = tR o R = ¢
Dnot®UDpot®
(def. 87) of E, and @88) of Fy§
(Ent1 Im=0)U Fny1 .

—EnoT[[C]]

(def. 81) of t[C]§
Eno (zBUt[uURUB)
(o distributes ovet, En | m = 0 has the form’ o tBwhile E, | m >= 0 has the
formt”ot[S], t1BorB=1BotR=1tBotB=9p andt[[S]]Ro B =1[F 0B =0
(EnIm=0)0t[SUEN M>0)ot[SU(EK M>0)ot
(def. 87) of E, and 86) of D11 whereki = m > 1 so that? < n§
(Ent1 IMm=DU(Ent1|mM>1U(Dni1|€<n)
(U is associativg
(Ent1 I M>0U(Dnya [ £ <n).

—Fno‘r[[C]]

(def. 81) of T[C]§

Fno(zBut[SJutRU 8)
(o distributes oveuJ, by def. 88) of F,, has the fornt’ o tBandrBorB=1Bo 7[9]
=tBotR=rBotB=®S

0.

—Gno‘L'[[C]]

(def. 89) of Gn and 1) of 7[C]§
T[S o (rBur[FJuURUB)

(o distributes ovet),n > 1, 7[9] o 7B = T[9] o B = 7))
T[S o r[JU ([ o R

(def.n + 1-th power and&6) of Dp.y1§
[SP™HU (D1 | €=n).

Grouping all cases together, we get

(‘L' [[C]])n+1
(def.n + 1-th power and&2)§
(AnUBLUCLUDUELUF,UGp) o (z[CDH"
(o distributes over, def. @9) of G, §
(AnoT[[C]]U Bno‘[[[C]]UCnoT[[C]]U DnoT[[C]]U EnoT[[C]]U Fno‘L'[[C]]o(‘L'[[C]])noT[[C]]
(replacing according to the above lemmiata
(Bny1 | € =0UCny)U((Bnya | € > 0)U A1) USU((Enta | M= 0)UFn1)U((Enya |
M > 0)U(Dpgr | £ <n) UBU((T[SH™HU (Dngs | £ = n))
(U is associative and commutative afid, 1 | ¢ > n) = @
An+1UBniaUCnia U Dnya U Enp1 U Frpa U Gpya
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By recurrence om > 1, we have proved that

A

[Ch" = ALUBL,UCLUDLUEyUFRU(z[C]"
so that
*[C]
(z[Ch*
@[CDH°U | J(AnUBUCLU D UEqUFa U (x[SD™

n>1

@lehPud JAaulJBaulJCau | JDnU [ JEanUu | Fau[sh™ .

n>1 n>1 n>1 n>1 n>1 n>1

We now compute each of these terms.

U

n>1

(def. @3) of An§
U U _él(‘L'BoT[[S]]kiotR)
n>1 j =

= J
n=3% (ki+2)
i=1

(for n € [1, 3] this is@ while for n > 3, we can always fing andk; > 1, ..k; > 1

such thain = é (ki +2). Reciprocally, for all choices of jankh > 1, ...kj > 1
i=1

. j
there exists an > 3 such thah = ¥ (ki + 2).§
i=1

(,L,B OT[[S]]+ O‘L'R)+
= ZIBOTRZQ)S
(tBor[gorR)F.

By the same reasoning, we get
UBn = GPor[g et orPor[g,
Ucn = @BorlgrorRyort,
UDn = ) etRo@Borgror®)y,
UEn = tlSorRo@Por[gor®) or®or]g]",
UF” - r[[S]]*‘”"RO("r'BOT[[S]]*OTR)*otB.

Grouping now all cases together and using the factladgtributes ovetJ, we finally get
*[C] = t[FUEBor[F ot UEBor[F orR)* orBor[g*
U@Bor[g ot®) orBU [ o tRo (zBo 1[0 R
Ut otRo@Bor[ otR) crBor[g*
U [ orRo(zBor[grorR)*or?

= gy Ut etD e tBo [T 0 tR) o (Lyppy UtBot[S] U TB).
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4 — The case of sequence is also long to handle and can be skipped at first reading. The
big-step operational semantic&5f of the sequence is indeed rather intuitive. Formally, for
the sequenc8=C;; ...; C,,n > 1, we first prove a lemma.

4.1 — Let P be the program with subcommagd=Cy ; ...; Cp. Successive small steps
in Smust be made in sequence since, by the definiiéhdnd (74) of t[S] and the labelling
scheme&9), it is impossible to jump from one command into a different one

M[Ci]o...0TM[Cy] = (90)
(Vi el[l,n]: k| =07 12[[p]]

|3l<i<j<n:Vee[ln:(k#0 < Celi,j)?N[C]o...cN[Cj] ¢0) .

The proof is by recurrence an

4.1.1 — If, for the basisn = 1 then eithek; = 0 andz°[C4] = 1yppp OF k1 > 0 and then
t4[Cq] =N [Ci] o... 0 N [Cj] by choosing = j = 1.
4.1.2 — For the induction step, assumir@Qj, we prove that

T = 4 [[C]_]] o...ork [[Cn]] o ‘Ck”+l[[Cn+1]]

is of the form Q0) with n 4+ 1 substituted fon. Two cases, with several subcases have to be
considered.

4.1.2.1— If Vi € [1,n] : ki = 0 then we consider two subcases.

41.2.1.1— If kg = OthenVi € [Ln+1] : kk = 0andT = tM[Cq]o... 0 thM[Cy] o
‘Ek”+1[[cn+1]] = 12[[P]] o ‘Eo[[Cn+1]] = 12[[pﬂ.

4.1.2.1.2— Otherwisekn11 > Oandtherv? € [1,n+1]: (ke #0 < ¢ e [n+1,n+1])
andT = ‘L’kl[[cl]] o...orkn [[Cn]] o ‘Ck”+1[[Cn+1]] = 12[“3]] o ‘Ck”+1[[Cn+1]] =tk [[Ci]] 0...07N [[Cj]]
by choosing = j = n+ 1.

4.1.2.2— Otherwisedi € [1,n] : ki #0.
41221-Ifdl<i<j<n:¥Ye[ln]:(k #0 < ¢ €][i,]|] then by 0), we
have

T = 9[C]o...0t9[Cj] o T [Cnya] .

41.221.1- Ifkpyg =0thendl<i<j<n+1:Vee[lLn+1]: Kk #0 < (€
[i, jD and:

T = ‘L’ki[[ci]]o...o‘cki[[Cj]]orkn+l[[cn+1]],
‘L’ki[[ci]]o...o‘ckj[[Cj]]olz[[p]],
= M[C]o...0N[C|].

4.1.2.2.1.2- Otherwiseky;1 > 0 and we distinguish two subcases.
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41.22.1.2.1- If j <nthent*t1 =t otk=tkot so
T = K [Ci]o...0 ‘L’kj_l[[Cj]] oo ‘L’[[Cj]] o T[Cny1] © ‘Ek”“_l[[cm_l]] .

By the definition {6) and (74) of 7 [C] and the labelling schem&§&), we haver [C] ot [Cn1]
=@ sincej < nso thatin that casé = ¢.

4.1.2.2.1.2.2 Otherwisej = nsoV¢ € [0,i[: k, =0,V¢ € [i,n+1] : k, > 0andT =
th[Ci]o... 0 th[Cpy] o T2 [Chyq] whenceVe € [Ln+1]: (ke £ 0 < L€ i, |])
withl<i <j=n+21andT =<N[CiJo...0 N [C].

4.1.2.2.2— OtherwisevVl <i < j <n:F# e[ln]: Kk #O0AL&ZI,]D)V e
[i, j1A ke =0).

4.1.2.2.2.1- This excludes = 1sincethem = j = ¢ = 1 andk; = 0 in contradiction with
Ji e[l n]:k #£0.

4.1.2.2.2.2- If n = 2 thenk; = 0 andk, > 0 ork; > 0 andky, = O which corresponds to
case4.1.2.2.1whence is impossible.

4.1.2.2.2.3- So necessarily > 3. Letp € [1, n] be minimal andy € [1, n] be maximal
such thakp # 0 adky # 0. There existsn € [p, q] such thaky, = 0 since otherwisk, # 0
and either < p in contradiction with the minimality g§ or ¢ > j in contradiction with the
maximality ofg. We havep < m < q with kp # 0, km = 0 andk; = 0. Assumem to
be minimal with that property, so th&t,—1 # 0 and then that’ is the minimalq with this
property so thaky_; = 0. We havek; =0,... ,kp_1=0,ky #0,... ,kn_1 =0,kn =0,
Kgy—1 = 0ky # 0, ... It follows, by the definition 76) and (74) of [C] and the labelling
scheme§8) thatt"1[C1] o ... ot [Cp] =@ that T =@ o k1 [Cphyq] = 0.
It remains to prove that

Vi<i<j<n+1l:3e[Ln+1]:(k £0Aeli,jDVeli,jlrk =0).

4.1.2.2.2.3.1- If | < n+ 1then this follows fromg0).

4.1.2.2.2.3.2 Otherwisej = n+ 1 in which case eithét,;1 = 0 and then we chooge= |
orkny1 > 0sothatg = j = n+ 1. If ] < mthenfor¢ = m, we havek, = ky, = 0.
Otherwisem < i < q'. ChoosingZ = p, we havel € [1, j]with k, = kp # 0.

4.2 — We will need a second lemma, stating thkagmall steps irCy ; ... ; C, must be
made in sequence with steps inCy, followed byks in Co, ... , followed byk, in C, such
that the total numbdt + ... + k, of these steps is precisely
[Ci;...i Gl = |J  M[Cio...ot[Ci]. (91)
k=ka+...+kn

The proof is by recurrence dn> 0.

4.2.1 — Fork = 0, we getk; =... =kn = 0 and L;jpj on both sides of the equality.
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4.2.2 — Fork = 1, there must exish € [1, n] such thaky, =1 while forallj € [1, n]—{m},
ki = 0. By the definition {6) and (74) of z[Cy ; ...; Cn], we have

t[C1: ... Ca] = | lCnl-
m=1

4.2.3 — For the induction steg > 2, we have

HCy; .. Gl
= {def.t*+t1 =tk o t of powers
rk[[Cl; oo Cp]ot[Cy; ...; Ch]
= (def. (76) and (74) of T[C1; ...; Cy]§
n

™[C1; ...; Calo | T[Cnl]
m=1

= { o distributes ove_US
n

U ‘L’k[[C]_; ey Cn]] o‘L’[[Cm]]
m=1

= ({induction hypothesisl)

n
U L M[Cide...ot[Ca] | o [Cn]
m=1 \k=ki+...+kn

= (o distributes over§

U Uedo .o e i

k=ki+...+ky m=1
= ( by definition|
T.
4.2.3.1— We first show that

T ¢ U M[Ci]o...ot™Cq].
k1=K +...+kj,

According to lemmaq0), three cases have to be considered for
t = tM[Cy]o...0t*[Ch]oz[Cm] .
4.2.3.1.1- The casevi € [1,n] : ki = O is impossible since thek = Zj”:l ki = 01in
contradiction withk > 2.
423.12— Elseifdl<i<j<n:Vle[l,n]:(k#0 < Le€]i,]j] then
t = tN[CiJo...0tN[Cj] o t[Cm] .

We discriminate according to the valuerof
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4.2.3.1.2.1- If m= j, we get

t = tN[CiJo...0NTYCy],

= M[Cy]o...0 Th[Cy]
withk+1=kj +... 4k, wherek; =0,... ,k'_; =0,k =k,... . K =k +1,k; =0,
..k =0.
4.2.3.1.22- Ifm=j+1, we get
t = ‘L’ki[[ci]]o...orkj[[Cj]]orl[[Cj+1]],

= M[Cy]o...0TM][Cy]
with k + 1 =K; + ... +k, wherek; = 0,... ,kK_; =0,k =ki,... . kK =kj, Kk =1,
K.,,=0,...,k\=0.

4.2.3.1.2.3- Otherwise, by the definition7¢) and (74) of t[C] and the labelling scheme
(59), 7[Cj] o T[Cm] = ¥ so thatT = ¢ that ist = tX1[Cq] o ... o T*[Cp] with k, = k, for
¢ € [1,n] — {m} andk/, = km + 1.

4.2.3.1.3— OtherwiseT = ¢ so that the inclusion is trivial.

4.2.3.2— Inversely, we now show that

U  M[Cifo...otM[C] < T.
k+1=K}+...+kj,

According to lemmad0), three cases have to be considered for

A

t = M[Ci]o...0c]Cp].

4.2321-1fVi € [1,n] : K = Othenk+1 = Y ; k' = 0 which is impossible with
k > 0.

42322-Elseifdl<i <j=<n:Vle[ln]:(k,#0 < L eli,j] then
t 2 M[C]o...otN[G] .
Withallki’>0,...,kj’>0.

42.3.2.2.1- If kj’ = 1lthent is

A

t = ‘Cki/[[ci]]o...orkl{—l[[Cj_l]]orl[[Cj]].

so we choosé&; =0, ..., k_1 =0,k :k{,...,kj_lzkj’_l, ki =0,...,ky = 0and
m= jwithk+1=k; +...4+k;whencek =kg + ...+ kn.

4.2.3.2.2.2- Otherwisekj’ > 1then we haveof the form required foll by choosing; = 0,
ki =0,k =k, ...,k = kj’ —1,ki+1=0,... , kn =0andm = j withk + 1=
Ki+ ...+ kywhencek =ki + ... + k.
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4.2.3.2.3— Otherwiset = TK[Cy] o ... o £kn[Cp] is ¥ which is obviously included iff .

4.3 — We can now consider the caéef the sequenc€=C;; ...; Ch,,n>1
*[C1; ...; Ch]
= (def. reflexive transitive closufe
Urk[[Cl; ...; Cq]
k>0
= {lemma Q1) §
U  MICido...o*[Ci]
= .. UMCe...o[Ci
ki>0 kn>0

= (o distributes over§

U <lca] |o...o | U 7ICnl
ki>0 kn>0
= ( def. reflexive transitive closufe

‘C*[[Cl]] 0...0 ‘L'*[[Cn]] .

]

— Finally, for programs? = S;; , we have

T[S ]

( def. reflexive transitive closufe
s 1
k>0

( by the definition {6) and (75) of t[S;; ]§
St
k>0

(def. reflexive transitive closuie
™[9] .

In conclusion the calculational design of the reflexive transitive closure of the program
transition relation leads to the functional and compositional characterization given in Fig.
13. Here compositional means, in the sense of denotational semantics, by induction on the
program syntactic structure. Observe that contrary to the classical big step operational or
natural semantics3[], the effect of execution is described not only from entry to exit states
but also from any (intermediate) state to any subsequently reachable state. This is better
adapted to our later reachability analysis.

12.9 Predicate transformers and fixpoints

The pre-imagepre[t] P of a setP C S of states by a transition relatidnC S x Sis the set
of states from which it is possible to reach a stat®ihy a transitiort

pret]P = {s|35:(s, S)etAs € P}.

Thedual pre-imagedret] P is the set of states from which any transition, if any, must lead to
a state inP
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. t*[skip | = 1gpppUt[skip | (92)
° T*[X:= Al = 12[[pﬂU‘L'[[X = Al

° *[if Bthen Selse Sfi | = (93)
(12[“3] U ‘L’?) o*[S] o (12[“3] uth U
(1EHPH U ‘L'B) oT*[Sf] o (12[[P]] U ‘L'f)

where:

B £ ((@atp[if Bthen Selse S fi |, p), (@tp[S], p)) | p+ B = tt}

8 2 (((atp[it Bthen Selse S fi [ p). (ate[S]. p)) | o+ T(=B) = ti)
b2 (((afterp[S], p), (afterp[if Bthen Selse S fi |, p)) | p € ENV[P]}
T 2 (((afterp[S], p), (afterp[if Bthen Selse S fi ], p)) | p € EnV[P]}

o t*[while BdoSod] = (AgpppUr*[SotPo@Por*[Sor™* o  (94)

gy UtBor*[SUT®)
Wherel:3

T {((atp[while B do Sod], p), (atp[S], p)) | p F B> tt)

{{(atp[while B do Sod], p), (afterp[while B do Sod], p)) |
pFET(—B) =t}

A
A

R 2 ((after[S], p), (atp[while Bdo Sod], p)) | p € ENV[P]}
. [C1: ...; Ca] = t*[Ci]o...07*[Cn] (95)
. T[S ] = [9]. (96)

Figure 13: Big step operational semantics

pret]P = —pret](=P) = {s|Vs:(s, s)et = s € P}.

Thepost-imageos{t] P is the inverse pre-image, that is the set of states which are reachable
from P C Sby a transitiort

posft]P = predt P = (' |3s:sePA(s, 5)et}. (97)

Thedual post-imag@ostt] P is the set of states which can only be reached, if ever possible,
by a transitiort from P

Posft]P = —posft](=P) = {s'|Vs: (s, S)et = se P}.

We have the Galois connectioris€ S x S)

prait] posit]
(9 (9, C) — p (9, 9, (9(S), C) —— (» (9, 9
postt] preft]

aswellasP C S, yp(Y) = {(s, S)|se P = s €Y)})

-1

(P(Sx 9), C) ————= (9(9. ). (P(Sx ). C) ———= (9(9. C). (98)
Atepostt] P Aepret] P
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We often use the fact that

posfti ot] = posttz] o postti], preftioto] = prefti]opreftz],  (99)
posfls]P = P and pré¢ls]P = P. (100)
The following fixpoint characterizations are classical (see €]g[$])
pret*|F = prg AXeFUprgt] X = pri AXe X U pret] X,
pr(t1F = ofp AX-FNpPrtlX = gfp. AX- X N prelt] X,
posft*]| = prg AXel Uposft] X = prlg AXs X U posft] X, (101)
postt“]ll = gfp AX-1 Npostt] X = gfp, AX-X Nposit] X .

12.10 Reachable states collecting semantics

Thereachable states collecting semantics of acomp@her@mp] P] of a progranP € Prog

is the set po$t*[C]](In) of states which are reachable from a givenlset o ([P]) of

initial states, in particular the entry states= Entry[P] whenC is the progranP. The pro-

gram analysis problem we are interested in is to effectively compute a machine representable
program invariant! € o (£ [P]) such that

posft*[C]]In < J. (102)

Using (L01), the collecting semantics p@st[C]]In can be expressed in fixpoint form, as
follows

PosfC] € ([P > p(=[PD,

PosfC]In posf*[C]]In (103)
= Ifp~ Pos{C]lIn, (104)
where  Po3C] e o(z[PD > (p(=[PD > p(z[PD).

PosfC]In 2 AX-InU pos{r[C]] X .

It follows that we have to effectively compute a machine representable approximation to the
least solution of a fixpoint equation.

13. Abstract Interpretation of Imperative Programs

The classical approach$, 5], followed during the Marktoberdorf course, consists in express-
ing the reachable states in fixpoint fort0@d) and then in using fixpoint transfer theorems

[13] to get, by static partitioning5], a system of equations attaching precise (for program
proving) or approximate (for automated program analysis) abstract assertions to labels or
program points13]. Any chaotic [LO] or asynchronous/] strategy can be used to solve the
system of equations iteratively. In practice, the iteration strategy which consists in iteratively
or recursively traversing the dependence graph of the system of equations in weak topological
order [3] speeds up the convergence, often very significativelj.[ This approach is quite
general in that it does not depend upon a specific programming language. However for the
simplistic language considered in these notes, the iteration order naturally mimics the execu-
tion order, as expressed by the big step relation semantics of Eid.his remark allows us

to obtain the corresponding efficient recursive equation solver in a more direct and simpler
purely computational way.
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13.1 Fixpoint precise abstraction

The following fixpoint abstraction theoremd] is used to derive a precise abstract semantics
from a concrete one expressed in fixpoint form. Recall that the iteration oréeisdhe least
ordinale such that~¢(L) = Ifp~ F, if it exists.

Theorem 2 If (M, <, 0, V) is a cpo, the pairfa, y) is a Galois connectiodM, <) %

(L,C), F €e M3 Mandg € L —> L are monotonic and

VX e M :x5lfp5?' — aoF(X)=§oua(X)
then
alfp F) = Ifp g
and the iteration order o, is less than or equal to that &f .

Proof Since 0 is the infimum oM and # is monotone, the transfinite iteration sequence
F%(0), 8 € O (1) starting from 0 for# is an increasing chain which is strictly increasing and
ultimately stationary and converges¥s = Ifp~ F wheree is the iteration order of* (see
[17]). It follows thatVs € O : F3(0) < Ifp” F so

ao F(F0) = Goa(§(L) . (105)

0 is the infimum ofM soVy € L : 0 < y(y) whencex(0) C y for Galois connections
(8) proving thatL = «(0) is the infimum ofL. Let§°(L), § € O be the transfinite iteration
sequencel() starting from.L for §. It is increasing and convergent§é = Ifp- g whereeg is
minimal (see [7]).

We havex(F°(0)) = «(0) = L = ¢°(L). Ifby induction hypothesig?(0) = y(4°(L))
then

a(F°H(0)

= (def. (1) of the transfinite iteration sequerice
a(F (F°(0))

= (commutation propertyl05)§
g oa(§’ (L)

= (def. (1) of the transfinite iteration sequerice
98+1(J_) )

If A is a limit ordinal andvs < A, a(F°(0)) = ¢°(L) by induction hypothesis then by def.
(1) of transfinite iteration sequences, def. of lubs angdreserves existing lubs in Galois
connections, we hawe(F*(0)) = a(avx F3(0)) = 5|_|ko¢(}'5(0)) =4 g%(L) =¢*(L). By

transfinite inductiows € O : «(¥°(0)) = ¢°(L)whencein particulanz(lfpi F)=a(F<(0))
= o(F M) (0)) = gMAX€E) (1) = gF(L) = Ifp~ g

We haveF€(0) = Ifp™ F s0G5(L) = a(F€(0) = =a o F(F(0)) = § o a(F(0)) =
6(4¢ (L)) proving that a fixpoint of is reached at rank soe < ¢ i.e. the iteration ordes
of g is less than or equal to the oaef . O

As a simple example of application, we have proved in Sethatt* = prg Ar«lgUr ot
wheret € S x Sso that givenP C S, we can apply Th2 with Galois connection98) to
get
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AXepoSfX]PoAr-1lgUtor
= (def. function composition §
AXeposflsUto X] P
= ( Galois connection9g) so thati X- pos{ X] P preserves join§
AXeposfls] P Upostt o X] P
= (100 and Q9§
AXe P U post X](posft] P)
= (def. function composition §
AXe P Uposft] X o A X-posfX] P,

thus proving {01) that is podtt*] P = prg A X+ P U posft] X.
13.2 Fixpoint approximation abstraction

The following fixpoint abstraction theorem d] is used to derive an approximate abstract
semantics from a concrete one expressed in fixpoint form.

Theorem 3 If (M, <, 0, V) is a cpo, the paifa, y) is a Galois connectionM, <) %
(L,C), F € M —> M and§ € L — L are monotonic and

Vyel:y(y)<lfp F = aoF oyp(y) C4(Y)
orequivalently ¥xe M:yoa(X) <lfp” F = aoF(X)C §oa(X)

orequivalently Yye L:y(y) <Ifp" F = Foy(y)<yo a(y)
then

I~ F < yfp" §)
and equivalentlya(Ifp" #) = Ifp g,

Proof For the equivalence of the hypotheses, observe that (faralM andy € L)

aoF oy(y) EG(Y)

— (def. @) of Galois connections and def. of functional compositi§n
Foyly)2yo§y)

— (lettingy = a(x)§
FoyoalX) 2yo§oalX)

= [y o« extensive,F monotone anck transitive)
FX) 2yoGoalx)

— (def. @) of Galois connectiors
oo F(X)E §oalX)

= (lettingx = y(y)§
aoF oy(y) S Goacy(y)

= [« oy reductive,§4 monotonex transitive)

aoF oy(y) EGY) .

Moreover ifVy € L : y(y) < Ifp~ & then in particular for anx € M andy = «(x), we
gety oa(x) < Ifp> F. Thenvy € L, if x = y(y) we gety oca o y(y) < lfp” F thatis
y(y) < pr5 F sincey o o y = y for Galois connections.

Let £9(0), 8§ € @ andg®(L), 8 € O be the respective transfinite iteration sequentps (
respectively starting from 0 ang(0) for £ and4. Observe that for aly € L, 0 < y(y)

whencex (0) C y proving that L = «(0) is the infimum ofL. Consequently both transfinite
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iteration sequences are increasing and convergent, respectively at eantesto € = Ifp~ F
andg® = Ifp- g (see [L7]).

We haveF %(0) = 0 < (L) = y(4°(L)). If by induction hypothesig?(0) < y(4%(L))
then

F9+1(0)
= (def. (1) of the transfinite iteration sequerice
F(F°(0)
< {[induction hypothesig°®(0) < y(4°(L1)) and¥ monotong
F(r G (L)
< (all elements of the anreasing chai?, § € O are<-less than Ifﬁ ¥ and hypothesis
VyeL:y( =lfp" F = Foyy) =yo4(y)S
Y (§(§° (L))
= (def. (1) of the transfinite iteration sequerice

y(5T(L)) .

If Ais alimitordinaland’s < A, F°(0) < y(4°(L)) by induction hypothesis then by def)(
of transfinite iteration sequences, def. of lubs angionotone, we havé&*(0) = Svk F(0)

<V y(@S(L) <y ((SvA gﬁu)) =y(4*(L)). By transfinite inductiovs € O : F%(0) <

y(6°(L)) whence in particular Ifp F = F€(0) = F M) (0) <y (§MaX8) (1)) =y (§£(L))
=y (fp- g). By definition @) of Galois connections, this is equivalenttdfp™ F) C Ifp- g.
O

13.3 Abstract invariants

Abstract invariants approximate program invariants in the form of abstract environments at-
tached to program points. The abstract environments assign an abstract value in some abstract
domainL (as specified in Seé&.) to each program variable whence specify an overapproxi-
mation of its possible runtime values when execution reaches that point. The abstract domain
is therefore P € Prog):

AENV[P]
ADom[P]

= Var[P] ~ L, abstract environments;
A

inp[P] — AEnv[P], abstractinvariants.

The correspondence with program invariants is specified by the Galois connection

(» (Z[PD, <) L—Pﬂ (ADom[P], ©) (106)

where (see defl1@) of & and (L9) of y whereV is Var|P]):

@[P]l = ireeinp[Pl-ap| (£, p)} e 1)), (107)
JIPII = (L p) | p € 7o), (108)
JEJ = Veeinp[P]:VXeVar[P]: J(X) C J)(X) .

It follows that(ADom[P], =, 1, T, (i, f) is a complete lattice.
The genericimplementation of nonrelational abstract invariants has the following signature
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module type Abstract Dom_Algebra_signature =
functor (L: Abstract Lattice Algebra_signature) ->
functor (E: Abstract Env_Algebra_signature) ->

sig
open Abstract Syntax
open Labels
type aDom (* complete lattice of abstract invariants *)
type element = aDom
val bot : unit -> aDom (* infimum *)
val join : aDom -> (aDom -> aDom) (* least upper bound *)

val leq : aDom -> (aDom -> bool) (* approximation ordering *)
(* substitution *)

val get : aDom -> label -> E(L).env * j@ *)
val set : aDom -> label -> E(L).env -> aDom (* j[l <- 1] %)
end;;

13.4 Abstract predicate transformers

This abstraction is extended to predicate transformers thanks to the functional abstraction

(o (SIPD > o (S[PD. <) “_<—>2§ (ADom[P] "% ADOm[P], &) (109)

o

where

G[PJF = @&[P]oFoy[P]. (110)
1’/’[[?]]6 = J[PJoGoa[P],

GL G = VJeADom[P]: V¢ cinp[P]:VXe Var[P] : G(J),(X) T G'(J)e(X) .

13.5 Generic forward nonrelational abstract interpretation of programs

The calculational design of the generic nonrelational abstract reachable states semantics of
programs P € Prog)
APosfP] e ADom[P] —> ADom[P]
can now be defined as an overapproximation of the forward collecting sema&@ics (
&[P](PosfP]) = APos{P] . (111)

Starting from the formal specificatiaii] P] (Pos{P]), we derive an effectively computable
function APosfP] satisfying (L11) by calculus. This abstract semantics is generic that is
parameterized by an abstract algebra representing the approximation of value properties and
corresponding operations as defined in Scand 10. For conciseness of the notation,

the parameterization by, C, 1, T, u, M), («, y), etc. will be left implicit, although

when programming this must be made explicit. We proceed by structural induction on the
components Cm[P] of P as defined in Sed.2.2, proving that for allC € Cmp[P]

monotony
APos{C] € ADom[P]+—> ADom[P],

soundness

@[P](PosfC]) © APosfC], (112)
locality

VJ € ADom[P] : V¢ € in[P] —inp[C] : 3y = (APos{C]J),, (113)
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dependence
vJ,J € ADom[P] : (V¢ € inp[C]: Jp = J)) = (114)
(V¢ € inp[C] : (APos{C]J), = (APos{C]J"),) .

Intuitively the locality and dependence properties express that the postcondition of a com-
mand can only depend upon and affect the abstract local invariants attached to labels in the
command.

1 — For programs? = S;; , this will ultimately allow us to conclude that

&IP](PosP])

= (def. 103 of Pos{P]S§
a[P](postc*[P]D

= {program syntax of Sed.2.1so thatP = S;; §
a[PJ(post*[S;; 1D

= (99§

~ a[P](postz*[S]])

C {induction hypothesisi(12)§
APosf 9]

= (byletting APosfS;; | = APos{S] andP =S;; §
APos{P] .

APos{ P] = APos{ 5] is obviously monotonic by induction hypothesis whilé g) vacuously
holds and{14) follows by equality. We go on by structural induction@re Cmp[P], starting
from the basic cases.

2 — IdentityC = skip where ap[C] = ¢ and aftep[C] = ¢'.

a[P](Posfskip ])
= {def. (110) of a[P]§
Ot[[P]] o POSﬁSkip ]] o y[[P]]
= (def. (L03 of Posf
a[P] o postr*[skip 1o ¥[P]
= (big step operational semantic&2j§
a[P] o pOS(lE[[pH U t[skip J1o¥[P]
= { Galois connection9g) so that post preserves joijis
@[P] o (postlypy] Upostz[skip 1) o y[P]
= (Galois connectionl(06) so thati [P] preserves joinf
) @[P] o pOS(lE[[p]]] oy [P]) U (&[P] o postr[skip J1o¥[P])
C ((100 and (L06) so that[P] o y/[P] is reductivg
1apomppy U (@[P] o postr[skip ]o ¥ [P])
= (def. (107) of & §
Ianpomppy U AJ- 2l € inp[P-a({p | (I, p) € postz[skip [1o7[P](I)})
= (def. (97) of post§
IaDompy U AJ-Al €inp[Pl-a({p | ', p) € #[PIJ) : (I, p). (I, p)) €
t[skip [}
= (def. (76) and 62) of r[skip [§
Iapompy UAJ-2l € inp[Pl-a({p |1 =€ A (L, p) € P[P](I})
(def. (L08) of 7§
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~AJded OAl €inp[P]-( =¢"?2a({p | p €y} ¢a@))
C  {Galois connectionl(7) so thatx o y is reductivég
2330 €inp[P](l =€ ? 3, & a())
= ( Galois connectionl(7) so thatx(¢) is the infimunj
AdeAl € inp[[P]]°(| =07 Jer LI Jy é J)
= (def. substitutiofy
AJe J[ﬁ/ < Jg/ I_l Jg]
(by letting APosfskip | = AJ-J[¢/ < Jp 11 3,15
APosfskip | .

Monotony and the localityl(13 and dependencé{4) properties are trivial.

3 — AssignmenC = X := Awhere ap[C] = ¢ and aftep[C] = ¢'.

a[P](Posfx := A])
= {def. (110 of &[P]S§
a@[P] o PosfX := A] o ¥[P]
= (def. (L03 of Posf
a@[P] o postr*[X := AJlo7[P]
= (big step operational semantic&2j§
a[P] o pOS(lE[[p] Ut[X:= AJlcy[P]
= ( Galois connection9g) so that post preserves joijs
a[P] o (postlspppl Upostz[X = A[]) o p[P]
= (Galois connectionl(0€) so thati[P] preserves joinfs
_ (@[P] epostigpeyle y[P]) O (@[P] o postz[X = Alloy[P])
C ((100 and (L06) so thatx[P] o /[ P] is reductivg
IaDom(p) U (@[P] o postz[X := Aflo y[P])
= (def. (107) of & §
1aDomgp) U AJ- Al € inp[P]-a({p | {I, p) € postr[X := AJloF[P](I)}
= (def. (97) of post§
1%Domﬂpﬂ (ad-al einp[Pl-a({p | 31, p') € [PI) : (', p'), (I, p)) € T[X =
Al
= (def. (76) and €3) of z[X := A[§
IaDomppy U AJ-Al € inp[Pl-a({p | A, p) € P[P](I) : "= Al =0 ATi €T
p=pX<—ilAp' FA=i}))
= (def. (L08) of ¥[P]§
2J-J0AM €inp[P](l =€ ?2a({p[X < illpey@)nieclnptAsi}) éa®))

C ( Galois connectionl(7) so thatx is monotonig
Al-letVOoli|Ipey(J):p-AilinletV D VNITin
JOM einp[P]-( = AV £02a({p[X<—il|p ey i eV} La®))
C V' =0=VNI=0p=V CEsinceV CEUTlandENI= ¢ whenceV £ E =
V'’ #£ ¢ together with the monotony off§
AJ-letVOoli|Ipey(d):p-AilinletV DV NITin
JUM einp[P]-( = AV ZE?2a({p[X < i]|p ey AieV}) ia®))
C (Galois connection9) so thaty o « is extensivep is monotonic,V = y(v) and

Vi=y@)§
Aleletv Ja({i |Fp eyl :pF A i) inlety Ja(y()NI)in
JUAM €inp[P]-(l = Ay () ZE?2a({p[X < i]]p €y Ai € y(@)}) Ca(®))
C ( Galois connection9) so thaix is monotonic whence(XNY) C a(X) Ma(Y),xoy
is reductive and def1@) of & §
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Aeletv Ja(i |Ipey(d) :p-Aibinlety Jvna)in
JUOM einp[P]s( =/ Ay(w) ZE?2AY € Vea({p[X < i1(Y) | p € y(J) A €
y ()} ¢ a(?))

C (def. p[X < i], y(Jy) = ¥ impliesv = L whencey(v) C E, def. 36) of 7 and
B) = y(x) S ES
Aeletv Ja({i |Fpey(d):pFAiDinlety Jvn? in
JUOM einp[P]-(l =/ A=UB@)?2AY e V(Y =X2a({i |i € y@}) ¢a{p(Y) |
. peYWh) La®)
C (def. (28) of the forward collecting semantics Faexp of arithmetic expressions, Galois
connection 9) so thatw o y is reductive, def.19) of y §
Ad-letv OJ o o Faexpoy (Jy) in
JUM €inp[P](l =€ A=U@) ?2AYeV(Y =X2vn7? &al{pY) | pY) €
L Y@M ¢ a(®))
C ( Galois connection9) so thatx o y is reductive,L = «(¥)§
Adeletv O a o Faexpy (Jy) in
JUOM €inp[P]s(l =€ A=U@)?2AY e V(Y =X2vN7 & Jp(Y) ¢ L)
C (def. 30) of o”, def. of Jy[X < v 1 71§
AJ-letv 3 ' (Faexp(J)n? in JUAl € inp[P]+( = ¢ A=Uw) 2 J[X < vn?]<¢ 1)
C (soundness3Q) of the abstract interpretation Faekp] of arithmetic expressiona

and def. of1§
LJ-letv = Faexp[A](Jp) in Al € inp[P]«(l =& A=0U() ? Jp 1 J[X < vn?]¢ )
= (def. of J[¢" < p]§
AJ-letv = Faexp[A](Jp) in (—0() 2 I[E < Jp 1 J[X < v 7] ¢ d)
(by letting APosfX = A] 2 AJeletv = Faexp[A](Jy) in (B(w) ? J ¢ I «
Jo U J[X<—vn?]D§
APosfX := A] .

Monotony is trivial by monotony of FaexpA] and so are the localityl(L3) and dependence
(114) properties by%7).

4 — Sequenc€; ; ...; Cyn>0.
a[P](PosfCy; ...; Cn])

= {def. (110) of &[P]§
O{[[P]] o POSﬂCl Do Cn]] o y[[P]]

= (def. (L03) of Post
a@[P] opostt*[C1; ...; Cn]loV[P]

= ( big step operational semantic5]§
&[P] o postt*[Ci] . ..o t*[Cn]l o #[P]
= (distribution @9) of post over composition]
~@[P] o postr*[Ca]le. ..o postr*[Ca]]c ¥[P]
C  (monotony and Galois connectiohQ9) so thaty [P] o &[P] is extensivé
&@[P] o post*[Cal1 #[P] 0 &[P] o ... o #[P] o &[P] pos{r*[Ca]1 o #[P]
= (def. 119 ofa[P]§
&[P](postr*[Cn]D) o . .. o @[P](postz*[Ca]])
= (def. (103 of Post
~ &[PJ(PosfCq]) o ... o &[P](PosfCy])
C (monotony and induction hypothesikl)
APoOS{Cp] o ... oAPos{C]

(by letting APOS[C; ; ...; Cn] =APosfCy] o ... o APosfC;]§

II>
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APos{Cy; ...; Ci] .

Monotony follows from the induction hypothesis and the definition of ARSst ... ; Cp]
by composition of monotonic functions AP@&t], i = 1,...,n. The locality (13 and
dependencel(l4) properties follow by induction hypothesis for the AF&3f],i = 1,... ,n
whence for APogCs ; ...; C,] by definition 68) of inp[C1; ...; Cy] = Uin:]_inp[[Ci]].

5 — ConditionalC =if Bthen S else S fi where ap[C] = ¢ and aftep[C] = ¢'.

5.1 — By (93), we will need an over approximation of

&[P] o postr®lo #[P]
(def. (L07) of &[P]§
2J-al einp[P]-a({p | (I, p) € postrBlo $[P](I)})
= (def. 97) of post]
2J-Ml €inp[Pl-a({p | 3, p) € PIPID) : (I, p). (I, p)) € TB))
= {def. ©3) of 7B
AJeal €inp[Plea({p | 3, o) € Y[P](J) : " =t Al =atp[S]Ap =p' Ap
B = tt})
= (def. (108 of ¥[P]§
AJeal €inp[P]-( = atp[S] 2 a({p € y(Jp) | p + B = tt}) L a ()
= (def. 60) of the collecting semantics Cbel@] of boolean expressior® and 1. =
a(¥)§ :
A+l € inp[P]-( = atp[S] ? & o CbexdB] o y(J) ¢ L)
= (def. 62) of &§
~ 13-M einp[P]-(I = atp[S] ? &(Cbexd B])(Jp) ¢ 1)
C (soundness3) of the abstract semantics Abégj| of boolean expressiofjs
AJ-Al € inp[P]-(I = atp[S] ? Abexp[B](Jy) ¢ 1) . (115)

It is now easy to derive an over approximation of

a[P] o pos(lE[Pﬂ U ‘L’B] oy [P]
( Galois connection9g) so that post preserves joijis
&[P] o (postlzpyl Upostz®]) o #[P]
= { Galois connectionl(06) so thatx [ P] preserves joings
@[P] o postlggeyle ¥ [P]) O @[P] o postz®]o 7 [P])
= (by (100) post preserves identify
 @[P] o #[P] U @[P] o postr 1o ¥[P])
C ( by the Galois connectiori06) so thatisi[P] oy [ P] is reductive and previous lemma

(119§
AJ-J Al € inp[P]-(I = atp[S] ? Abexp[B](Jy) ¢ 1)
= AJ-Al €inp[P]-(l = atp[S] ? Jatp[[s]] L Abexp[B](Jy) ¢ J) . (116)

5.2 — By (93), we will also need an over approximation of

&[P] o postzrt]o y[P]
{def. (107) of &[P]§
Al einp[P-a({p | (I, p) € postz']o F[P](I})
(def. 97) of post]
Al €inp[Pl-a({p | 3, o) € PIPII) : (I, o), (I, p)) €T}
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{def. @3) of £!§
Al einp[P]-a({p | 3, ') € P[P](I) : I = afterp[S] A p = p Al =)
(def. (108 of y[P]§
332 € inp[Pl-(1 = € ?&(lp | p € ¥ Jafters[s])) € &(1))
( Galois connectionl(7) so thatx o y is reductive andL. = & () §
2J-Al € inp[P](l = €' ? Jaftery[s] ¢ 1) (117)

It is now easy to derive an over approximation of

a[P] o pOS(lE[[p] U ‘L't] oy [P]
= ( Galois connection9g) so that post preserves joijis
&[P] o (posflypey] Uposfr']) o [P]
= { Galois connection1(06) so thatx[P] preserves joings
@[P] o postlgpyle 7 [P U (@[P] o postz']o 7 [P])
= (by (100) post preserves identify
~(@[P] o ¥[PD 0 (@[P] o postz'le ¥ [P])
C ( by the Galois connectiorl06) so thatisi[P] oy [P] is reductive and previous lemma

(117§ :
33-3 012 € inp[P]+( = €' ? Jasters[s] ¢ 1)

= (L is the infimurr

5.3 — By (993), for thethen branch of the conditional, we will need an over approximation
of

&[P] o post(lgppy Ut?) o T*[S] o (Agppy U tH10 #[P]
= (distribution ©9) of post over
&[P] o postlgpy U t'l o postr*[S]1o postlgpy U 20 #[P]
= { Galois connectionl(06) so thaty[P] o &[P] is extensive and monoto#y
@[P] o posilgppUt'l o P[P] o &[P] o postz*[S]l o ¥[P] o &[P] o
postlsipy Ut®l o j[P]

C {lemma (L16) and monotony
a[P] o postlypj Utllo V[P] o &[P] o postt*[S]] o ¥[P] o AJ-Al € inp[P]-(I =
atp [S] ? Jatp[s7 L Abexp[B](Jp) ¢ J)
= (def. (110 of [ P]§
a[P] o pOS(lE[[p]] U ‘Ct] o ¥[P] o @[P]postt*[S]] o AJ-Al €inp[P]( = atp[S] ?
Jatp[[s]] DAbexﬂ]B]](Jg) é )
= (def (103 of Posf
af[P] o pOS[lE[[pH U‘L’t] o ¥[P] o @[P](Pos{S]) o AJ-al € inp[P]-( = atp[S] ?
Jatp[[s]] DAbexﬂ]B]](Jg) é )
= (induction hypothesisl(1l2 and monotony
a[P] o postlgppUt'l o #[P] o APos{S] o 2J-al €inp[P]-(I = atp[S] ?
] Jatp[[s]] I_IAbeXHIB]](Jg) ¢ J)
C {lemma (L18)§

232 €inp [Pl = € ? Jp U Jaftern[s) ¢ I) © APos{S] o 1J-Al € inp[P-(I =
atp[S] ? Jato[5 L Abexp[B](Jp) ¢ Jy)
(def. of the let construgt
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2J-let IV = Al € inp[P]-( = atp[S] ? Jato[s] L Abexp[B](J) & J) in (119)
let V' = APos{S](JY) in

M einp[Pl-(l = ¢/ 2 3 1) nggterp[[&}]] ¢ 3

Observe that monotony follows by induction hypothesis and the localit) and dependence
(114) properties by induction hypothesis and the labelling conditi®@h (

5.4 — Since the case of these branch of the conditional is similar t& (3), we can now
come back to the calculational design of AHdstB then S else S fi | as an upper
approximation of

a[P](Posfif Bthen Selse S fi |)
= {def. (110) of &[P]§
a@[P] o Posfif Bthen Selse S fi |oy[P]
= (def. (103 of Posf
a@[P] o postr*[if Bthen Selse & fi []oy[P]
= (big step operational semantic&3j§ )
Ot[[P]] o pOSt[(:LE[P]] U ‘L’B) o ‘L'*[[S]] o (lE[Pﬂ U ‘L’t) U (12[[p]] U ‘CB) o ‘C*[[Sf]] o (1EHPH U
710 #[P]
= ( Galois connection9g) so that post preserves joijis
@[P] o (postilgpep U %) o 7[S] o gy U H] U
post(ly(pp Ut®) o T*[St] o (Lgpp Ut DD © #[P]
= { Galois connectionl(06) so thatx [ P] preserves joing '
(O{[[P]] ) pO_S((lE[[pﬂ U ‘L’B) o ‘C*[[S]] o (1EHPH U ‘L’t)] o )/[[P]]) Ll (Ot[[P]] o
post(Lyppp Ut®) o T[] o (Agpp Ut )10 FIP])
(lemma 6.3) and similar one for thelse branch
2J:let 3V = Al € inp[P]-( = atp[S] ? Jat[s] L Abexp[B](Jp) & J) in (120)
let V' = APos{S](J") in
M einp[P](l =¢?J} U J;ﬂerp[[sﬂ
0
let J"" = 2l € inp[P]-(I = atp[S] ? Jaty[s] L Abexp[T (=B)][(Jp) ¢ ) in
let It = APos{& (3 ") in
M einp[Pl( =¢23) 113
= (by grouping similar termis
Ad-let 3V =2l €inp[P]-(I = atp[S] ? Jato[s] LI Abexp[B](Jp) & J)
andJ™ =il e inp[P]-(I = atp[St] ? Jat[s,] LI AbeXp[T (—=B)](Jp) ¢ &) in
let I = APosfS](J")
andJ " = APos{S (3 ") in
. , "o " . f7 . f7 . "o f7
Al einp[Pl-( =¢ 235 0 ‘J;fterp[[s]] 03y Udatter s ¢ JFU3)
= {bylocality (113 and labelling schemég) so that in particulag} = 3% = J;, = J;
= Jef// = Jef/” and APoslS | and APosiS | do not interfer§

INES

¢ I

f//

. f//
afterp[S] ¢

J )
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rd-let ' = Al € inp[P]-( = atp[S] ? Jatp[[sﬂ DAbeXﬂIB]](JZ)
|1 = atp[Sr] ? Jat[s] L Abexp[T (=B)](Jp)
¢ J)in
let J” = APos{S] c APos{$ [ (') in
Meinp[Pl-(= €72 350 Jseris) Y Jatter s € I
(by letting APosfif Bthen S else  fi || be defined asinl9§
APosfif Bthen Selse S fi |

6 — lterationC = while B do Sod wherel = atp[C] and¢’ = afterp [C].

6.1 — By (94), we will need an over approximation of

s

&[Pl(postr®])
(def. (110 of &[P]§
&[P] o postzr®1o #[P]
(def. (LO7) of [ P]§
AJal einp[P]-a({p | (I, p) € postrBlo $[P](I)})
(def. 97) of post]
2J-Ml €inp[Pl-ap | 3, p') € PIPID) : (I, ). (I, p)) € T®))
{def. 94) of 7B
A2J-Al € inp[Pl-a({p | 3(', p") € y[P]QQ): "=t Al =atp[S Ap=p'Ap F B
tt
) (def. (L08) of ¥[P]§
AJ-Al €inp[P]-( = atp[S] ?a({p € ¥(Jp) | p - B = tt}) & ()
(def. 60) of the collecting semantics Cbel] of boolean expressior® and 1. =
a (¥
Adeal (E )iélp[[P]]°(| = atp[S] ? & o ChexdB] o y(Jp) ¢ J_)
(def. 62) of &§
AJ-Al € inp[P]-(I = atp[S] ? &(CbexdB])(Jy) ¢ 1)
(soundness53) of the abstract semantics Abégj| of boolean expressiofs
AJ-Al €inp[P]-(I = atp[S] ? Abexp[B](Jp) ¢ 1)
{ by introducing the APo${/C] notation whereC = while B do Sod §
APosE[C] . (121)

6.2 — Similarly (¢ = atp[C]),

[l 11:

&[P](postr®]) ]
13-l € inp[Pl-élp 1307, o) € FIPI) : (I, o), (1, p)) € T8}
{def. ©4) of 7B

AJeAl €inp[Pl-a({p | (', p') € y[P](I) :I" =t Al = afterp[C]Ap =p Ap'
T(—B) =1} .
AJ-Al € inp[P]-(I = afterp[C] ? Abexp[T (—=B)](J¢) & 1)
( by introducing the APoglﬂC]] notation whereC = while B do Sod§
APosB[C] . (122)
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6.3 — By (94), we will also need an over approximation éf£ atp[[C])

&[PJ(postcRl)
(def. (110 of a[P]§
a[P] o pOS(‘CR] oy [P]
(def. (L07) of &[P]§
AJeal einp[P]-a({p | (I, p) € postrRo $[P](I)})
(def. 97) of post]
2J-Ml €inp[Pl-a({p | 3", p) € FIPID) : (1", o). (I, p)) € TR
{def. ©4) of TR§
AJeAl €inp[Pl-a({p | I, p') € y[P]I) : I = afterp[S A p = p Al =£})
(def. (108 of y[P]§
AJ-ml € inp[Pl-( =£?a({p | p € ¥ (Jafter[s)P}) ¢ a(®))
( Galois connectionl(7) so thatx o y is reductive andL. = & () §
1J: Al € inp[P](l = £ ? Jafter,[g ¢ 1)
{ by introducing the APo$§Y[C] notation whereC = while B do Sod§
APosf[C] . (123)

6.4 — For the loop entry, we will need an over approximation of

s

IES

(IS

&[P](postlyfpy UtB o *[S] U B))
{def. (110 of &[P]§ )
a[P] o pos(lE[Pﬂ UtBo *[S] U ‘L’B] oy [P]
( Galois connection9g) so that post preserves joins
&@[P] o (postlyppl Upostz® o e*[S]]Upostz®]) o [P
(by (99) post distributes over| )
@[P] o (postlypy] U(postz*[S]] o posit B1) Upos{zB)) o $[P]
( Galois connectionl(06) so thatx[P] preserves joins
@[P] o postlyprlop[P]) U (@[P] o postr*[S]lepostz®loy[P]) U @[P] o
posfz B0 [P])
{ Galois connectionl(06) so thaty [ P] o @[ P] is extensive and monotony,
(@[P] o postlypylo 7[PD U @[P] o postr*[F]1 o ¥[P] o &[P] o postz Bl ¥ [P]) U
@[P] o postz 1o 7[P])
{(100 so that pogtly[py] is the identity, Galois connectiod@6) so thati[P] o ¥ [ P]
is reductive, def. 103 of Pos{S], def. (1L10) of &a[P]§

Lppome™apomie; L @PI(Pos{S]) o &[P](postz °) &r&[ P](postz®)

(lemma (21), lemma (22), induction hypothesisl(l2) and monotony

Lppomiel™apome L (APOS{S] e APosP[C]) (i APosP[C] . (124)

6.5 — For the loop exit, we will need an over approximation of

&[P](postlgge U*[S] o 7))

(def. (110 of a[P]§
a[P] o pOS(lEHpH Ut*[g] o ‘L'R] o ¥[P]

( Galois connection9g) so that post preserves joijis
a[P] o (postlgpyl Upostz*[S] o 7)) o #[P]
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(by (99) post distributes overS
&[P] o (postlgppyl Upostr*[S]] o postzR))) o #[P]
{ Galois connection1(06) so thatx [ P] preserves joings
@[P] o postlgppyle 7 [P]) U @[P] o postz*[S]] - postz | o 7 [P])
(Galois connection1(06) so thaty’[P] o &[P] is extensive and monoto&y
@[P] o postiygeyl o #[P] U @[P] o postz*[S]] o #[P] o &[P] o postz "] o ¥[P])
((100 so that pogtly[py] is the identity, Galois connectiod@6) so thati[P] o ¥ [ P]
is reductive, def. 2(039 of Pos{ g, def. (L10 ofoz[[P]]S

1ADom[[P]]»m—°'>‘ADom[[P]] 0 @[P](PosfS]) o &[P](postr R]))

(lemma (23), induction hypothesisi(2) and monotony

1ADomIPI™ADOM(P] (i (APos{S] o APosf[C]) . (125)

Observe thatin all case$41), (122), (123, (124 and (L25, monotony follows by induc-

tion hypothesis and the locality {3 and dependencé&{4) properties by induction hypothesis
and the labelling conditiort().

6.6 — By (94), we will also need an over approximation of

&[P](post(zB o *[F] o TR*])
{ Churcha-notatior
a[P](xIn-posf(zB o *[] o tR)*1In)
{def. (110) of &[P]§
@[P] o (AIn-post(z® o e*[S] o z¥)*]In) o F[P]
(fixpoint characterization1(01) §
a[P] o (Mn- prg AX-InUposfr® o r*[S] o R X) o ¥[P]
(def. application and compositior)
A J-&[P](fp~ AX+HP](J) U postr® o t*[S] o TR X)

In order to apply Th3, we compute

&[P] o AX-7[P](J) UposizB o t*[S] o TR X o $[P]
{ Churchi-notatiory
AX=a@[P](#[P](JI) Uposir® o r*[S] o RI(F[P](X)))
{ Galois connection1(06) so thatx [ P] preserves joins
AX-@[PI(F#[P](I)) ta[PJ(postz® o t*[S] o ™17 [P](X)))
{ Galois connectionl(06) so thatx [ P] o 7 [ P] is reductive and by39) post distributes
OVEI’O
AX+J( a[[SP]] o pos{z ] o posfr*[S]] o posfr 1o [ P]
(Galois connect|0n1(06) so thaty [P] o @[ P] is extensive and monotoﬁly
AXeJUaP] o pOS(‘L’ 1o ¥[P] o @[P] o postc*[S]] $[P] o &[P] o postr Bl o 7 [P]
(def. (110 ofa[[P]]S
AX+J [ &[P] o postr R0 #[P] o @[P] o postz*[S]1c #[P] o &[P](posfrB])
({lemma (21) and monotony
AX+J [ a[P] o postr Rl o $[P] o @[P] o postr*[S]] c #[P] « APosE[C]
(def. (110) of a[[P]] and def. (03 of Posf
AX+J 0 a[P] o postr Rl o $[P] o &[P](Pos{S]) - APosE[C]
Zlnductlon hypothe5|sl(12) and monotony, def1(10) of &[P]§
AX+J (0 &[P] o postrR]o 7 [P] o APos{S] o APosE[C]
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(def. (110 of &[P]§

AX+J [1&[P](postzR]) o APos{S] - APos[C]
{lemma (23§

AX+ J [1APosR[C] o APos{S] o APosf[C]

so that we conclude

a[P](post(z® o *[S] o F)*])
2 J-&[P](fp~ AX-$P](J) U postr® o t*[S] o T’ X)
(Th.3§
AJeIfp~ A X J [1APosR[C] o APos{S] - APosE[C](X) (126)

Monotony follows when taking the least fixpoint of a functional which by induction hypothesis,
is monotonic. The localityl(13) and dependencé{4) properties can be proved by induction
hypothesis and the labelling conditioddj for all fixpoint iterates and is preserved by lubs
whence when passing to the limit.

6.7 — We can now come back to the calculational design of ARgsle B do Sod] as
an upper approximation of

@[P](Posfwhile B do Sod])
= {def. (110 of &[P]§
@[P] o Posfwhile B do Sod] o 7[P]
= (def. (L03 of Posf
a@[P] o posfr*[while B do Sod]]cy[P]
= (big step operational semanti&} of the iteration
a[P]opost(dgpyUt*[S ot o (rBor*[ForR)* o (IgppUrBor*[FUTB)]
o ¥ [P]
= (distribution ©9) of post over
a[P] o pos(lE[Pﬂ UrBo *[S] U ‘L’B] o pOS[(‘CB oT*[9] o ‘CR)*] )
postlypy Ut [S] o TR0 J[P]
{ Galois connectionl(06) so thaty [ P] o &[P] is extensive and monotofiy
Ot[[P]] opostlE[Pﬂ UtBo ‘C*[[S]] U ‘L’B] o y[[P]] oéZ[[P]] opOS[(‘CB o ‘L'*[[S]] o ‘CR)*] o y[[P]] o
&[P] o postlyppy U t*[S] o tR]o ¥ [P]
(lemmata (24), (126), (125 and monotony

(LaDom[P] ™ ADOMP! (1 (APos{S] o APosB[C]) (1 APosE[C]) o AJ-Ifp~ AX+J [

APosf[C] o APos{S] o APosE[C](X) o (LaDom[P] ™ ADOMP] 1 (APos{9] o
APost[C]))

APosfwhile B do Sod] .

s

s

In conclusion the calculational design of the generic forward nonrelational abstract se-
mantics of programs leads to the functional and compositional characterization given in Fig.
14. In order to effectively compute an overapproximation of the set{ ptjg®]] In of states
which are reachable by repeated small steps of the progranm some given séh of initial
states, we use an overapproximation of the initial states

a[PJ(n) = | (133)
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e APos{X:= A] = AJddett¢ =atp[X:= A], ¢ = afterp[X := A]in (128)
let v = Faexp[A](Jy) in

O)?2J I <~ Jp U J[X<—vn?])

here:
where Yvel :0(w) = y(@) CE

. C=if Bthen Selse & fi , APos{C] = (129)
Ad-let J' = J[atp[S] < Jat[s] L Abexp[B] (Jat[c]):
atp[St] < Jatp[s] UAbEXP[T (=B)] (Ja[cp)] in
let J” = APos{S] o APos{S[(J") in
J'[afterp[C] « ‘ngfterp[[cl] Ll ‘Jgfterp[[sﬂ Ll ‘Jgfterp[[sfﬂ]
. C =while Bdo Sod, APos{C] = (130)

(Lapompytapomp U (APOS{S] o APOSPIC]) (1 APosP[C] ) o

(33- Ifp~ %X~ J (1 APoSR[C] » APos{S] o APosf [C]00)

(1AD0m[[P]]'m—°r>1ADom[[P}] 0 (APos{S] OAPOSF[[QD)
where:

APosf[C] = 2J-I[atp[S] < Abexp[B]Jat[c]]
APosB[C] 2 13- 1[afters[C] < Abexp[T(—B)]Jag(c]]
APost[C] = 1J-1[atp[C] < Jafters)]

APoSfCy; ...; Cy] = APos{Cp]o...oAPos{C,] (131)

o APos{S;; | = APos{S] . (132)

Figure 14. Generic forward nonrelational reachability abstract semantics of programs

and compute APogP]I. Elements of ADoriP] must therefore be machine representable,
which is obviously the case if the lattideof abstract value properties is itself machine repre-
sentable. Moreover the computation of AH#%tI terminates if the complete lattigeé , C)

satisfies the ascending chain condition. Otherwise convergence must be accelerated using

widening/narrowing techniqués The soundness of the approach is easily established

APos{ P]I
3 {soundnessl(l1)§
a[P](PosfP])I
- (abstraction 133 of the entry condition and monotofy
a[P](PosfP]) a&[P](In)
3 {def. (1103
Ot[[P]] o POSﬁP]] o y[[P]] o &[[P]](In)
0 ( Galois connectionl(06) so thaty [P] o &[P] is extensive and monoto#y
a[P](PosfP](n))

Swhich were explained in the course but not, for short, in the notesgseé][
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or equivalently, by the Galois connectiot0E)
posfr*[P]lIn < J[P](APosfP]I) . (134)

Notice that the sef[P](APos{P] 1) is usually infinite so that its exploitation must be pro-
grammed using the encoding used for ADjdM) (or some machine representable image).

13.6 The generic abstract interpreter for reachability analysis

The abstract syntax of commands is as follows

type com =
| SKIP of label * label
| ASSIGN of label * variable * aexp * label
| SEQ of label * (com list) * label
| IF of label * bexp * bexp * com * com * label
| WHILE of label * bexp * bexp * com * label

For a commandC, the first label at[C] (written (at C)) and the second aftgfC] (writ-

ten(after  C)) satisfy the labelling conditions of Set2.3 The boolean expressidd of

conditional and iteration commands is recorded ) andT (—(B)) as defined in Se®. L
The signature of the generic abstract interpreigry

module type APost_signature =
functor (L: Abstract Lattice_Algebra_signature) ->
functor (E: Abstract Env_Algebra signature) ->
functor (D: Abstract Dom_Algebra_signature) ->
functor (Faexp: Faexp_signature) ->
functor (Baexp: Baexp_signature) ->
functor (Abexp: Abexp_signature) ->
sig
open Abstract Syntax
(* generic forward nonrelational abstract reachability semantics of *)
(* commands *)
val aPost : com -> D(L)(E).aDom -> D(L)(E).aDom
end;;

Again the implementation is a prototype (in particular global operations on abstract invariants
does not take the localityl((3 and dependence propertiekl{) into account, a program
optimization which is currently well beyond the current compiler technology for functional
languages).

module APost_implementation =
functor (L: Abstract_Lattice Algebra_signature) ->
functor (E: Abstract Env_Algebra_signature) ->
functor (D: Abstract Dom_Algebra_signature) ->
functor (Faexp: Faexp_signature) ->
functor (Baexp: Baexp_signature) ->
functor (Abexp: Abexp_signature) ->
struct
open Abstract Syntax
open Labels
(* generic abstract environments *)
module E’ = E(L)
(* generic abstract invariants )
module D’ = D(L)(E)
(* generic forward abstract interpretation of arithmetic operations *)
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module Faexp’ = Faexp(L)(E)
(* generic [reductive] abstract interpretation of boolean operations *)
module Abexp’ = Abexp(L)(E)(Faexp)(Baexp)
(* iterative fixpoint computation *)
module F = Fixpoint((D":Poset_signature with type element=D(L)(E).aDom))
(* generic forward nonrelational abstract reachability semantics )
exception Error_aPost of string
let rec aPost ¢ j = match c with
| (SKIP (I, I)) -> (D'.set j I' (E'.join (D'.get j I') (D'.get j 1))
| (ASSIGN (I,x,a,l)) ->
let v = (Faexp'.faexp a (D'.get j I)) in
if (L.in_errors v) then |
else (D'.set j I' (E'.join (D'.get j I') (E'.set (D’.get j 1) x
(L.meet v (L.f_ RANDOM ())))))
| (SEQ (I, s, I)) -> (aPostseq s j)
| (F (I, b, nb, t, f, I) ->
let | = (D'.set j (at t) (E'.join (D.get j (at t))
(Abexp’.abexp b (D'.get j 1)) in
let 7 = (D'.set j (at f) (E'.join (D'.get j’
(at f)) (Abexp’.abexp nb (D.get j 1)))) in
let | = (aPost t (aPost f j”)) in
(D'.set | I' (E.join (E.join (D.get ;" I')
(D'.get | (after t))) (D'.get j” (after f))))
| (WHILE (I, b, nb, c, I) ->
let aPostB j = (D’.set (D’.bot ()) (at c’)
(Abexp’.abexp b (D’.get j 1)) in
let aPostnotB j = (D'.set (D.bot ()) I
(Abexp’.abexp nb (D'.get j 1))) in
let aPostR j = (D'.set (D'.bot ()) | (D'.get j (after c?))) in
let j = (D.join j (aPost ¢’ (aPostR j))) in
let f x = (D.join j (aPostR (aPost ¢’ (aPostB x)))) in
let j” = (F.Ifp f (D.bot ())) in
(D'.join j” (D'.join (aPost ¢’ (aPostB ") (aPostnotB j”)))
and aPostseq s j = match s with
[ 1 -> raise (Error_aPost "empty sequence of commands"”)
| [c] -> (aPost c j)
| h:t -> (aPostseq t (aPost h j))
end;;

module APost = (APost_implementation:APost_signature);;

13.7 Abstract initial states

We are left with the problem of defining the datof initial states. More generally in the
course we considered an assertion language allowing such safety and liveness non-trivial
specifications. For short here, we consider the simple case lmherjust the set EntrjyP]

of program entry states (Seg?n)

a[P](Entry[P])
(def. (LO7) of @[ P] and (77) of Entry[P] §
A e inp[P]-a({xX € Var[P]-Qj | £ = atp[P]})
(def. (18) of &§
M e inp[P]-(¢ = atp[P] ? X € Var[P]-« ({Q2j }) ¢ a (D))
(def. L = &(#), 1 = i € inp[P]- L and (L6) of substitutior
Llatp[P] < AX € Var[P]-a({Q2j )]

(by defining AEntnjP] = I[atp[P] < AX € Var[P]-a({j D1} (135)
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AEntry[P] .
13.8 Implementation of the abstract entry states

The immediate translation is

module AEntry_implementation =
functor (L: Abstract Lattice_Algebra_signature) ->
functor (E: Abstract Env_Algebra_signature) ->
functor (D: Abstract Dom_Algebra_signature) ->
struct
open Abstract Syntax
open Labels
(* generic abstract environments *)
module E’ = E(L)
(* generic abstract invariants *)
module D’ = D(L)(E)
(* abstraction of entry states *)
exception Error_aEntry of string
let aEntry ¢ =
if (at ¢) <> (entry ()) then
raise (Error_aEntry "not the program entry point")
else
(D'.set (D'.bot ()) (at c) (E'.initerr ()))
end;;

13.9 The reachability static analyzer

The generic abstract interpreter AF[d3t(AEntry[P]) can be partially instantiated with (or
without) reductive iterations, as follows][

module Analysis_Reductive_lteration_implementation =
functor (L: Abstract_Lattice Algebra_signature) ->
struct
open Program_To_Abstract Syntax
module ENTRY = AEntry(L)(Abstract_Env_Algebra)(Abstract_Dom_Algebra)
module POST = APost(L)(Abstract Env_Algebra)(Abstract Dom_Algebra)(Faexp)
(Baexp_Reductive_Iteration)(Abexp_Reductive_Iteration)
module PRN = Pretty Print(L)(Abstract_Env_Algebra)(Abstract Dom_Algebra)
let analysis () =
print_string "type the program to analyze..."; print_newline ();
let p = abstract_syntax_of program () in
let | = (POST.aPost p (ENTRY.aEntry p)) in
(PRN.pretty_print p j)
end;;

and then to a particular value property abstract domain

module ISS’ = Analysis_Reductive_lIteration(ISS_Lattice_Algebra);;

Three examples of initialization and simple sign reachability analysis from the entry states are
given below. The comparison of the firstand second examplesillustrates the loss of information

due to the absence of an abstract vahoszsuch thaty (POS2 £ [0, max_int U {Qa}.

The third example shows the imprecision on reachability resulting from the choice to have

¥ OBOT # 0).
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TOP

y(BO) = §
NI y(INE) = {Qj}
y(ARB = {Qa)
y(ERR = {Qj.Qa}
NEGZNZERO POSZ  y(NEQ = [min_int ,—1]U{Qa)}
y(ZERQ = {0,Qa}
y(POS = [1, max_int 1U{Qa)
ERR NEG ZERO POS y(NEGZI A [min_int ,O]U{Qa_}
y(NZERQ = [min_int ,—1]U[1, max_int JU{Qa}
INE KE y(POSZ = [0, max_int U {Qa}
y(INI') = TU{Qa)
y(Top = I, = IU{Qj,Qa)
BOT

Figure 15: The lattice of errors and signs

{ n:ERR; i'lERR } { n:ERR; i'lERR } { XERR }
n:=?2i:=1; n:=?2i:=0; x = (1 / 0)
{ n:INI; i:POS } { n:INI; i:INI } { x:BOT }
while (i < n) do while (i < n) do skip ;
{ n:POS; i:POS } { n:NI; i:INI } { x:BOT }
=3+ 1) i= (3G + 1) x =1
{ n:POS; i:POS } { n:INI; i:INI } { x:POS }
od od
{ n:INI; i:POS } { n:INI; i:INI }

Precision can be increased to solve these problems by using the lattice of errors and signs
specified in Figl5, as shown below.

{ N‘ERR; i.ERR } { XERR }
n:=721i:=0; x = (11 0);
{ n:INI; i:POSZ } { x:BOT }
while (i < n) do skip ;
{ n:POS; i:POSZ } { x:BOT }
=0+ 1) x =1
{ n:POS; i:POS } { x:BOT }
od

{ n:INI; i:POSZ }

The next two examples (for which the gathered information is the same whether reductive
iterations are used or not) show that the classical handling of arithmetic or boolean expressions
using assignments of simple monomials to auxiliary variablesr( the example below) is

less precise than the algorithm proposed in these notes.

{ XERR, y:ERR } { XERR, y:ERR; i1.ERR }
X =0y =72 X =0,y =201 = -y,
{ X:ZERO; y:INI } { X:ZERO; y:INI; i1:INI }
while  (x = -y) do while  (x = i1) do
{ x:ZERO; y:ZERO } { XXZERO; y:INI; i1:ZERO }
skip skip ; il = -y
{ x:ZERO; y:ZERO } { XXZERO; y:INI; i1:INI }
od od
{ X:ZERO; y:INI } { X:ZERO; y:INI; i1:INI }
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The same loss of precision due to the nonrelational abstractiQrappears when boolean
expressions are analyzed by compilation into intermediate short-circuit conditional code

{ XERR,; y:ERR, Z.ERR } { XERR; y:ERR; Z.ERR }
X =0,y =7 z:=72 X =0y :=7?z:=7
{ x:ZERO; y:INI; z:INI } { x:ZERO; y:INI; z:INI }
if  (x=y)&((z+1)=x)&(y=2)) then it ((x=y)&((z+1)=x)) then
{ XX ZERO;, y:ZERO; z:NEG }
if (y=z) then
{ x:BOT; y:BOT,; z:BOT } { x:ZERO; y:BOT; z:BOT }
skip skip
else
{ XXZERO;, y:ZERO,; z:NEG }
skip
fi
{ X:ZERO;, y:ZERO; z:NEG }
else else
{ XXZERO; y:INI; z:INI } { XXZERO; y:INI; z:INI }
skip skip
fi fi
{ X:ZERO; y:INI; z:INI } { X:ZERO; y:INI; z:INI }

Similar examples can be provided for any nontrivial nonrelational abstract domain.
13.10 Specializing the abstract interpreter to reachability analysis from the entry states

As a very first step towards efficient analyzers, the abstract interpreter ofl4igan be
specialized for reachability analysis from program entry staied/e want to calculate

APos{ P](AEntry[P])
and more generally, for all program subcomma@ds Cmp[P]

Ar € AEnV[P]-APosC](L[atp[C] < r])

thatis
APOStER[C] = ob[C](APos{C]) (136)
where
as[C] = AF-ar-F(L[atp[C] «r]) (137)
yplC] = Afead«(M #atp[C]: I =12 f(Japcp) ¢ T) (138)
is such that
o5 [CIF C f

<= (def. of the pointwise ordering and (L37) of o/ [C] §
Vr € AEnV[P] : F(L[atp[C] <-r]) C f(r)
& (for =, by choosing = Jat[] and T is the supremum, while foe=, by choosing
J = 1[atp[C] «r]§ . )
vJ e ADom[P]: F() E (M #atp[C] : J = L ? f(Japcp ¢ T)
<= (def. (139 of y5[C]}
vJ € ADom[P] : F(J) C y5[C](f)J
<= (def. of the pointwise orderinﬁ (which is overloaded)

F E yplC](f)
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whence

mon Yp [C] mon

(ADom[P] — ADom[P], C) ﬁ (AEnV[P] — ADom[P], C) .
*p

We consider the simple situation wherel ) = ¢ for which (34), (39) and 64) do hold. It

follows by structural and fixpoint induction that for &l € Cmp[P]

APosfC](l) = 1. (139)

We calculate APostE#{C] by structural induction and trivially prove simultaneously
locality vr € AEnV[P] : VI € in[P] — inp[C](APoStEmB[C]r) = 1, (140)
extension ¥r € AENV[P] : r C (APOStER [C]r)at[c] - (141)

1 — IdentityC = skip where ap[C] = ¢ and aftep[C] = ¢’

APOStEm [skip |

(def. (136) of APostEr and (137) of p §
Ar-APosfskip [(L[¢ < r])

(def. (127) of APos{skip [, labelling condition $6) and substitution¥6) §
A L[l <18 «r].

(140 and (41 hold because igskip | = {¢, ¢’} and reflexivity.

2 — AssignmenC = X := Awhere ap[C] = ¢ and aftep[C] = ¢’

APOStERB[X := A]
(def. (136) of APostEn and37) of «°§
Ar-APosfX := AJ(L[£ < r])
(def. (128 of APos{X := A[§
Arsletv = Faexp[[A]]((J_ £ <r1])p)in
Ow)? L[ <r]é (L[E — D <« (L[ <D (L[ < rDelX < vn?Z]D
{labelling condition §6), L is the infimum and def.1() of substitutior}
Areletv = Faexp[A](r) in (G) 2 L[l < r] el < r; 8 < r[X<vn?]).

(140 and (41 hold because ig[X := A] = {¢, ¢’} and reflexivity.

3 — ConditionalC = if B then S else & fi where ap[C] = ¢ and aftep[C] =
El
APostEp[if Bthen Selse S fi |
(def. (136) of APostEn andX37) of «°§
ar-APosfif Bthen Selse S fi (L[ < r])

(def. (L120) of APosfif Bthen Selse & fi |
arelet 3V = Al € inp[P]-(I = atp[S] 2 (L[ < r])atpﬂsﬂ ]
AbequB]]((J_[E 1) ¢ (L[ <rD)in

let 3V = APos{S](3") in Al € inp[P]-( = ¢ ? 3} (1 3!
U
let J¥' =2l € inp[P]-( = atp[St] ? (L[€ < rDatos] U
Abexp[T (=B)]((L[£ < 1)) & (L[ < r])) in
let 37" = APos{St[(3") in Al € inp[P]-( = ¢/ 23} 11

t//
after [s] ¢ I

f//
afterp[S]

f//

¢y,
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For the true alternative, by the labelling conditié®) so that? # atp[S] and def. {6) of
substitution, we get

arelet JU = 1[0 < r; atp[S] < Abexp[B]r]in
let J' = APos{S](3") in Al €inp[P]-( = ¢ ? J} U J;ﬁerp[[sﬂ &¢Jh
(by the locality (13) and dependencé. 14) properties, the labelling conditionS6)

so that? # ¢’ and 69) so that, ¢’ € inp[S]§

arelet ' = APosS](L[atp[S] < Abexp[B]r]) in L[£ <« r; ¢ « ‘Jz;fterp[[sﬂ] [ Jt
= (def. (136) of APostEn, {37) of «® and induction hypothesjs
arelet J' = APoStEmn[S](Abexp[B]r) in L[¢ < r; ¢ « ‘J;fterp[[s]]] 0 Jt,

so that we getX(47) by grouping with a similar result for the false alternative and using the
labelling condition §9). (140 and (L41) hold by induction hypothesis an89).

4 — lterationC = while B do Sod where ap[C] = ¢, afterp[C] = ¢’ and{1, £7 €
inp[S]: According to the definition)30) of APosfwhile B do Sod, ], we start by the
calculation of

APosR[C](L[¢ « r])
{def. (130) of APosf[C]§
Le < (L[ < rDafters[s]]
{labelling conditions6) so that? # ¢’ and def. {6) of substitutiorj
1«11 = 1. (142)

It follows that

= <1ADom[[P]].m—°r>‘ADom[[P]] ‘i (APos{ 9] OAPosF[[C]])> (I <r
{ (def. identity 1 and pointwise lub§
(L[¢ « r1GAPos{S] o APosE[C] (L[t < r]))
((142), strictness139 and_L is the infimum
10 «<ry. (143)

For the fixpoint

(AJ-lfpé X+ J [1APos[C]  APos{S] o APosE [[C]](X)) (Ife <r
_(def. applicatiory
Ifp- 2 X-(L[¢ < r]) (1APosR[C] o APos{S] o APosE[C](X) ,

let us definex’ = Ax- L[¢ < X] andy’ = AJ- J; so that we have the Galois connection

/

(AENV[P], ) == (ADom[P], ) .

We have

(L[ < r]) (1APosf[C] o APos{S] o APosE[C](«/ (x))
(def.a’§

(L[ < r)]) (1APosf[C] o APos{S] c APosB[C](L[¢ < x])
{def. (130) of APosB[C]§

(L[ < r]) (IAPosf[C] o APos{S] o 1 [atp[S] < Abexp]B]x]
(def. (136) of APostEn, {37) of «® and induction hypothesjs
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(L[¢ < r]) [IAPosR[C] o APostEm[S] (Abexp]B]x)
_ (def. (130 of APosf[C] §
(L[¢ < r]) O (APOStE [ S] (Abexp[B]X)) afters [s]
_ (def. pointwise uniom and (L6) of substitutiorj
(L[ < r {1 (APOSER [ S](Abexp[B]X))afters 5]
(def.o/§
a' o Ax-1 U (APOStER [ S](Abexp[ B]X))afters 5] (X) »

so that by the fixpoint abstraction theore@nwe get

Ifp~ AX-(L[¢ < r1) () APOSR[C] « APos{S] o APoSB[C](X)

o (Ifp- AXer L] (APOStEM [ S] (Abexp[ B[ X)) after [s] (X))
(def.a’§

1€ < Ifp~ ax-r (1) (APOStERR[S] (Abexp[ B]X))afters (5] (¥)] - (144)

It remains to calculate
<1ADom[[P]]rm—°'QADom[[P]]_'j (APos{S] o APosB[C]) (| APosE [[C]]) (I <
(def. pointwise luh’ and identity §

(J_[E < 1111 (APos{S] o APosB[C](L[¢ < r']) (1APosB[C](1[¢ « r’]))
(def. (130) of APosB[C] and APos?[C]§

(L[e < r'10 (APosfS](L[ate[S] < Abexp[B]r']) (1 L[¢' < Abexp[T (=B)]r'])
(labelling condition §6), def. (L6) of substitution, def.136) of APostEn, (37) of «®
_and induction hypothesjs

(L€ < r'; &' < Abexp[T (=B)]r'] LI (APostER [S](Abexp[B]r")) . (145)
It follows that for the iteration

APostEn[C], where C =while Bdo Sod
(def. (136) of APostEn and37) of «°§
Ar-APOSIC](L[¢ < r])
(def. (130 of APosfwhile B do Sod]§

are (1AD0mHPH@ ADomie] L (APOS{S] « APosB[C]) {1 APosE [[C]]) o

(u- Ifp= X+ J (1 APosR[C] o APos{S] o APosE [[C]](X)) .
<1AD0mHPHm ADomyp) L (APOS{S] oAPosB[[C]])) (e <r
{lemmata (43, (144 and (45§
Arelet r_/ = Ifp~ AX-r LI (APOStEm[9] (Abexp[B]X)) after, g (X) i

(L[ < r’; ¢/ < Abexp[ T (—B)]r’] LI APostEm[S] (Abexp[B]r") .
(140 and (@41) hold by induction hypothesis, induction on the fixpoint iterates &l (

5 — Forthe sequend@; ; ...; Ch,n > 0wherel = atp[Cy; ...; Cpy] = atp[C1] and
¢ = aftep[Cy; ...; Cp] = afterp[Cy], we show that
APOStER[Cy; ...; CpJr = letJt = APostErp[Cq]r in (146)

let J2 = J1 1 APOStER [Cy] Jétp[[Cz]] in

let 3" = 3" (1 APOStER [Cn] (3" Yagp e, N
Jn,
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as well as the locality1(40) and extension141) properties. We proceed by induction on
n > 0. This is trivial for the basia = 1. For the induction step + 1, we have

APOStER[Cs1; ...; Cn; Chii]
(def. (136) of APostEn and37) of «°§
ArAPOSfCy; ...; Cn; Cnpa](L[€ <r])
(def. 131 of APos{C1; ...; Cn; Cny1] and APoSICy ; ... ; Cy,] and associa-
tiVity of OS .
Ar+AP0OS{Cpi1] o APOSIC1 ; ...; Cp](L[€ <]
(def. (136) of APostEn, {37) of «® and induction hypothesid46)§
ar-let J1 = APoStEm [Cq]r in

let 3" = I"1 (I APOStER [Cn] (3" Date [, i
APosfCp11]J"

To conclude the induction step, it remains to calculate

APOSﬂCn_H_]] J"
(locality property (40), labelling 68) so that aftes[Cn] = atp[Cp+1] = inp[Ch] N
inp[Cn+1], locality (113) and dependencé {4) propertie§
M e inp[C]-( €inp[Cy; .. - Cn] — {atp[Cn=1]} 2 (I")
¢ APOSCh 1] L[ate [Cnea] < (IMatp[coy)])
(def. (136) of APostEn, (37) of «® and structural inductioh
Al e inp[[C]]' (e inp[[Cl Do Cn]] — {atp[[anl]]} ?2 (M,
¢ APOStER [[Cn+1]](\]n)atp[cn:1]])
{locality (140) and extension141)§
Jn I:lAPOStEFb[[Cn+1]](Jn)atp[[cnzl]] .

so that

APOStER[Cy ; ...; Cpya]r
= let J1 = APOStER[Cy]r in

let J”Il = J" 0 APOStE®D [Cni1] (3" atp[coyq] IN
Jn+t,

(140 and (@41) hold by induction hypothesis an@g).

6 — ProgramsP = S;;

APOStER[S;; |

(def. (136) of APostEn andX37) of «°§
Ar-APosfS;; J(L[¢ <r])

(def. (132 of APos{S;; [
Ar-APos{S|(L[¢ < r])

(def. (136) of APostEn andX37) of «°§
APOStER[9] .

The final specification is given in Fid.6, from which programming is immediat&][ No-

tice that the above calculation can be done directly on the program by partial evaliétion [
(although the present state of the art might not allow for a full automation of the program gener-
ation). The next step consists in avoiding useless copies of abstract invariants (deforestation).
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APostEm[skip Jr = L[atp[skip ] < r;afterp[skip ] < r]

o APoOStEp[X := Alr = letv = Faexp[A]r in
(O(v) ? L[atp[X := A] <]
¢lfatp[X = A] < r;afterp[X:= A] < r[X < vn?]])

. C=if Bthen Selse S fi , APOStEn[C]r = (147)
let J% = APoStE [S](Abexp[B]r) in
let J" = APoStER [St](Abexp[T (—=B)]r) in

Llate[C] < r: afterp[C] < Iipep g U Jgfterp[[sf]}] gt gf
. C =while Bdo Sod, APoStEnp[C]r =

letr’ = Ifp~ Ax-r LI (APOStEM [S] (Abexp[ B]x))after[g] IN
L[atp[C] <« r’; afterp[C] < Abexp[T (—=B)]r'] L]
APostEmn[S] (Abexg[B]r")
. C=Ci; ...; Ch, APOSER[C]r =
let J1 = APOStER [Cy]r in
let 32 = J* (I APOStERB [C2] (I atp [cy] N

let 3" = "L I APOStER [Cr] (3" Hagp e, i
Jn

. APOStEnp[S;; | = APOStER[S](AX € Var[P]-a ({22} })) .

Figure 16: Generic forward nonrelational reachability from entry states abstract semantics of
programs

By choosingtototally orderthe labels (suchthati€] = {¢ | atp[C] < ¢ < afterp[C]})and

the program variables, abstract invariants can be efficiently represented as matrices of abstract
values. The localityX40) and dependence (equivalent id §)) properties for APostEs[C]

yield an implementation where the abstract invariant is computed by assignments to a global
array. For large programs more efficient memory management strategies are necessary which
is facilitated by the observation that the only global information needing to be permanently
memorized are the loop abstract invariants.

14. Conclusion

These notes cover in part the 1998 Marktoberdorf course oficdleulational design of
semantics and static analyzers by abstract interpretatiéié have chosen to putthe emphasis
on the calculational design more than on the abstract interpretation theory and its possible
applications to software reliability. The objective of these notes is to show clearly that the
complete calculation-based development of program analyzers is possible, which is much
more difficult to explain orally.

The programming language considered in the course was the same, except that the small-
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step operational semantics (S&¢.9. and12.) was defined using an ML-type based abstract
syntax (indeed isomorphic to the grammar based abstract syntax of. $e&1and12.]).

We considered a hierarchy of semantics by abstraction of a infinitary trace semantics
expressed in fixpoint form (se€]). The non-classical big-step operational semantics of
Sec.12.8and reachable states semantics of S€cl0are only two particular semantics in
this rich hierarchy. The interest of this point of view is to rub out the dependence upon the
particular standard semantics which is used as initial specification of program behaviors since
all semantics are abstract interpretations of one another, hence are all part of the same lattice
of abstract interpretations §].

The Galois connection and widening/narrowing based abstract interpretation frameworks
(including the combination and refinement of abstract algebras) were treated at length. Very
few elements are given in these written notes (see complemenig,inf, 17] at higher-
order and [5] for weaker frameworks not assuming the existence of best approximations).
Finite abstract algebras like the initialization and simple sign domain off5&are often not
expressive enough in practice. One must resort to infinite abstract domains like the intervals
considered in the course (seg §]), which is the smallest abstract domain whicle@nplete
for determining the sign of additior?]. With such infinite abstract domains which do not
satisfy the ascending chain condition, widening/narrowing are needed for accelerating the
convergence and improving the precision of fixpoint computations.

Being based on a particular abstract syntax and semantics, the recursive analyzer consid-
ered in these notes is dependent upon the language to be analyzed. This was avoided in the
course since the design of generic abstract interpreters was based on compositionally defined
systems of equations, chaotic iterations and weak topological orderings.

The emphasis in these notes has been on the correctness of the design by calculus. The
mechanized verification of this formal development using a proof assistant can be foreseen
with automatic extraction of a correct program from its correctness ptobfUnfortunately
most proof assistants are presently still unstable, heavy if not rebarbative to use and sometimes
simply bugged.

The specification of the static analyzer which has been derived in these course notes is well-
adapted to the higher-order modular functional programming style. Further refinement steps
would be necessary for efficiency. The problem of deriving very efficient analyzers which
are both fast and memory sparing goes beyond classical compiler program optimization and
partial evaluation techniques (as shown by the specialization to entry states h3Skj..

This problem has not been considered in the course nor in these notes.

A balance between correctness and efficiency might be found by developing both an
efficient static analyzer (with expensive fixpoint computations, etc.) and a correct static
verifier (which might be somewhat inefficient to perform a mere checking of the abstract
invariant computed by the analyzer). Only the correctness of the verifier must be formally
established without particular concern for efficiency.

The main application of the program static analyzer considered in the coursdstesct
checking as introducetf in [5] and refined by J]. The difference with abstract model-
checking [L9] is that the semantic model is not assumed to be finite, the abstraction is not
specific to a particular program (see for a proof that finite abstract domains are inadequate
in this context) and specifications are not given using a temporal logic. By experience, spec-
ifications separated from the program do not evolve with program modifications over large
periods oftime (10 to 20 years) and are unreadable for very large programs (over 100,000 lines).
The solution proposed in the oral course was to insert safety/invariant and liveness/intermittent

10without name
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together with final and initial assertions in the program text. The analysis must then combine
forward and backward abstract interpretations (only forward analyses were considered in these
written notes, see e.glL{] for this more general case and an explanation of why decreasing
iterations are necessary in the context of infinite systems).

The final question is whether the calculational design of program static analyzers by
abstract interpretation of a formal semantics does scale up. Experience shows that it does by
small parts. This provides a thorough understanding of the abstraction process allowing for
the later development of useful large scale analyzerk |
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