
Design of Syntactic Program Transformations by
Abstract Interpretation of Semantic

Transformations �

Patrick Cousot

Département d’informatique
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France
Patrick.Cousot@ens.fr

http://www.di.ens.fr/~cousot/

Traditionally, static program analysis has been used for offline program trans-
formation i.e. an abstraction of the subject program semantics is used to de-
termine which syntactic transformations are applicable. A classical example is
binding-time analysis before partial evaluation [4, 5].

We present a new application of abstract interpretation to the formalization
of source to source program transformations:

– The semantic transformation is understood as an abstraction of the subject
program semantics. The intuition is that the transformed semantics is an ap-
proximation of the subject semantics because, most often, redundant elements
of the subject semantics have been eliminated;

– The correctness of the semantic transformation is expressed by an observa-
tional abstraction. The intuition is that the subject and transformed semantics
should be exactly the same when abstracting away from irrelevant hence unob-
served details;

– Finally, the syntax of a program is shown to be an abstraction of its semantics
(in that details of the execution are lost) so that the transformed program is an
abstraction of the transformed semantics.

Abstract interpretation theory [1, 2] provides the ingredients for designing a
syntactic source-to-source transformation as an abstraction of a semantics-to-
semantics transformation, which correctness is formally established through an
observational abstraction. In particular iterative transformation algorithms are
abstraction of the fixpoint semantics of the subject program.

Several examples have been studied with this perspective such as blocking
command elimination [3], program reduction, constant propagation, partial eval-
uation, etc.

� This work was supported in part by the european FP5 project IST-1999-20527
Daedalus.



2 Patrick Cousot

References

1. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.

2. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp.,
2(4):511–547, Aug. 1992.

3. P. Cousot and R. Cousot. A case study in abstract interpretation based program
transformation: Blocking command elimination. ENTCS, 45, 2001. http://www.
elsevier.nl/locate/entcs/volume45.html, 23 pages.

4. N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Int. Series in Computer Science. Prentice-Hall, June 1993.

5. N.D. Jones. An introduction to partial evaluation. ACM Comput. Surv., 28(3):480–
504, Sep. 1996.

P. Codognet (Ed.): ICLP 2001, LNCS 2237, pp. 4–5, 2001.
c© Springer-Verlag Berlin Heidelberg 2001


